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Abstract

This paper addresses the issue of learning from com-
munication among agents that work in the same do-
main, are capable of learning from examples, and com-
municate using an argumentative framework. We will
present (1) an argumentation framework for learning
agents and (2) an individual policy for agents to gen-
erate arguments and counterarguments (including coun-
terexamples). We focus on argumentation between two
agents, presenting an interaction protocol (AMAL2) that
allows agents to learn from counterexamples and a pref-
erence relation to determine the joint outcome when in-
dividual predictions are in contradiction. The experi-
mental evaluation shows that argumentation-based joint
predictions and learning examples from communication
both improve over individual predictions.

Introduction
The more challenging issues in applying Machine Learning
(ML) techniques to Multiagent Systems (MAS) are those is-
sues that are distinctive of MAS, namely communications,
coordination, and competition. Although Machine Learning
has been applied both to improve coordination in MAS and
competition among agents, less research has been devoted to
learn from communication among agents. In this paper, we
address two issues: (1) using communication to establish a
collaboration mechanism among learning agents in order to
improve their performance, and (2) learning from commu-
nication to provide learning agents with a new information
source allowing them to improve their performance.

In this paper we consider a scenario with two agents that
(1) work in the same domain using a shared ontology, (2) are
capable of learning from examples, and (3) communicate
using an argumentative framework. Traditionally, a learn-
ing agent can predict the solution of new problems using
knowledge learnt from past experience. In our scenario, in
addition to that, an agent may obtain more information by
arguing with some other agent about the correct prediction
for a problem. For this purpose, we will present a two fold
approach consisting of (1) an argumentation framework for
learning agents, and (2) an individual policy to generate ar-
guments and counterarguments.
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Existing argumentation frameworks for multiagent sys-
tems are based on deductive logic. An argument is seen
as a logical statement, while a counterargument is an argu-
ment offered in opposition to another argument (Chesñevar
& Simari 2000; S. Parsons 1998); agents use a preference
relation to resolve conflicting arguments. However, logic-
based argumentation frameworks assume agents with prede-
termined knowledge and preference relation. In this paper,
we focus on argumentation framework where both knowl-
edge and preference relation are learned from experience.

Having learning capabilities allows agents effectively
use a new form of counterargument, namely the use of
counterexamples. Counterexamples offer the possibility of
agents learning during the argumentation process. More-
over, learning agents allow the design of techniques that use
learnt experience to generate adequate arguments and coun-
terarguments. Specifically, we will need to address two is-
sues: (1) how to define a preference relation over two con-
flicting arguments, and (2) how to define a technique to gen-
erate arguments and counterarguments.

This paper presents a case-based approach to address both
issues. The agents use case-based reasoning (CBR) to learn
from past cases (where a case is a situation and its outcome)
in order to predict the outcome of a new situation. We pro-
pose an argumentation protocol, AMAL2, that supports two
agents in reaching a joint prediction over a specific situa-
tion or problem — moreover, the reasoning needed to sup-
port the argumentation process will also be based on cases.
In particular, we present two case-based measures, one for
determining preference relation among arguments and an-
other for establishing the policy for generating arguments
and counterarguments. Finally, we evaluate (1) if argumen-
tation between 2 learning agent can produce a joint predic-
tion that improves over individual learning performance and
(2) if learning from the counterexamples conveyed during
the argumentation process increases the individual perfor-
mance with just those cases being interchanged among the
learning agents.

In the remainder of this paper we are going to introduce
the multi-agent CBR (MAC) framework and the notions of
justifications and justified predictions. After that, Section
provides a specific definition of arguments and counterargu-
ments that we will use in the rest of the paper. Then, Section
defines a preference relation between contradicting argu-



Problem
Traffic_light: red
Cars_passing: no

Case 1
Traffic_light: red
Cars_passing: no

Solution: wait

Case 3
Traffic_light: red
Cars_passing: yes

Solution: wait

Case 4
Traffic_light: green
Cars_passing: yes

Solution: wait

Case 2
Traffic_light: green
Cars_passing: no

Solution: cross

Retrieved
cases

Solution: wait

Justification
Traffic_light: red

Figure 1: An example of justification generation.

ments. Sections presents specific policies to generate both
arguments and counterarguments. Using the previous def-
initions, Section presents the AMAL2 interaction protocol
for argumentation. Finally, Section presents an empirical
evaluation of our approach. The paper closes with related
work and conclusions sections.

Justifications in Multi-Agent Learning
In this section we are going to define the multi-agent learn-
ing framework in which our research is performed. A
Multi-Agent Case Based Reasoning System (MAC) M =
{(A1, C1), ..., (An, Cn)} is a multi-agent system composed
of A = {Ai, ..., An}, a set of CBR agents, where each agent
Ai ∈ A possesses an individual case base Ci. Each indi-
vidual agent Ai in a MAC is completely autonomous and
each agent Ai has access only to its individual and private
case base Ci. A case base Ci = {c1, ..., cm} is a collection
of cases. Agents in a MAC system are able to individu-
ally solve problems, but they can also collaborate with other
agents to solve problems in a collaborative way.

In this framework, we will focus analytical tasks, (i.e.
classification), where the solving a problem means select-
ing a class from an enumerated set of solution classes. In
the following we will note the set of all the solution classes
by S = {S1, ..., SK}. Therefore, a case c = 〈P, S〉 is a
tuple containing a case description P and a solution class
S ∈ S. In the following, we will use the terms problem and
case description indistinctly, and we will use the dot nota-
tion to refer to elements inside a tuple. e.g., c.S refers to the
solution class of a case c.

A justification built by a CBR method after determin-
ing that the solution of a particular problem P was Sk is
a description that contains the relevant information from the
problem P that the CBR method has considered to predict
Sk as the solution of P . In particular, CBR methods work
by retrieving similar cases to the problem at hand, and then
reusing their solutions for the current problem, expecting
that since the problem and the cases are similar, the solutions
will also be similar. Thus, if a CBR method has retrieved a
set of cases C1, ..., Cn to solve a particular problem P the
justification built will contain the relevant information from
the problem P that made the CBR system retrieve that par-
ticular set of cases, i.e. it will contain the relevant informa-
tion that P and C1, ..., Cn have in common.

For example, Figure 1 shows a justification build by
a CBR system for a toy problem (in the following sec-
tions we will show justifications for real problems). In
the figure, a problem has two attributes (Traffic light, and
Cars crossing), the retrieval mechanism of the CBR system
notices that by considering only the attribute Traffic light, it
can retrieve two cases that predict the same solution: wait.
Thus, since only this attribute has been used, it is the only
one appearing in the justification. The values of the rest of
attributes are irrelevant, since whatever their value the solu-
tion class would have been the same.

In general, the meaning of a justification is that all (or
most of) the cases in the case base of an agent that satisfy the
justification (i.e. all the cases that are subsumed by the justi-
fication) belong to the predicted solution class. In the rest of
the paper, we will use v to denote the subsumption relation.
In our work, we use LID (Armengol & Plaza 2001), a CBR
method capable of building symbolic justifications such as
the one exemplified in Figure 1. When an agent provides
a justification for a prediction, the agent generates a justi-
fied prediction J = 〈A,P, S, D〉 where agent A considers
S the correct solution for problem P , and that prediction is
justified a symbolic description D such that J.D @ J.P .

Justifications can have many uses for CBR systems
(Ontañón & Plaza 2003; Plaza, Armengol, & Ontañón
2005). In this paper, we are going to use justifications as
arguments, in order to allow learning agents to engage in
argumentation processes.

Argumentation for Multi-agent Learning
An argument α generated by an agent A is composed of
a statement S and some evidence D supporting S as cor-
rect. In the remainder of this section we will see how this
general definition of argument can be instantiated in spe-
cific kind of arguments that the agents can generate. In the
context of MAC systems, agents argue about the correct so-
lution of new problems and can provide two kinds of infor-
mation: a) specific cases 〈P, S〉, and b) justified predictions:
〈A,P, S,D〉. In other words, learning agents can provide as
arguments either specific cases or generalizations induced
from that cases. Using this information, and having in mind
that agents will only argue about the correct solution of a
given problem, we can define three types of arguments: jus-
tified predictions, counterarguments, and counterexamples.

A justified prediction α is generated by an agent Ai

to argue that Ai believes that the correct solution for a
given problem P is α.S, and the evidence provided is
the justification α.D. In the example depicted in Fig-
ure 1, an agent Ai may generate the argument α =
〈Ai, P, Wait, (Traffic light = red)〉, meaning that the agent
Ai believes that the correct solution for P is Wait because
the attribute Traffic light equals red.

A counterargument β is an argument offered in opposi-
tion to another argument α. In our framework, a counter-
argument consists of a justified prediction 〈Aj , P, S′, D′〉
generated by an agent Aj with the intention to rebut an ar-
gument α generated by another agent Ai, that endorses a
solution class different from that of α for the problem at



hand and justifies this with a justification D′. In the exam-
ple depicted in Figure 1, if an agent generates the argument
α = 〈Ai, P, Walk, (Cars crossing = no)〉, an agent that
thinks that the correct solution is Stop might answer with
the counterargument β = 〈Aj , P, Stop, (Cars crossing =
no ∧ Traffic light = red)〉, meaning that while it is true that
there are no cars crossing, the traffic light is red, and thus the
street cannot be crossed.

A counterexample c for an argument α is a case that con-
tradicts α. Thus a counterexample is a kind counterargument
stating that a specific argument α is false, and the evidence
provided is the case c. Specifically, for a case c to be a coun-
terexample for α, the following conditions have to be met:
α.D v c and α.S 6= c.S.

By exchanging arguments and counterarguments (includ-
ing counterexamples), agents can argue about the correct so-
lution of a given problem. For this purpose, they need a
specific interaction protocol, a preference relation between
contradicting arguments, and a decision policy to generate
counterarguments (and counterexamples).

Preference Relation
The argument that an agent provides might not be consistent
with the information known to other agents (or even to some
of the information known by the agent that has generated
the justification due to noise in training data). For that rea-
son, we are going to define a case-based preference relation
over contradicting justified predictions based on assessing a
confidence measure for each justified prediction.

The confidence of justified predictions is assessed by the
agents via an process of examination of justifications. The
idea behind examination is to count how many of the cases
in an individual case base endorse that justified prediction,
and how many of them are counterexamples of that justified
prediction. The more endorsing cases, the higher the con-
fidence; and the more the counterexamples, the lower the
confidence.

Specifically, to examine a justified prediction α, an agent
obtains the set of cases contained in its individual case base
that are subsumed by α.D. The more of these cases that
belong to the same solution class α.S predicted by α, the
higher the confidence will be. After an agent Ai has ex-
amined a justified prediction α, he obtains the aye and nay
values:
• Y Ai

α = |{c ∈ Ci| α.D v c.P ∧ α.S = c.S}| is the
number of cases in the agent’s case base subsumed by the
justification α.D that belong to the solution class α.S,

• NAi
α = |{c ∈ Ci| α.D v c.P ∧ α.S 6= c.S}| is the num-

ber of cases in the agent’s case base subsumed by justifi-
cation α.D that do not belong to that solution class.
When two agents A1 and A2 want to assess the confi-

dence on a justified prediction α made by one of them, each
of them examines the argument and sends the aye and nay
values obtained to the other agent. Then, both agents can
assess the joint confidence for the justified prediction α:

C(α) =
Y A1

α + Y A2
α + 1

Y A1
α + Y A2

α + NA1
α + NA2

α + 2

i.e. the confidence on a justified prediction is the number of
endorsing cases divided by the number of endorsing cases
plus counterexamples found by each of the two agents. No-
tice that we add 1 to the numerator and 2 to the denominator,
this is the Laplace correction to estimate probabilities, that
prevents arguments to have excessive confidence when as-
sessing confidence with a little number of cases. Figure 2
illustrates the individual evaluation of the confidence of an
argument, in particular, three endorsing cases and one coun-
terexample are found in the case base of agents Ai, giving
an estimated confidence of 0.6

Thus, the preference relation used in our framework is
the following one: a justified prediction α is preferred over
another one β if C(α) ≥ C(β).

Moreover, notice that an agent might estimate the confi-
dence of an argument by only using its own case base. For
instance, an agent Ai might estimate the confidence on a
prediction as: CAi

(α) = Y
Ai

α

Y
Ai

α +N
Ai
α +1

. Notice that CAi
(α)

is an estimation of C(α), that might be used by individual
agents to individually compare arguments.

Generation of Arguments and
Counterarguments

In our framework, arguments are generated by the agents us-
ing learning. Any learning method able to provide a justified
prediction can be used to generate arguments. For instance,
decision trees and LID (Armengol & Plaza 2001) are suit-
able learning methods. Thus, when an agent wants to gen-
erate an argument endorsing that a specific solution class is
the correct solution for a given problem P , it generates a
justified prediction as explained in Section .

When an agent Ai generates a counterargument β to rebut
an argument α, Ai expects that β is preferred over α. With
that purpose, in this section we are going to present a specific
policy to generate counterarguments based on the specificity
criterion (Poole 1985). The specificity criterion is widely
used in deductive frameworks for argumentation, and states
that between two conflicting arguments, the most specific
should be preferred since it is, in principle, more informed.
Thus, counterarguments generated based on the specificity
criterion are expected to be preferable (since they are more
informed) to the arguments they try to rebut. However, there
is no guarantee that such counterarguments will always win,
since we use a preference relation based on confidence.

Therefore, when an agent wants to generate a counterar-
gument β to an argument α, it will generate a counterargu-
ment that it is more specific than α.

The generation of counterarguments using the speci-
ficity criterion imposes some restrictions over the learning
method, although LID or ID3 can be easily adapted for this
task. For instance, LID is an algorithm that generates a de-
scription starting by the empty term and heuristically adding
features to that term. Thus, at every step, the description is
more specific, and the number of cases that are subsumed
by that description is reduced. When the description only
covers cases of a single solution class, LID terminates and
predicts that solution class. To generate a counterargument
to an argument α LID just has to use as starting point the



+ +
+

+
+

+

-
- -

-

- +

α = hAi, P,+,Di

Case base of agent Ai

CAi
(α) = 3

3+1+1
= 0.6α.D

Figure 2: Confidence of arguments is evaluated by contrasting them against the case bases of the agents.

description α.D instead of the empty term. In this way, the
justification provided by LID will always be subsumed by
α.D, and thus the resulting counterargument will be more
specific than α. However, notice that LID may sometimes
not be able to generate counterarguments, since LID may
not be able to specialize the description α.D any further, or
because the agent does not own any cases subsumed by α.D
to run LID.

Moreover, agents may also try to rebut the other agent’s
arguments using counterexamples. Specifically, when an
agent Ai wants to rebut an argument α, the following policy
is used: (1) The agent Ai tries to generate a counterargu-
ment β more specific than α (in our experiments agents use
LID). If the Ai succeeds, β is sent to the other agent as a
counterargument of α. If not, (2) then Ai searches for a
counterexample c ∈ Ci of α in its individual case base Ci.
If a case c is found, then c is sent to the other agent as a
counterexample of α. If no counterexamples are found, then
Ai cannot rebut the argument α.

Argumentation-based Multi-Agent Learning
In this section we will present the Argumentation-based
Multiagent Learning protocol for 2 agents (AMAL2). The
idea behind AMAL2 is to allow a pair of agents to argue
about the correct solution of a problem, arriving at a join so-
lution that is based on their past learning and the information
they exchange during argumentation.

At the beginning of the protocol, both agents will make
their predictions for the problem at hand. Then, the protocol
establishes the rules allowing one of the agents in disagree-
ment with the prediction of the other to provide a counter-
argument. Later, the other agent can respond with another
counterargument, and so on.

The AMAL2 protocol among two agents A1 and A2 to
solve a problem P works in a series of rounds. We will
use t to denote the current round (initially t = 0) and
Ht = 〈αt

1, α
t
2〉 to denote the pair of predictions that each

agent holds at a round t. Initially, each agent makes its in-
dividual prediction. Then, the confidence of each prediction
is assessed, and the prediction with the highest confidence is
considered the winner. However, if the agent that has pro-
vided the prediction with lower confidence doesn’t agree,
it has the opportunity to provide a counterargument. Agents
keep exchanging arguments and counterarguments until they
reach an agreement or until no agent is able to generate more

counterarguments. At the end of the argumentation, if the
agents have not reached an agreement, the prediction with
the highest confidence is considered the joint prediction.

The protocol starts when one of the two agents receives
a problem P to be solved. That agent sends P to the other
agent requesting it to argue about the correct solution of the
problem. Thus, after both agents know the problem P to
solve, round t = 0 of the protocol starts:

1. Initially, each the agent individually solves P , and builds
a justified prediction (A1 builds α0

1, and A2 builds α0
2).

Then, each agent Ai sends the performative assert(α0
i ) to

the other agent. Thus, both agents know H0 = 〈α0
1, α

0
2〉.

2. At each round t, the agents check whether their arguments
in Ht agree. If they do the protocol moves to step 5, oth-
erwise the agents compute the confidence for each argu-
ment and use the preference relation (of §) to determine
which argument in Ht is preferred. After that, the agent
that has provided the non preferred argument may try to
rebut the other agent’s argument. Each individual agent
uses its own policy to rebut arguments:

• If an agent Ai generates a counterargument αt+1
i , then,

it locally compares αt+1
i with its previous argument αt

i

by locally assessing their confidence. If CAi
(αt+1

i ) >

CAi
(αt

i), then Ai considers that αt+1
i is stronger than

its previous argument, and Ai has to change its ar-
gument to the stronger one; therefore Ai sends in
a single message the following performatives to Aj :
rebut(αt+1

i , αt
j), withdraw(αt

i), assert(αt+1
i ). Oth-

erwise, since CAi
(αt+1

i ) ≤ CAi
(αt

i)), Ai will send
only the performative: rebut(αt+1

i , αt
j). The protocol

moves to state 3.
• If an agent Ai selects c as a counterexample of the other

agent’s justified prediction, then Ai sends the following
performative to Aj : rebut(c, αt

j). The protocol moves
to step 4.

• If no agent provides any argument the protocol moves
to step 5.

3. The agent Aj that has received the counterargument
αt+1

i , locally compares it against its own argument, αt
j ,

by locally assessing their confidence. If CAj (α
t+1
i ) >

CAj
(αt

j), then Aj will accept the counterargument
as stronger than its own argument, and it will send



Table 1: Accuracy of individual prediction (IP) and joint
prediction (JP).

SOYBEAN ZOOLOGY
IP JP IP JP

25% 48.53% 60.2% 66.34% 77.82%
50% 62.22% 75.44% 81.98% 90.49%
75% 73.62% 82.93% 86.37% 91.68%

100% 78.24% 86.19% 90.89% 91.29%

in a single message the following performatives to
Ai: withdraw(αt

j), assert(αt+1
i ). Otherwise, since

CAj
(αt+1

i ,≤ CAj
(αt

j)), Aj will not accept the counter-
argument, and will send a reject message to Ai. The pro-
tocol moves back to state 2 in a new round t + 1.

4. The agent Aj that has received the counterexample c gen-
erates a new argument αt+1

j that takes into account c. To
inform Ai of the new argument, Aj sends Ai the follow-
ing performatives: withdraw(αt

j), assert(αt+1
j ). The

protocol moves back to state 2 in a new round t + 1.

5. The protocol ends yielding a joint prediction, as follows:
if both arguments in Ht agree then their prediction is the
joint prediction, otherwise the prediction in Ht with the
higher confidence is considered the joint prediction.

To avoid infinite iterations, if an agent sends twice the
same argument, the protocol also terminates.

Experimental Evaluation
In this section we empirically evaluate the AMAL2 argu-
mentation protocol. We have made experiments in two dif-
ferent data sets from the UCI machine learning repository:
soybean and zoology. The soybean data set has 307 exam-
ples and 19 classes, while the zoology data set has 101 cases
and 7 classes. In an experimental run, training cases are dis-
tributed among the agents without replication, i.e. there is
no case shared by two agents. In the testing stage problems
arrive randomly to one of the agents.

The experiments are designed to test two hypotheses:
(H1) that argumentation is a useful framework to establish
cooperation among learning agents; and (H2) that learning
from communication in argumentation processes improves
the individual performance of a learning agent. More-
over, we expect that the improvement is correlated with
the sample of data accessible to a learning agents; specifi-
cally, an agent with less cases can benefit more both from
argumentation-based cooperation (H1) and learning from
communication (H2). Therefore, our experiments focus on
how the amount of data accessible to a learning agent influ-
ences the degree of improvement.

Concerning H1, we ran 4 experiments where part of the
data is distributed among 2 learning agents. Table 1 shows
the results of experimental runs for 25%, 50%, 75% and
100% of the training set distributed among 2 learning agents.
The results shown are the average of five 10-fold cross val-
idation runs. For this H1 scenario learning from commu-

nication is disabled in order to evaluate the performance of
the case-based argumentation process for joint prediction.
The results in Table 1 show that joint prediction (JP) using
AMAL2 outperforms individual accuracy (IP) of a learning
agent. Moreover, as expected, the degree of improvement
is larger when the individual agents have a smaller sample
of the data. For instance, in the Soybean data set with 25%
of the data JP accuracy increases 11.67 over IP; while with
100% JP accuracy increases 6.97 over IP. The difference in
accuracy improvement (which is smaller in Zoology) is ex-
plained by the fact that Zoology is an easier data set — in
the sense that with a smaller percent of the data higher ac-
curacy values can be achieved. Thus, learning tasks in more
“difficult” data sets also have more to gain from cooperation
using a case-based argumentation process.

Concerning H2, we ran 4 experiments similarly as before,
except that now during the training phase the agents learn
from the counterexamples interchanged in the process of ar-
gumentation. That is to say, when an agent Ai receives a
new training case c an argumentation process is engaged in
order to reach a joint prediction; those counterexamples that
are exchanged in order to predict the case’s solution are re-
tained by receiving agent (i.e. both Ai and Aj can learn
from communication). Case c is retained by Ai after the
argumentation is finished. Table 2 shows the results of ex-
perimental runs for 25%, 50%, 75%, and 100% of the train-
ing set distributed among 2 learning agents. The results in
Table 2 shows that the individual accuracy of agents that
also learn from communication (ALC) outperforms that of
agents learning only from their individual experience (AIL).
Notice that, since we are evaluating H2, Table 2 plots indi-
vidual accuracy only, and not joint prediction accuracy as
Table 1 does. These results show that learning from com-
munication (in addition to learning from individual experi-
ence) improves the individual accuracy, and therefore the
argumentation process provides a second source of informa-
tion that can be fruitfully exploited by individual learners.
The number of cases learnt from communication (CLC) is
reasonably small — compare to the number of individually
retained cases (CIL). Moreover, the increment in individual
accuracy shows that the argumentation process provides a
good selection mechanism for determining those cases that
can be useful for a particular agent.

Related Work
Concerning CBR in a multiagent setting, the first research
was on “negotiated case retrieval” (Prassad, Lesser, & Lan-
der 1995) among groups of agents. Our work on multiagent
case-based learning started in 1999 (Martı́n, Plaza, & Ar-
cos 1999); later Mc Ginty and Smyth (McGinty & Smyth
2001) presented a multiagent collaborative CBR approach
(CCBR) for planning. Finally, another interesting approach
is multi-case-base reasoning (MCBR) (Leake & Sooria-
murthi 2002), that deals with distributed systems where
there are several case bases available for the same task and
addresses the problems of cross-case base adaptation. The
main difference is that our MAC approach is a way to dis-
tribute the Reuse process of CBR (using a voting system)
while Retrieve is performed individually by each agent; the



Table 2: Accuracy with individual learning (AIL) and together with learning from communication (ALC); cases retained (CIL)
and learned from communication (CLC).

SOYBEAN ZOOLOGY
AIL ALC CIL CLC AIL ALC CIL CLC

25% 48.53% 51.66% 33.90 4.15 66.34% 69.11% 11.00 0.97
50% 62.22% 68.6% 67.80 8.73 81.98% 84.95% 22.00 1.80
75% 73.62% 76.78% 101.70 11.12 86.37% 88.32% 33.00 2.27
100% 78.24% 81.95% 138.15 12.93 90.89% 93.47% 45.45 2.92

other multiagent CBR approaches, however, focus on dis-
tributing the Retrieve process.

Research on MAS argumentation focus on several issues
like a) logics, protocols and languages that support argumen-
tation, b) argument selection and c) argument interpretation.
Approaches for logic and languages that support argumen-
tation include defeasible logic (Chesñevar & Simari 2000)
and BDI models (S. Parsons 1998). Although argument
selection is a key aspect of automated argumentation (see
(S. Kraus & Evenchik 1998) and (S. Parsons 1998)), most
research has been focused on preference relations among ar-
guments. In our framework we have addressed both argu-
ment selection and preference relations using a case-based
approach.

Conclusions and Future Work
In this paper we have presented an argumentation-based
framework for multiagent learning. Specifically, we have
presented a protocol called AMAL2 that allows two learning
agents to argue about the solution of a given problem and
we have shown how the learning capabilities can be used to
generate arguments and counterarguments. The experimen-
tal evaluation shows that the increased amount of informa-
tion that the agents use to solve problems thanks to the ar-
gumentation process increases their predictive accuracy, and
specially when the individual agents have access to a limited
amount of information. Clearly, an agent that knows all does
not need external help (nor, by the way, needs to continue
learning if there is no room for improvement).

The main contributions of this work are: a) an argumen-
tation framework for learning agents; b) a case-based pref-
erence relation over arguments, based on a confidence esti-
mation of arguments; c) a policy to generate counterargu-
ments and counterexamples; and d) an argumentation-based
approach for learning from communication.

Moreover, the work presented in this paper concerns only
pairs of agents: as future work we plan to generalize the
AMAL2 protocol to work with a larger number of agents.
We would like to elucidate two concerns: a) in which situa-
tions argumentation-based joint prediction can significantly
increase performance (number of agents, bias in individ-
ual data, etc); and b) how learning from communication in
an argumentation-based process can improve the individual
performance in addition to the individual learning. In the
experiments presented here a learning agent would retain all
counterexamples submitted by the other agent; however, this
is a very simple case retention policy, and we will like to ex-

periment with more informed policies — with the goal that
individual learning agents could significantly improve using
only a small set of cases proposed by other agents. Finally,
our approach is focused on lazy learning, and future works
aims at incorporating eager inductive learning inside the ar-
gumentative framework for learning from communication.
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