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Concept blending—a cognitive process which allows for the combination of certain elements
(and their relations) from originally distinct conceptual spaces into a new unified space com-
bining these previously separate elements, and enables reasoning and inference over the
combination—is taken as a key element of creative thought and combinatorial creativity.
In this article we summarize our work towards the development of a computational-level and
algorithmic-level account of concept blending, combining approaches from computational
analogy-making and case-based reasoning (CBR). We present the theoretical background, as
well as an algorithmic proposal integrating higher-order anti-unification matching and gen-
eralization from analogy with amalgams from CBR. The feasibility of the approach is then
exemplified in two case studies.
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1. Introduction: Computational Creativity and Concept Blending

M. A. Boden (2003) identifies three forms of creativity: exploratory, transformational,
and combinatorial. The label exploratory refers to creativity which arises from a thor-
ough and persistent search of a well-understood domain (i.e., within an already estab-
lished conceptual space), whilst transformational creativity either involves the removal of
constraints and limitations from the initial domain definition, or the rejection of charac-
teristic assumptions forming part of the specification of the creative problem (or both).
Combinatorial creativity shares traits of both other forms in that it arises from a com-
binatorial process joining familiar ideas (in the form of, for instance, concepts, theories,
or artworks) in an unfamiliar way, by this producing novel ideas.

Computationally modelling the latter form of creativity turns out to be surprisingly
complicated: although the overall idea of combining preexisting ideas into new ones seems
fairly intuitive and straightforward, when looking at it from a more formal perspective at
the current stage neither can a precise algorithmic characterisation be given, nor are the
details of a possible computational-level theory describing the process(es) at work well
understood.1 Still, in recent years a proposal by Fauconnier and Turner (1998) called
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concept blending (or conceptual integration) has influenced and reinvigorated studies
trying to unravel the general cognitive principles operating during creative thought.
In their theory, concept blending constitutes a cognitive process which allows for the
combination of certain elements (and their relations) from originally distinct conceptual
spaces into a new unified space combining these previously separate elements, and then
enables reasoning and inference over the combination. Nevertheless, Fauconnier and
Turner (also in their later works) remain mostly silent concerning details needed for a
proper computational modelling of concept blending as cognitive capacity — neither do
they provide a fully worked out and formalised theory themselves, nor does their informal
account capture key properties and functionalities as, for example, the retrieval of input
spaces, the selection and transfer of elements from the input spaces into the blend space,
or the further combination of possibly mutually contradictory elements in the blend. In
short: Up until today, the theory does not specify how the blending process is supposed
to work.

These shortcomings notwithstanding, several researchers in AI and computational cog-
nitive modelling have used the provided conceptual descriptions as starting point for
suggesting possible refinements and implementations: J. A. Goguen and Harrell (2010)
propose a concept blending-based approach to the analysis of the style of multimedia con-
tent in terms of blending principles and also provide an experimental implementation,
Pereira (2007) tries to develop a computationally plausible model of several hypothe-
sised sub-parts of concept blending, Thagard and Stewart (2011) exemplify how creative
thinking could arise from using convolution to combine neural patterns into ones which
are potentially novel and useful, and Veale and O’Donoghue (2000) present their com-
putational model of conceptual integration and propose several extensions to the at the
time actual view on concept blending.

Another attempt at developing a computationally feasible, cognitively-inspired formal
model of concept creation, grounded on a sound mathematical theory of concepts and
implemented in a generic, creative computational system had been undertaken in the
EU-FP7 “Concept Invention Theory” (COINVENT) project.2 One of the main goals of
the COINVENT research program was the development of a computational-level and
algorithmic-level account of concept blending based on insights from psychology, AI, and
cognitive modelling, the heart of which are made up by results from cognitive systems
studies on computational analogy-making and knowledge transfer and combination (i.e.,
the computation of so called “amalgams”) from case-based reasoning. In the following
we present an analogy-inspired perspective on the resulting COINVENT core model for
concept blending and show how the respective mechanisms and systems interact.

2. Cognitive Task and Theoretical Commitments

The cognitive task targeted by COINVENT was the blending of conceptual theories, i.e.,
of logic-based representations of real-world concepts in finite axiomatisations. Contrary
to accounts of mathematical theory blending as, e.g., presented by Martinez et al. (2014),
a conceptual theory is not necessarily a (modulo logical equivalence) unique and unam-
biguous description of a concept. Mathematical theories can offer both properties due to
the axiomatic nature of mathematical concepts, making them conceivable as being made
up exclusively by the set of defining axioms (or the deductive closure thereof). In con-
trast, conceptual theories as descriptive results of a formalisation process in most cases

etc. refer to the corresponding conceptualisations in Marr (1982)’s Tri-Level Hypothesis.
2Cf. http://www.coinvent-project.eu.
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represent a certain partial perspective (among several possible ones) on the described
concept, instantiating what Bou et al. (2015) call a conceptual space:

“Conceptual spaces are partial and temporary representational structures which are con-
structed on the fly when talking about a particular situation, which are informed by the
knowledge structures associated with a domain. These are influenced by Boden’s idea of a
concept space which is mapped, explored and transformed by transcending mapped bound-
aries (M. Boden, 1977) (...).” (Bou et al., 2015, p. 56)

Still, with respect to the computational-level account of the cognitive task addressed by
our theory and system, strong parallels exist to the work on mathematical theory blend-
ing. The system is presented with two input theories formalised as finite axiomatisations
in possibly different logic-based languages (in the case of the algorithmic-level system
description in Section 4.3: many-sorted first-order logics), and produces as output an-
other theory describing the blend between the formalised input concepts again as finite
axiomatisation in a logic-based language.

In terms of the corresponding account of creativity, we thereby aim to automatise an
important mechanism as part of combinatorial creativity in Boden’s sense. Approaching
this (family of) task(s) via theory blending allows to accommodate for several theoretical
characteristics we perceive to be central to blending on the level of real-world concepts:

• Concept blending: Blending happens on the knowledge level. While people as cognitive
agents in most cases might not be aware of it, the blending process crucially relies on
knowledge about the input concepts available to the cogniser. The blending process is
then guided by similarities between the input concepts, as characteristics of concepts
are not arbitrarily combined during the blending process, but the blending process
is guided by shared properties/elements of the input concepts. These similarities also
define the basic structure of the resulting blend(s).

• Similarities, analogy, and amalgams: Similarities between input concepts are accessible
via meaningful generalisation between concepts. On the level of conceptual theories,
this corresponds to the anti-unification of theories (see Section 3.1 for details). As
such, generalisation-based analogy-making is a suitable approach for identifying and
subsequently (via analogical transfer) carrying over these similarities into the basic
structure of the blend. The combination of further properties from both input theories
can then be conceived of as generalisation-based amalgamation, maintaining the basic
structure introduced by the analogy process.

• Constraints on the blending process: On the system side, further external constraints
imposed by the environment and/or task, and internal properties of the cognitive agent
(such as, e.g., expertise) can be taken into account through heuristics and knowledge-
sensitive methods during the computation of the blend(s) and the subsequent selection
of the final output theory.

Given the central role generalisation, analogy-making, and amalgamation play in our
understanding and computational-level theorising of the blending of conceptual theories,
we proceed with fairly detailed introductions to the accounts of computational analogy-
making and the computation of amalgams used in our theory and system (which are
then described in detail in Section 4).
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Figure 1. A schematic overview of HDTP’s generalisation-based approach to analogy.

3. Computational Models of Analogy and Amalgams

As analogy seems to play a crucial role in human cognition (see, for instance, the overview
provided by Gentner and Smith (2013)), researchers on the computational side of cogni-
tive science and in AI also very quickly got interested in the topic and have been creat-
ing computational models of analogy-making basically since the advent of computer sys-
tems, among others giving rise to Falkenhainer, Forbus, and Gentner (1989)’s well-known
Structure-Mapping Engine. One of the latest entries in the long series of computational
analogy engines, and the system applied in COINVENT, is the Heuristic-Driven Theory
Projection (HDTP) framework (Schmidt, Krumnack, Gust, and Kühnberger (2014)), a
generalisation-based symbolic analogy engine discussed in detail in Sect. 3.1.

In a conceptually related, but mostly independently conducted line of work researchers
in case-based reasoning (CBR) have been trying to develop problem solving methodolo-
gies based on the principle that similar problems likely tend to have similar solutions.
As described by Aamodt and Plaza (1994), CBR tries to solve problems by retrieving
one or several relevant cases for the current issue at hand from a case-base with already
solved previous problems, and then reusing the knowledge to also tackle the new task.
While the retrieval stage has received significant attention over the last two decades, the
transfer and combination of knowledge from the retrieved case to the current problem
has been studied only to a lesser extent, with Ontañón and Plaza (2012) outlining a
recent attempt at also gaining insights on this part of the CBR cycle by suggesting the
framework of amalgams (originally introduced by Ontañón and Plaza (2010)) as a formal
model. Sect. 3.2 gives an overview of amalgams as used in the COINVENT model.

3.1. Representing and Computing Generalisation-Based Analogies Using
Heuristic-Driven Theory Projection

Heuristic-Driven Theory Projection has been conceived as a mathematically sound the-
oretical model and implemented engine for computational analogy-making, computing
analogical relations and inferences for domains which are presented in (possibly different)
many-sorted first-order logic languages: source and target of the analogy-making process
are defined in terms of axiomatisations, i.e., given by a finite set of formulae. HDTP
follows a generalisation-based approach to analogy-making: given both domains, a com-
mon generalisation encompassing structurally shared elements common to both input
domains is computed (mapping phase) and this generalisation then guides the analogical
alignment and knowledge transfer process of unmatched knowledge from the source to
the target domain used for establishing new hypotheses (transfer phase). See Fig. 1 for
a conceptual overview of the entire analogy mechanism.
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Sorts:
clade, entity, bodypart, ability
Entities:
mammal : clade horse : entity torso, legs : bodypart walk : ability
Predicates:
is of clade : entity× clade has bodypart : entity× bodypart
has ability : entity× ability
Laws of the horse characterisation:
is of clade(horse,mammal) has bodypart(horse, legs)
has bodypart(horse, torso) has ability(horse,walk)

Table 1. Example formalisation of a stereotypical characterisation of a horse.

3.1.1. Representing Domain Theories and Generalisation Steps Between Domains in
HDTP

More precisely, HDTP uses many-sorted term algebras to define the input conceptual
domains (i.e., one source and one target domain for the later analogy). A term algebra
requires two ingredients: a signature and a set of variables.

Definition 1 A many-sorted signature Σ = 〈Sort, Func〉 is a tuple containing a finite
set Sort of sorts, and a finite set Func of function symbols. An n-ary function symbol
f ∈ Func is specified by f : s1 × s2 × · · · × sn → s, where s, s1, . . . , sn ∈ Sort. We
will consider function symbols of any non-negative arity, and we will use 0-ary function
symbols to represent constants.

Definition 2 Let Σ = 〈Sort, Func〉 be a many-sorted signature, and let V = {x1 :
s1, x2 : s2, . . .} be an infinite set of sorted variables, where the sorts are chosen from
Sort. Associated with each variable xi : si is an arity, analogous to the arity of function
symbols above. For any i ≥ 0, we let Vi be the variables of arity i. The set Term(Σ,V)
and the function sort : Term(Σ,V)→ Sort are defined inductively as follows:

(1) If x : s ∈ V, then x ∈ Term(Σ,V) and sort(x) = s.
(2) If f : s1×s2×· · ·×sn → s is a function symbol in Σ, and t1, . . . , tn ∈ Term(Σ,V) with

sort(ti) = si for each i, then f(t1, . . . , tn) ∈ Term(Σ,V) with sort(f(t1, . . . , tn)) = s.

We refer to the structure 〈Term(Σ,V), sort〉 as a term algebra, often suppressing sort.

As an example for a domain representation using HDTP’s language, Table 1 reproduces
a possible formalisation of the concept of “horse” using some of a horse’s key charac-
teristics (this formalisation reoccurs below as part of a bigger case study demonstrating
the concept blending capacities of the framework combining analogy and amalgams in
Section 4.4):

Given two input domains, HDTP uses anti-unification (firstly studied in a first-order
setting by Plotkin (1970)) to compute a generalisation of both domains. In this process,
terms are generalised resulting in an anti-instance, where differing subterms are replaced
by variables; the original terms can be restored by inverting the procedure, i.e., by replac-
ing the new variables by appropriate subterms. These “replacements” can be formalised
as substitutions:

Definition 3 Given term algebra Term(Σ,V). A term substitution is a partial function
σ : V → Term(Σ,V) mapping variables to terms, formally represented by σ = {x1 →
t1, . . . , xn → tn} provided each of the xi is unique and the sorts of the variables and
terms match. An application of a substitution σ on a term is defined inductively by:
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(1) apply(x, σ) =

{
t x→ t ∈ σ
x otherwise.

(2) apply(f(t1, . . . , tn), σ) = f(apply(t1, σ), . . . ,
apply(tn, σ)).

Given two terms t, t′ and a substitution σ such that
apply(t, σ) = t′, then we call t′ an instance of t and t an anti-instance of t′. We will

often shorten apply(t, σ) = t′ to t
σ−→ t′, or t→ t′ if the substitution is clear from context.

Using substitutions, generalisations can formally be characterised, with the least gen-
eral generalisation playing a special role as most specific anti-unifier (i.e., as minimal
with respect to the instantiation order):

Definition 4 Let f, g be terms from a term algebra
Term(Σ,V). A generalisation of f and g is a triple 〈G, σ, τ〉 where G ∈ Term(Σ,V) and

σ, τ are substitutions such that G
σ−→ f and G

τ−→ g. The generalisation 〈G, σ, τ〉 is called
the least general generalisation (LGG) if for any generalisation 〈G′, σ′, τ ′〉 of f, g, there

exists a substitution φ such that G′
φ−→ G.

As shown by Plotkin (1970), the LGG is unique when considering only first-order
anti-unification between terms.

3.1.2. Computing Least General Generalisations Using Restricted Higher-Order
Anti-Unification as Basis for Analogies in HDTP

Against this background, Schwering, Krumnack, Kühnberger, and Gust (2009) describe
a restricted form of higher-order anti-unification applied in HDTP, defined as using the
composition of a number of unit substitutions operating on higher-order terms (also see
Fig. 2 for concrete examples of the defined substitution operations).

Definition 5 The following are the types of unit substitutions allowed in restricted
higher-order anti-unification.

(1) A renaming ρ(F, F ′) replaces a variable F ∈ Vn with another variable F ′ ∈ Vn:

F (t1, . . . , tn)
ρ(F,F ′)−−−−→ F ′(t1, . . . , tn).

(2) A fixation φ(F, f) replaces a variable F ∈ Vn with a function symbol f ∈ Cn:

F (t1, . . . , tn)
φ(F,f)−−−−→ f(t1, . . . , tn).

(3) An argument insertion ι(F, F ′, V, i) is defined as follows, for F ∈ Vn, F ′ ∈
Vn−k+1, V ∈ Vk, i ∈ [n]:

F (t1, . . . , tn)
ι(F,F ′,V,i)−−−−−−→ F ′(t1, . . . , ti−1, V (ti, . . . ,

ti+k), ti+k+1, . . . , tn).
It “wraps” k of the subterms in a term using a k-ary variable, or can be used to
insert a 0-ary variable.

(4) A permutation π(F, τ) rearranges the arguments of a term, with F ∈ Vn, τ : [n]→ [n]
a bijection:

F (t1, . . . , tn)
π(F,τ)−−−−→ F (tπ(1), . . . , tπ(n)).

A restricted substitution is a substitution t → t′ which results from the composition of
any sequence of unit substitutions transforming t into t′.

Clearly, restricted substitutions are strictly more general than mere (first-order) term
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Figure 2. A reproduction of the examples originally given by Schwering et al. (2009) for the different types of

higher-order anti-unifications applied in HDTP: A renaming (a), two different forms of fixation (b and c), an

argument insertion (d), and a permutation (e).

Sorts:
clade, entity, bodypart, ability
Entities:
mammal : clade dog : entity tail : bodypart drool : ability
Predicates:
is of clade : entity× clade has bodypart : entity× bodypart
has ability : entity× ability
Laws of the dog characterisation:
is of clade(dog,mammal) has bodypart(dog, tail) has ability(dog,drool)

Table 2. Example formalisation of a stereotypical characterisation of a dog.

substitutions. While for a given term t there are (up to renaming) still only finitely many
anti-instances (i.e., terms s with s → t), this generality unfortunately, among others,
causes the LGG to be no longer necessarily unique. Therefore, HDTP ranks generalisa-
tions according to a complexity order on the complexity of generalisation (based on a
complexity measure for substitutions), and finally chooses the least complex generalisa-
tions as preferred ones.

From a practical point of view, it is also necessary to anti-unify not only terms, but
formulae: HDTP extends the notion of generalisation also to formulae by basically treat-
ing formulae in clause form and terms alike (as positive literals are structurally equal
to function expressions, and complex clauses in normal form may be treated component
wise).

Furthermore, analogies in general not only rely on an isolated pair of formulae from
source and target, but on two sets of formulae, making it necessary to extend the notion
of anti-unification accordingly:

Definition 6 Let Th(Ax) denote the set of all formulae that can be syntactically derived
from a set of axioms Ax, i.e., Th(Ax) = {φ|Ax ` φ}, and let G be a finite set of formulae.
G is an anti-instance of a set of formulae F if and only if there exists a substitu-

tion σ such that Th(apply(G, σ)) ⊆ Th(F ). Given substitutions σ and τ , 〈G, σ, τ〉 is a

generalisation of two sets of formulae S and T if and only if G
σ−→ S and G

τ−→ T .

As a simple example, we take the “horse” formalisation from Table 1 and the stereo-
typical characterisation of a dog given in Table 2, and generalise them into the shared
generalisation in Table 3.

When processing sets of formulae, a heuristic is applied for iteratively selecting pairs of
formulae to be generalised: coherent mappings outmatch incoherent ones, i.e., mappings
in which substitutions can be reused are preferred over isolated substitutions, as they
are assumed to be better suited to induce the analogical relation.

Finally, HDTP in its heuristics also aims to maximise the coverage of generalisations:
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Sorts:
clade, entity, bodypart, ability
Entities:
mammal : clade E : entity B : bodypart A : ability
Predicates:
is of clade : entity× clade has bodypart : entity× bodypart
has ability : entity× ability
Laws of the shared characterisation:
is of clade(E,mammal) has bodypart(E,B) has ability(E,A)

Table 3. Shared generalisation of the “horse” and “dog” formalisations from Tables 1 and 2, respectively.

Definition 7 Given a generalisation 〈G, σ, τ〉 of two sets of axioms S and T ,
Th(apply(G, σ)) ⊆ Th(S) is said to be covered by G, and for T accordingly.

The degree to which G covers Th(S) is called the coverage of G, with a generalisation
〈G, σ, τ〉 having at least the same coverage as 〈G′, σ′, τ ′〉 if there exists a substitution θ

for which it holds that G′
θ−→ G, σ′ = σ ◦ θ, and τ ′ = τ ◦ θ (inducing a partial order over

generalisations).

In general, while there are some constraining factors which have to be taken into
account (details on this have been given by Schwering et al. (2009)), maximising the
coverage of an analogy seems meaningful as this also automatically increases the domain
support for the corresponding analogy.

Once obtained, the generalised theory and the substitutions specify the analogical
relation, and formulae of the source for which no correspondence in the target domain
can be found may, by means of the already established substitutions, be transferred to
the target, constituting a process of analogical transfer between the domains.

3.2. Representing and Guiding the Combination of Conceptual Theories
Using Amalgams

Ontañón and Plaza (2010) developed the notion of amalgams in the context of Case-
based Reasoning (CBR), where new problems are tackled based on previously solved
problems (or cases, residing on a case base). Solving a new problem often requires more
than one case from the case base, so their content has to be combined in some way to
address the new problem. The notion of an “amalgam” of two cases (two descriptions of
problems and their solutions) is a proposal to formalise the ways in which cases can be
combined to produce a new, coherent case.

Formally, amalgams can be defined in any representation language L for which a sub-
sumption relation v between the formulae (or descriptions) of L can be defined. We say
that a description I1 subsumes another description I2 (I1 v I2) when I1 is more general
(or equal) than I2.3 Additionally, we assume that L contains the infimum element ⊥ (or
‘any’), and the supremum element > (or ‘none’) with respect to the subsumption order.

Next, for any two descriptions I1 and I2 in L we can define their unification, (I1 t
I2), which is the most general specialisation of two given descriptions, and their anti-
unification, (I1 u I2), defined as the least general generalisation of two descriptions,
representing the most specific description that subsumes both. Intuitively, a unifier is a
description that has all the information in both the original descriptions; when joining
this information yields to inconsistency this is equivalent to say that I1 t I2 = >, i.e.,

3In machine learning terms, A v B means that A is more general than B, while in description logics it has the

opposite meaning, since it is seen as ‘set inclusion’ of their interpretations.
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Figure 3. A diagram of an amalgam A from inputs I1 and I2 where A = Ī1 t Ī2.
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A = S0 t T

S0
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G = S u T

Figure 4. A diagram that transfers content from source S to a target T via an asymmetric amalgam A.

they have no common specialisation except ‘none’. The anti-unification I1uI2 contains all
that is common to both I1 and I2; when they have nothing in common then I1 u I2 = ⊥.
Depending on L anti-unification and unification might be unique or not.

Amalgams can be conceived of as a generalisation of the notion of unification: as ‘partial
unification’ (see the description given by Ontañón and Plaza (2010) for details). Unifi-
cation means that what is true for I1 or I2 is also true for I1 t I2; e.g. if I1 describes ‘a
red vehicle’ and I2 describes ‘a German minivan’ then their unification yields a common
specialisation like ‘a red German minivan’. Two descriptions may possess information
that yields an inconsistency when unified; for instance ‘a red French sedan’ and ‘a blue
German minivan’ have no common specialisation except >. An amalgam of two descrip-
tions is a new description that contains parts from each of the two original descriptions.
For instance, an amalgam of ‘a red French sedan’ and ‘a blue German minivan’ is ‘a red
German sedan’; clearly there are always multiple possibilities for amalgams, like ‘a blue
French minivan’.

For the purposes of this article we can define an amalgam of two input descriptions as
follows:

Definition 8 (Amalgam) A description A ∈ L is an amalgam of two inputs I1 and I2

(with anti-unification G = I1 u I2) if there exist two generalisations Ī1 and Ī2 such that
(1) G v Ī1 v I1, (2) G v Ī2 v I2, and (3) A = Ī1 t Ī2

When Ī1 and Ī2 have no common specialisation then trivially A = >, since their only
unifier is ‘none’. For our purpose we will only be interested in non-trivial amalgams.

This definition is illustrated in Fig. 3, where the anti-unification of the inputs is indi-
cated as G, and the amalgam A is the unification of two concrete generalisations Ī1 and

9
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Ī2 of the inputs. Equality here should be understood as v-equivalence: X = Y iff X v Y
and Y v X. Conventionally, we call the space of amalgams of I1 and I2 the set of all
amalgams A that satisfy the definition above (i.e. all descriptions that are consistent and
can be defined as the unification of two generalisations of the inputs).

Usually we are interested only in maximal amalgams of two input descriptions, i.e.,
those amalgams that contain maximal parts of their inputs that can be unified into a new
coherent description. Formally, an amalgam A of inputs I1 and I2 is maximal if there is
no other non-trivial amalgam A′ of inputs I1 and I2 such that A @ A′. The reason why
we are interested in maximal amalgams is very simple: a non-maximal amalgam Ā @ A
preserves less compatible information from the inputs than the maximal amalgam A;
conversely, any non-maximal amalgam Ā can be obtained by generalising a maximal
amalgam A, since Ā @ A.

There is a special case of particular interest that is called asymmetric amalgam, in
which the two inputs play different roles. The inputs are called source and target, and
while the source is allowed to be generalised, the target is not. As we shall see, asymmetric
amalgams share important properties with analogical inference: while the source can be
relaxed and thus lose information, the target is fixed, so all information belonging to the
target will be present in the final (asymmetric) amalgam.

Definition 9 (Asymmetric Amalgam) An asymmetric amalgam A ∈ L of two inputs
S (source) and T (target) satisfies that A = S′ t T for some generalisation of the source
S′ v S.

As shown in Fig. 4, the content of target T is transferred completely into the asymmetric
amalgam, while the source S is generalised. The result is a form of partial unification
that preserves all the information in T while relaxing S by generalisation and then
unifying one of those generalisations S′ with T . As before, we will usually be interested
in maximal amalgams: in this case, a maximal amalgam corresponds to transferring as
much content from S to T while keeping the resulting amalgam A consistent. For this
reason, asymmetric amalgams can be seen as a model of analogical inference, where
information from the source is transferred to the target by creating a new amalgam A
that enriches the target T with the content of S′ Ontañón and Plaza (2012).

4. The COINVENT Account of Analogy-Based Concept Blending

The previous section gave an introduction to computational analogy-making using
HDTP and to the combination of conceptual theories within the framework of amal-
gamation. Both theories and the corresponding mechanisms underlie the COINVENT
model for cocept blending and its proof-of-concept implementation described in this sec-
tion. Naturally, ours is not the only attempt at modelling and automatizing concept
blending capacities in a computational system. In addition to those already mentioned
in Section 1, a short overview of other efforts aiming to achieve similar goals is given in
Section 5.

The following Section 4.1 provides an introduction to the COINVENT model, starting
with a computational-level description before pushing towards the level of detail needed
for the algorithmic-level implementation described in Section 4.3. Section 4.2 gives an
example for the computational-level dynamics, by this grounding the previous mostly
abstract descriptions, while Section 4.4 and 4.5 detail two prototypical application case
studies for the proposed implementation of the COINVENT model.

10
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Figure 5. Schematic overview of the houseboat blend as conceptualised by J. Goguen (2006): The conceptual
theories for house and boat are generalized to a theory describing some object used by a person resting on some

medium, and then combined to a houseboat theory featuring an object which is at the same time house and boat,

resting on water, with residents living in it (who are at the same time passengers riding on it).

4.1. The COINVENT Model of Concept Blending

One of the early formal accounts on concept blending—which is especially influential to
the approach in COINVENT—is the classical work by J. Goguen (2006) using notions
from algebraic specification and category theory. This version of concept blending can
be described by the diagram in Fig. 6, where each node stands for a representation an
agent has of some concept or conceptual domain. As stated in Section 2, we consider
these representations to be conceptual theories, corresponding to conceptual spaces, and
in some cases abuse terminology by using the word “concept” to really refer to its repre-
sentation by the agent. The arrows stand for morphisms, that is, functions that preserve
at least part of the internal structure of the related conceptual theories (and associated
spaces). The idea is that, given two conceptual theories I1 and I2 as input, we look for
a generalisation G and then construct a blend space B in such a way as to preserve
as many as possible of the structural alignments between I1 and I2 established by the
generalisation. As an example, consider J. Goguen (2006)’s houseboat blend depicted in
Figure 5.

This may involve taking the functions to B to be partial, in that not all the structure
from I1 and I2 might be mapped to B. Again using an example by J. Goguen (2006), this
would for example become relevant in the case of blending a house and a boat into a boat
used as a land-based shelter: Given the input theories in Figure 5, in that case the blend
theory would have to omit axioms putting the house/boat on water, and stating that a
passenger rides aboard the house/boat. In any case, as the blend respects (to the largest
possible extent) the relationship between I1 and I2, the diagram will commute. Clearly,
this approach is structurally similar to the mechanism underlying generalisation-based
analogy-making in HDTP (with the latter only missing the blending capabilities; also
compare Fig. 6 and Fig. 1).

Concept invention by concept blending can then be phrased as the following task:
given two axiomatisations of two domain theories I1 and I2, we need first, to compute

11
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Figure 6. A conceptual overview of J. Goguen (2006)’s account of concept blending.

a generalised theory G of I1 and I2 (which codes the commonalities between I1 and
I2) and second, to compute the blend theory B in a structure preserving way such
that new properties hold in B. Ideally, these new properties in B are considered to be
(moderately) interesting properties. In what follows, for reasons of simplicity and without
loss of generality we assume that the additional properties are just provided by one of
the two domains, i.e., we align the situation with a standard setting in computational
analogy-making by renaming I1 and I2: the domain providing the additional properties
for the concept blend will be called source S, the domain providing the conceptual basis
and receiving the additional features will be called target T .4

Provided with S and T , according to the just given task description, the following
steps have to be accounted for:

(1) Find a joint generalisation G between the input domains S and T , accounting for
the shared structure between both.

(2) Building on G, fully generalise S.
(3) Combine the generalised version of S in an asymmetric amalgam with T to obtain

the blend TB.
(4) Assure consistency of TB and output the blend.

In the first step, the reasoning process is triggered by the computation of the gener-
alisation G (generic space). When using an analogy engine for this purpose, for concept
invention we will only need the mapping mechanism and replace the transfer phase (which
is characteristic for analogy-making) by a new blending algorithm. In the case of HDTP,
the mapping is achieved via the usual generalisation process between S and T , in which
pairs of formulae from the source and target theories are anti-unified resulting in a gen-
eralised theory that reflects common aspects of both spaces. The generalised theory can
be projected into the original ones by substitutions which are computed during anti-
unification. In what follows, we will say that a formula is “covered” by the analogy, if it
is in the image of this projection (Tc and Sc, respectively), otherwise it is “uncovered”
(also see Section 3.1). While in analogy making the analogical relations are used in the
transfer phase to translate additional uncovered knowledge from the source to the target
space, blending combines additional (uncovered) facts from one or both spaces. Therefore
the process of blending can build on the generalisation and substitutions provided by the
analogy engine, but has to include a new mechanism for transfer and concept combina-
tion. Here, amalgams naturally come into play: in the second step, the set of substitutions

4In the case where additional properties are provided by both domains the same general principles as described

below apply. It just becomes necessary to also treat the target domain T similar to the current source S, expanding

the conceptual overview in Fig. 7 with a second “generalisation triangle” to the right of the “blending diamond”,
computing a generalisation of T and using the latter for the blending process (for which only minor and quite

straightforward changes become necessary, assuring that all terms in the resulting blend are grounded and no
variables introduced during the generalisation steps remain uninstantiated).

12
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Figure 7. A conceptual overview of the COINVENT model of concept blending as described in Section 4.1: The

shared generalisation G from S and T is computed with φS(G) = Sc. The relation φS is subsequently re-used in
the generalisation of S into S′, which is then combined in an asymmetric amalgam with T into the proto-blend

T ′ = S′ t T and finally, by application of φT , completed into the blended output theory TB . (⊆ indicates an

element-wise subset relationship between sets of axioms and v indicates subsumption between theories in the
direction of the respective arrows.)

can be inverted and applied to generalise the original source theory S into a more general
version S′ (forming a superset of the shared generalisation G, also including previously
uncovered knowledge from the source) which then can be combined in the third step
into an asymmetric amalgam with the target theory T , forming the (possibly underspec-
ified) proto-blend T ′ of both. Concluding this step and also the blending process itself,
T ′ is then completed into the blended theory and output of the process TB by apply-
ing corresponding specialisation steps stored from the generalisation process between S
and T (see also Fig. 7). In the final step, the resulting blend theory TB then is checked
for consistency in the logical sense and regarding potentially available world knowledge,
since inconsistencies of either type could have been introduced when transfering axioms
into the blend. If inconsistencies are detected, repair mechanisms are triggered until a
consistent blend theory is returned as final output of the blending process.

At this point a remark concerning the selection of good blends among the many possi-
ble ones is in place. As should also become obvious from the conceptual overview, there
are several stages in the process where implementation details will significantly influ-
ence the precise outcome of the blending process (e.g., a change in HDTP’s heuristics
could significantly change the outcome of the selection of Tc and Sc, and consequently
all subsequent steps). Assessing the quality of a blend is generally considered a hard task
since the evaluation strongly depends, among others, on the context and the purpose of
the blending process. The selection of particularly good blends—or, more generally, of
specific types of blends over others—has therefore not been in the focus of this work.
Still, it has been treated in other places both within the COINVENT project, as well as
by other researchers. A first set of informal and heuristic style optimality principles for
concept blends had been postulated by Fauconnier and Turner (1998). Unfortunately,
while being helpful especially in the evaluation of linguistic blends, they lack the preci-
sion as to directly be algorithmically realizable. Pereira and Cardoso (2003) attempted
to fill this gap by proposing one possible implementation. As part of COINVENT, Con-
falonieri, Corneli, Pease, Plaza, and Schorlemmer (2015) suggested to use computational
argumentation for evaluating concept blends (as well as other forms of combinatorial cre-
ativity). In their approach, concept blends are evaluated in an open-ended and dynamic
discussion, allowing for the improvement of blends and the explicit representation of the
reasons behind an evaluation. Relatedly, Schorlemmer, Confalonieri, and Plaza (2016)
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A = Ī1 t Ī2
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Figure 8. Blending schema for “Sign Forest” when inputs are typical concepts for “Sign” (traffic signpost) and
“Forest” (forest of typical trees); the arrows indicate subsumption (v) as in Figure 3.

discussed how newly invented concepts can be evaluated with respect to a background
ontology of conceptual knowledge, checking which can be added to the system of familiar
concepts, and how the previously given conceptualisation might be altered.

4.2. Example: Following Trees and Signposts into the Sign Forest

In this first example, originally introduced by Besold and Plaza (2015), we want to illus-
trate the overall approach to generalisation-based blending using analogy and amalgama-
tion. In this section we therefore leave aside the representational and algorithmic charac-
teristics imposed by the use of HDTP as specific generalisation mechanism and analogy-
engine (which will be elaborated upon in detail in the actual account of the system given
in Section 4.3, and also in the later case studies in Section 4.4 and Section 4.5), but
focus exclusively on the high-level dynamics. To this end, an ontology-driven approach
to generalisation is taken instead, allowing for intuitive and straightforward “semantic”
generalisations and analogies within a common concept hierarchy.

We reconstruct the sign forest blend discussed in Kutz, Mossakowski, Hois, Bhatt, and
Bateman (2012), providing an interpretation of the concept from a metaphor-centred
perspective, and show how the general COINVENT model can serve for modelling the
blending process. In what follows we consider sign forest equivalent to the (interpretation
of the concept detailed by the) expression “a forest of signs”, that shows more clearly its
metaphorical nature.
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The concept of tree (and, thus, our corresponding conceptual theory) is typically con-
ceived as a plant having roots, a trunk and a crown (even if there may be plants cat-
egorised as trees that do not have a trunk, this is ignored as it does not belong to the
bundle of properties that are typical); this view is depicted as I2 in the bottom right of
Fig. 8, where other properties are included, like plants being not mobile and the roots
fixing the (typical) tree to the ground. Finally, a forest is commonsensically defined as
a group of trees. The second concept, (traffic) sign, may come in many forms (as we
know from own experience), but the first that comes to mind is the most typical one: the
signpost. The signpost is typically fixed on the ground near a road, and has a post sup-
porting a surface panel depicting some traffic-related information (labeled I1 in the lower
left corner of Fig. 8). The cognitive advantage of a signpost is that it has a recognisable
physical structure, while “traffic sign” is so generic as to be a merely functional-based
concept: any kind of surface panel depicting some traffic-related information is a traffic
sign.

The generic space G of concept blending corresponds to the anti-unification shown
as G = I1 u I2 in Fig. 8; G depicts common structure between a signpost and a tree: a
stick-like object, fixed to the ground, and supporting another object on top. As discussed
later, this common structure is the basis for a metaphor like “a forest of signs” to make
sense—in contradistinction to a metaphor that does not make sense such as “a forest of
chairs”, even when a typical chair is made of wood.

Now, the construction of the blended metaphor for sign forest can be interpreted easily
in the combined generalisation-based analogy and amalgam framework: the input spaces
can be generalised in different ways (although always satisfying what they already have
in common, namely G). Different generalisations would yield different amalgams, but
the one we are considering here can be seen as generalising I2 into Ī2, as shown in Fig.
8. Now this generalisation Ī2 can directly be unified with I1, since Ī1 is identical to I1;
this unification yields the amalgam A = Ī1 t Ī2 that, as shown in Fig. 8, represents a
“forest of signposts”. Moreover, since I1 ≡ Ī1, this model is an asymmetric amalgam,
as evidenced by the fact that we generalise the source (Forest) until it unifies with the
target (Signpost), while the latter remains fixed (i.e., is not generalised).

4.3. Implementing the Model’s Mechanism(s) Using HDTP and
Asymmetric Amalgams

Besides the theoretical developments, one of the project aims of COINVENT was an im-
plementation of the developed general model of concept blending into a system producing
novel and useful output theories, fully integrating HDTP and the amalgam framework.
In what follows, we present an intermediate version on the way to this goal: a blend is
taken to be novel if it is not a subset of or equal to the source or the target domain,
usefulness is defined as consistency of the resulting theory, the generalisation step uses
a further constrained variant of restricted higher-order anti-unification, applying only
fixations and renamings, the amalgamation uses higher-oder unification as combination
mechanism, and logical semantic consequence serves as ordering relationship:

1. Find joint generalisation G of input theories S and T : Given two input domain
theories S and T , the (set of) common generalisation(s) G = {G1, G2, . . . , Gn} (i.e.,
the anti-unified forms of sets of axioms which are structurally shared between S and
T ) is computed.
In COINVENT, HDTP is used for this step: in the present version of the algorithm,
only renamings and fixations are used as admissible types of unit substitutions. As the
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least general generalisation under restricted higher-order anti-unification is (still) not
unique (also see Section 3.1), the anti-unification itself returns several possible least
general generalisations out of which the system choses one generalisation Gx using
heuristics.

2. Reuse set of anti-unifications to get complete generalised source theory S′:
Given this generalised theory Gx, together with the associated two sets of substitutions
φx,S and φx,T respectively corresponding to the covered parts Sc ⊆ S and Tc ⊆ T of the

input domain theories, the set of higher-order anti-unifications φ−1
x,S (inversely related

to the substitutions φx,S) is then used to generalise the previous source domain theory
S as far as possible into the generalised source theory S′ such that φx,S(S′) = S.
Here, if S = Sc, i.e., all axioms from S could be matched and anti-unified with axioms
from T in the previous step (constituting a pathological case as S is supposed to
provide some additional content over and above T ), it holds that S = φx,S(Gx) and,
thus, S′ = Gx; otherwise Gx ⊆ S′. Notice that, due to the restriction to fixations and
renamings in the higher-order anti-unifications, it holds that S |= S′ |= G in both
cases. (Here, ⊆ indicates an element-wise subset relationship between sets of axioms
as in Fig. 7, and |= indicates the classical semantic consequence relation in the logical
sense.)

3. Compute assymetric amalgam between S′ and T as proto-blend T ′: Now,
given S′, we can compute the asymmetric amalgam Ta between S′ and T (with T
staying fixed) using higher-order unification and the semantic consequence relation as
subsumption relation for refinement (i.e., given two theories A and B it holds that
A is more general than B, A v B, if and only if B |= A): axioms from S′ and T
are unified pairwise as far as possible (i.e., a subset of S′ of maximum cardinality is
unified with a similar subset of T ). Conveniently, due to the applied approach, for the
part of S′ which is contained in Sc under φx,S this is equal to Tc, so only axioms from
{a|a ∈ S′ ∧ φx,S(a) /∈ Sc} and from T \ Tc, respectively, have to be checked.5

Subsequently, the remaining axioms from both theories are added as additional ele-
ments to the resulting set of axioms Ta, resulting in an enriched target theory T ′.6

4. Fully instantiate proto-blend T ′ into blend TB: Remaining variables not instan-
tiated by the unification step between S′ and T ′ (i.e., imported in axioms from S′)
in the enriched target theory (or proto-blend) T ′ are instantiated by applying the set
of substitutions φx,T from the initial generalisation step to T ′, resulting in the (fully
instantiated) blended theory TB. (If T ′ does not contain any variables it trivially holds
that T ′ = φx,T (T ′) = TB and this step becomes obsolete.)

5. Check for consistency of blend TB, trigger repair if needed: A check for consis-
tency of the blended theory TB is conducted (both internally as well as with respect to
potentially available world knowledge). As we are only interested in non-trivial amal-
gams (i.e., consistent output theories), if an inconsistency is found, clash resolution
tries to solve the inconsistency by returning to step 1., removing one or several ax-
ioms from S resulting in a new source theory Sclash ⊆ S, and then re-initiating the
procedure.

The resulting blend theory TB is based on T , (consistently) enriched by imported “un-
affected” axioms and (via generalisation from S to S′, and re-instantiation from T ′ to
TB) adapted structural elements from S. This blend forms the (in a certain concept-
theoretical sense) “closest” blend to T and can presumably play an important role in

5The maximality of the outcome is rooted in HDTP’s previously mentioned coverage maximisation.
6Note that the unifications and addition of axioms conserve the |= relation between theories and, thus, the
subsumption ordering as indicated in Fig. 7.
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different contexts: for instance it can account for the addition of new solution elements to
a solution idea at hand in problem-solving scenarios, and in creativity tasks the addition
of novel features and elements to existing concepts can be achieved.

Clearly, this remains only a partial solution on the way to completely solving computa-
tional concept blending (even when already restricted to the case of logic-based domain
theories), requiring further algorithmic and conceptual development: the inconsistency
resolution in step 5 can probably be made significantly more efficient by developing
heuristics for efficiently selecting axioms for removal, the simple identification between
usefulness and consistency might not be enough for many contexts, and methods for as-
sessing the novelty of the resulting blend (also allowing for comparisons between different
possible blends) have to be developed and integrated.

In the following subsections, we want to further exemplify our approach in two ap-
plication cases: a concept blending account of Pegasus as combination between a horse
and a bird in classical mythology, and a re-creation of the concept of a foldable tooth-
brush. While being structurally similar to each other, the application domains vastly
differ—mythology and imaginative thought versus product development with high prac-
tical relevance—and give evidence of both, the pervasiveness of concept blending as
cognitive phenomenon and the generality and domain-independence of the described
approach.7 Additionally, besides exemplifying the functioning of the just described al-
gorithm, the two examples (together with the reconstruction of the classical Rutherford
analogy given by Besold, Kühnberger, and Plaza (2015)) thereby show that the newly
conceived model for concept blending truly constitutes a conservative extension of the
accounts of generalisation-based analogy and amalgamation integrated into it (logically
resulting from the central roles assigned to both theories in the conceptual commitments
in Section 2).

4.4. Case Study 1: Pegasus as Mythological Concept Blend

One of the best known concept blends is Pegasus, the winged divine stallion and son
of Poseidon and the Gorgon Medusa from classical Greek mythology. From a concept
blending perspective, Pegasus constitutes a blend between a stereotypical horse and a
stereotypical bird, maintaining all the horse characteristics but adding bird-like features
such as, for instance, the wings and the ability to fly. In what follows, we will re-construct
the blending process underlying Pegasus’ concept formation as second application exam-
ple for the analogy-based perspective on blending in COINVENT.

Contrary to the Rutherford analogy and several other examples from the cognitive AI
literature, in the Pegasus case analogy-making alone would not be sufficient to model the
genesis of the concept of a winged horse: Rutherford’s achievement was to recognize the
structural similarities between a schematic account of the solar system (the sun in the
center, celestial bodies with lesser mass revolving around it) and his conception of the
structure of the atom (the nucleus in the center, lightweight electrons in the surrounding),
and to use the more precise understanding of the solar system to also sharpen his theory
about the atom (introducing the idea of the revolution of the electrons along stable orbits

7The conceptual theories used in both examples for the sake of clarity have been reduced to what the authors
think are the most basic characterisations of the involved concepts. Of course, for each of the conceptual spaces
much richer formalisations would be possible, e.g., adding a beak to the characterisation of a bird, or a tail to the

horse theory. Still, these additions would not impede the functioning of the proposed mechanism in a principled

way, but instead would combinatorially increase the complexity of the reasoning process (for instance most likely
resulting in a higher number of competing candidate theories in the generalisation step). Still, this complexity

would be counteracted by the respectively corresponding selection heuristics assuring the effective functioning of
the algorithm.
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Sorts:
clade, entity, bodypart, ability
Entities:
mammal, avialae : clade horse, bird : entity torso, legs, wings : bodypart walk, fly, lay eggs : ability
Predicates:
is of clade : entity× clade, has bodypart : entity× bodypart,
has ability : entity× ability
Facts of the bird characterisation:
(α1) is of clade(bird, avialae) (α2) has bodypart(bird, legs)
(α3) has bodypart(bird, torso) (α4) has bodypart(bird,wings)
(α5) has ability(bird,walk) (α6) has ability(bird,fly)
(α7) has ability(bird, lay eggs)
Facts of the horse characterisation:
(β1) is of clade(horse,mammal) (β2) has bodypart(horse, legs)
(β3) has bodypart(horse, torso) (β4) has ability(horse,walk)

Table 4. Example formalisations of stereotypical characterisations for a bird S and a horse T .

Entities:
C : clade, E : entity
Facts:
(γ1) is of clade(E,C) (γ2) has bodypart(E, legs)
(γ3) has bodypart(E, torso) (γ4) has ability(E,walk)

Table 5. Abbreviated representation of the shared generalisation G based on the stereotypical characterisations

for a horse and a bird, constituted by generalisations α1 = φS(γ1)/β1 = φT (γ1), α2 = φS(γ2)/β2 = φT (γ2),

α3 = φS(γ3)/β3 = φT (γ3), and α5 = φS(γ4)/β4 = φT (γ4) (i.e., Sc = {α1, α2, α3, α5} and Tc = {β1, β2, β3, β4}).

around the nnucleus). Accordingly, computational accounts of the Rutherford analogy
focus on transferring the governing laws from the (better informed) solar system domain
to the (up to that point law-free) atom model domain. But compiling the Pegasus blend
between conceptual theories for birds and horses requires the combination of qualitatively
equally informed, with respect to the context fairly complete conceptual theories, most
likely also involving inconsistency handling in the resulting blend (due to conflicting
defining characteristics of the input domains). In this example we, thus, expect the
model to produce a knowledge-rich but initially inconsistent conceptual theory as blend,
forcing itself into inconsistency resolution before returning the final output.

We start with the conceptual theories (i.e., stereotypical characterisations) of a horse
and a bird in a many-sorted first-order logic representation (as used by HDTP) from
Table 4.

Given these characterisations, HDTP can be used for finding a common generalisation
of both (Table 5),8 basically describing an entity of some clade, having a torso and
legs, and being able to walk—a characterization covering (at least) most land-based
vertebrates except for limbless or limb-reduced reptiles and amphibians.

Subsequently, the anti-unifications inversely corresponding to φS are re-used for gener-
alising the entire source theory S (and not only Sc, i.e., the part covered by the original
generalization G) into S′ as given in Table 6. The resulting theory has the shared gen-
eralisation from Table 5 as a real subset, adding the abilities to fly and lay-eggs, as well
as wings as part of the body, to the mix.

This conceptual theory S′ of a, among others, winged, oviparous entity of some clade,
is now used for computing the asymmetric amalgam with the (fixed) target theory T ,
consisting of descriptions of stereotypical features of a horse. As a result we obtain the

8As stated previously, when using HDTP the required subsumption relation between theories currently is given
by logical semantic consequence |=, i.e., A v A′ if A′ |= A for any two theories A and A′. In order to make sure

that this relationship is preserved by HDTP’s syntax-based operations, the range of admissible substitutions for
restricted higher-order anti-unifications has to be further constrained to only allow for fixations and renamings.
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Entities:
C : clade, E : entity
Facts:
(γ1) is of clade(E,C) (γ2) has bodypart(E, legs)
(γ3) has bodypart(E, torso) (γ4) has ability(E,walk)
(γ5) has bodypart(E,wings) (γ6) has ability(E,fly)
(γ7) has ability(E, lay eggs)

Table 6. Abbreviated representation of the generalised source theory S′ based on the stereotypical characterisa-
tions for a horse and a bird, including additional axioms γ5, γ6, and γ7 obtained from generalizing the remaining

axioms from S \ Sc = {α4, α6, α7}.

Entities:
E : entity
Facts:
(δ1) is of clade(horse,mammal) (δ2) has bodypart(horse, legs)
(δ3) has bodypart(horse, torso) (δ4) has ability(horse,walk)
(δ5) has bodypart(E,wings) (δ6) has ability(E,fly)
(δ7) has ability(E, lay eggs)

Table 7. Abbreviated representation of the proto-blend T ′ obtained from computing the asymmetric amalgam
between S′ and T .

Facts:
(δ1) is of clade(horse,mammal) (δ2) has bodypart(horse, legs)
(δ3) has bodypart(horse, torso) (δ4) has ability(horse,walk)
(δ5) has bodypart(horse,wings) (δ6) has ability(horse,fly)
(δ7) has ability(horse, lay eggs)

Table 8. Abbreviated representation of TB = φT (T ′).

Facts:
(δ1) is of clade(horse,mammal) (δ2) has bodypart(horse, legs)
(δ3) has bodypart(horse, torso) (δ4) has ability(horse,walk)
(δ5) has bodypart(horse,wings) (δ6) has ability(horse,fly)

Table 9. Abbreviated representation of the final blended theory TB giving a characterisation of pegasus after
inconsistency check and repair (i.e., based on Sclash = S \ {α7}).

proto-blend T ′ from Table 7, featuring the axioms describing the horse (which, as part
of the amalgamation process, have been unified with the corresponding axioms from S′,
namely those giving the entity some clade, legs, a torso, and the ability to walk) and
additionally the as yet unmatched axioms from S′ assigning wings, and the abilities to
fly and to lay eggs to some entity.

Therefore, as T ′ still features said axioms containing non-instantiated variables, the
set of substitutions φT is applied to the theory resulting in the (with respect to φT )
fully instantiated blend theory TB from Table 8—the description of a mammal with legs,
torso, and wings, being able to walk fly, and lay eggs.

In a concluding step, a consistency check of the blended theory TB is performed. As
already initially expected, taking into account world knowledge about mammals identifies
a clash with the ability to lay eggs asserted in axiom δ7, as mammals generally are not
oviparous (except for the subclass Prototheria as precisely defined special case, with
no class member ever having been observed to have wings or be able to fly). Thus,
returning to the start of the procedure, the algorithm is re-initiated, for example, with
Sclash = S \ {α7}, and finally returns the (with respect to φT fully instantiated and
consistent) version of TB given in Table 9 as output: a mammal with torso, legs, and
wings, being able to walk and fly.
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Figure 9. A folding toothbrush like the one from the example in Section 4.5, characteristically featuring a hinge
allowing the brush head to be folded back into the handle.

Sorts:
entity, part, functionality
Entities:
toothbrush, pocketknife : entity handle, brush head, blade, hinge : part
brush, cut, fold : functionality
Predicates:
has part : entity× part, has functionality : entity× functionality
Facts of the pocketknife characterization:
(α1) has part(pocketknife, handle) (α2) has part(pocketknife,blade)
(α3) has functionality(pocketknife, cut) (α4) has part(pocketknife, hinge)
(α5) has functionality(pocketknife, fold)
Facts of the toothbrush characterization:
(β1) has part(toothbrush, handle) (β2) has part(toothbrush, brush head)
(β3) has functionality(toothbrush, brush)

Table 10. Example formalisations of stereotypical characterisations for a pocketknife S and a toothbrush T .

4.5. Case Study 2: The Folding Toothbrush

Folding toothbrushes are a conceptual combination between a typical stick-like tooth-
brush and a hinge-folding mechanism like that of a pocketknife (see Fig. 9).

As such, they represent a combination of two actual industry products subject to all
the limitations and demands practicality and real-world applicability impose. In order
to reconstruct the concept blending process at the heart of the invention of folding
toothbrushes, analogous to the Pegasus case in the previous section, we start with the
stereotypical characterisations of a standard toothbrush and a pocketknife in a many-
sorted first-order logic representation from Table 10.

Given these characterisations, HDTP can be used for finding a common generalisation
of both, for instance (due to the syntactic similarities and the system’s heuristics) aligning
and generalising the axioms α1 with β1 (respectively asserting that the knife and the
brush each have a handle), the blade α2 with the brush head β2, and the funcionality to
cut things α3 with the functionality to be used for brushing β3, resulting in some entity
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Entities:
E : entity, P : part, F : functionality
Facts:
(γ1) has part(E, handle) (γ2) has part(E,P ) (γ3) has functionality(E,F )

Table 11. Abbreviated representation of the shared generalisation G based on the stereotypical characterisations

for a pocketknife and a toothbrush, constituted by generalisations α1 = φS(γ1)/β1 = φT (γ1), α2 = φS(γ2)/β2 =

φT (γ2), and α3 = φS(γ3)/β3 = φT (γ3) (i.e., Sc = {α1, α2, α3} and Tc = {β1, β2, β3, }).

Entities:
E : entity, P : part, F : functionality
Facts:
(γ1) has part(E, handle) (γ2) has part(E,P )
(γ3) has functionality(E,F ) (γ4) has part(E, hinge)
(γ5) has functionality(E, fold)

Table 12. Abbreviated representation of the generalised source theory S′ based on the stereotypical characteri-
sations for a toothbrush and a pocketknife, including additional axioms γ4 and γ5 obtained from generalizing the

remaining axioms from S \ Sc = {α4, α5}.

Entities:
E : entity
Facts:
(δ1) has part(toothbrush, handle) (δ2) has part(toothbrush, brush head)
(δ3) has functionality(toothbrush, brush) (δ4) has part(E, hinge)
(δ5) has functionality(E, fold)

Table 13. Abbreviated representation of the proto-blend T ′ obtained from computing the asymmetric amalgam

between S′ and T .

Facts:
(δ1) has part(toothbrush, handle) (δ2) has part(toothbrush, brush head)
(δ3) has functionality(toothbrush, brush) (δ4) has part(toothbrush, hinge)
(δ5) has functionality(toothbrush, fold)

Table 14. Abbreviated representation of TB = φT (T ′).

having a handle and (at least) one more part and a function (Table 11).
Subsequently, reusing the same anti-unifications applied in finding G (more precisely

the ones inversely corresponding to the substitutions in φS), the source theory S is
generalised into S′ as given in Table 12: γ1, γ2, γ3 form the joint generalization G, and
the additional axioms γ4 and γ5 are obtained by generalising α4 and α5, respectively.
The resulting generalised source theory S′ describes an entity with a handle, a hinge,
and some additional part, which can be folded, and has some additional function.

Computing the asymmetric amalgam of this generalised source theory S′ with the
(fixed) target theory T (describing a toothbrush), we obtain the proto-blend T ′ from
Table 13: the characterization of an object with a handle, a brush head, and a hinge,
which can be used for brushing, together with an additional object describing some
foldable entity.

As T ′ still features axiom δ5 containing non-instantiated variables, the substitutions
from φT (obtained in the original generalisation step from T to G) are applied to the
theory resulting in the (with respect to φT ) fully instantiated blend theory TB from
Table 14, describing an entity with a handle, a brush head, and a hinge, which can be
folded and is usable for brushing: the concept of a hinge-equipped toothbrush that can
be folded.
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5. Conclusion: Related Work and Future Directions

In the previous sections we presented the analogy-inspired COINVENT model and a cor-
responding working algorithm for the blending of conceptual theories. The main contri-
butions are the combination of generalisation-based analogy instantiated in (a restricted
version of) the HDTP system with a well-founded formal model and mechanism for
knowledge transfer and concept combination in form of the amalgam framework: building
upon HDTP’s approach to generalisation and domain matching asymmetric amalgams
allow to soundly compute the concept blend of two input theories in a controlled fashion.

As should have become clear from the presentation of the model, and the discussion of
its corresponding components, analogy plays a crucial role for COINVENT’s take on con-
cept blending. Still, there are also significant differences which may not be overlooked,
with the distinct “power” of both mechanisms in our opinion being the most salient
but also most important one. Analogy in most accounts is taken as a cognitive mech-
anism transfering knowledge from a better informed source domain into a sufficiently
structurally similar target domain in a coherent fashion. Concept blending goes beyond
this fairly conservative form of transfer in that the most general case does not recog-
nize one domain as source and the other as target (with only the source contributing
additional information to the target domain), but that both domains contribute informa-
tion to the resulting blend, allowing for more combinatorial options—and consequently
possible outcomes—than obtainable in the analogy setting.9 A dedicated discussion of
the relationship between concept blending—and more precisely, COINVENT’s account
thereof—and analogy has, for instance, been provided by Besold (in press).

Also, ours is by far not the only current attempt at the computational modelling of
concept blending. For instance Kutz, Bateman, Neuhaus, Mossakowski, and Bhatt (2015)
give an account and a system model for the computer-based blending of ontologies (i.e.,
the conceptual theories involved as inputs for blending are ontological descriptions). The
ontology-based approach views a concept as an ontological specification: a specification
that is ideally so general as to cover all possible instances or occurrences of the concept.
As such, certain properties and relations are selected to form these specifications that are
useful for an ontology framework. In contrast, in its conceptual layout our approach is
inspired by an idea also underlying Rosch (1988)’s prototype theory, namely the notion
that concepts in human cognition can be characterized up to a high level of precision
by bundles of their most typical properties (albeit typicality may certainly be context-
dependent). This view is also taken in examples by Fauconnier and Turner (1998) that
are used to show how conceptual blend works: a boathouse has typical properties of boat
and house—but not other properties that may appear in an ontological specification of
boat and house.

Martinez et al. (2014) presented an approach for the algorithmic blending of mathemat-
ical theories, trying to model the combination of previously independent mathematical
concepts as basis for mathematical concept invention. Contrary to our setting, dealing
with mathematical conceptual theories limits the range to unambiguous and logically
unique axiomatisations, also removing the need for “semantic” consistency checks of the
resulting blends within output theories or against world knowledge. The approach taken
by Martinez et al. (2014) is similar to ours in that it also builds upon J. Goguen (2006)’s
ideas and uses HDTP for finding shared generalisations between mathematical input

9Recall that the choice for asymmetric amalgams in the presentation of the COINVENT model had been motivated
by considerations of simplicity. As explained in the corresponding footnote in Section 4.1, the required expansion

of the model (and subsequently also the algorithm) is straightforward and basically consist of a doubling of already
existing structures.
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theories. Still, the blending mechanism works differently in that it basically relies on a
simple generate-and-test approach to step-wise building up increasingly complex logically
consistent combinations of the axioms from the input theories.

Compared to the earlier work by Martinez et al. (2012) on blending as general cognitive
mechanism, our addition of amalgamation as formal description and guiding framework
and the integration with the generalisation-based analogy mechanism goes beyond the
work reported there. Moreover, Martinez et al. (2012) do not provide an algorithmic ac-
count but restrict themselves to outlining a fairly general computational-level description
of the envisioned mechanism.

Another recent report of work on concept blending was described by Li, Zook, Davis,
and Riedl (2012), who provide case studies of systems taking into account goals and
contexts in the blending-based production of creative artefacts. They emphasise the
context-dependent aspects of concept blending, moving focus away from the attributes
of the input domains to the role the context plays in blend generation. In their model,
the situational relevance and the communicative goal of a blend as metaphor-like speech
element determine the blending process and outcome to a huge extent. While Li et al.
(2012)’s work is similar to our general account in its emphasis on (cognitive representa-
tions of) real-world concepts and a certain influence from computational analogy-making
in the described systems, their approach differs in that it relies on selective projections
from the input spaces into the blend space without generalisation playing a prominent
role. Also, again a clear description of the systems applied in the presented examples is
lacking.

Based on this short comparison we think that the COINVENT model and system
constitutes a valuable contribution to the ongoing discourse and a big step towards a
computationally feasible model of concept blending. Its virtues lie, among others, in
combining the generality of modelling introduced by HDTP’s use of many-sorted first-
order logic languages with the formal soundness and solid theoretical foundations of the
underlying generalisation model and the amalgam framework, offering a computational-
and algorithmic-level account for blending general conceptual theories.

Concerning the next steps of development of our concept blending framework, on the
formal side the restriction on the substitutions used in HDTP has to be weakened and
finally removed in order to access the frameworks full generality and expressivity (i.e.,
allowing for applications of all four types of substitutions admissible in restricted higher-
order anti-unification). If this constraint is lifted, a replacement for the semantic conse-
quence relationship |= as basis for the subsumption ordering will have to be found as the
former does not hold anymore between successive generalisation steps as soon as per-
mutations or argument insertions are applied. Here, we hope that providing a semantics
to the syntax-based operations in HDTP and restricted higher-order anti-unification—
for instance by an approach similar to the derived signature morphisms discussed by
Mossakowski, Krumnack, and Maibaum (2015)—will allow us to subsequently construct
a suitable substitute.

A more system-oriented open question is the further integration of heuristic and
knowledge-sensitive methods during blend computation and selection for modelling con-
textual constraints or internal properties of the cognitive agent (as also described in the
overview of conceptual commitments in Section 2). Heuristics can be applied at different
points of the proposed concept blending: they form essential part of HDTP’s compu-
tation of the least general generalisation between the input domains and also promise
to make the inconsistency resolution as final step before outputting a blended theory
more efficient. Still, they can also be used for modelling a cogniser’s expertise or similar
individual features. For instance, already during the computation of generalisations cer-
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tain combinations of elements from the respective input domains could be favoured over
others, and during inconsistency resolution focus could not only be put on efficiency in
finding a consistent conceptual theory but content-related aspects could be taken into
account. Moreover, also the integration of background knowledge about the environment
or the task as guiding forces for the blending process and its output clearly would be de-
sirable. While this seems fairly straightforward during inconsistency resolution, whether
and how to already inform the earlier steps of the algorithm remains an open question.

Finally, resonating with the corresponding remark at the end of Section 4.1, a more
general challenge not only relevant for our system but for a significant part of computa-
tional creativity as a research discipline concerns theories and computationally feasible
methods for evaluating the usefulness and the novelty of the output of a computational
system from either an agent-centric or a general perspective. While our current approach
(i.e., simply equating usefulness with consistency) falls short of the requirements in most
application scenarios or contexts, alternative proposals are either highly specific to a
domain or task, or make recourse to external means of evaluation shifting the burden
away from the cognitive system. As can be expected, focusing on the degree of novelty
instead of usefulness as dimension further complicates the question.
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