
Alba
A Cognitive Assistant for Network

Administration
Francisco J. Martin

���
and Enric Plaza ��

School of Electrical Engineering and Computer Science
Oregon State University, Corvallis, 97331 OR, USA

� IIIA - Artificial Intelligence Research Institute
CSIC - Spanish Council for Scientific Research

Campus UAB, 08193 Bellaterra, Catalonia, Spain
fmartin@cs.orst.edu; enric@iiia.csic.es

Abstract
We are developing a first prototype of an agent-aided intrusion detection tool called

Alba (ALert BArrage) that assists a network administrator’s decision making, reduc-
ing the burdensome output produced by current intrusion detection systems (IDSes).
This work describes the cognitive machinery that allows Alba to reason about com-
puter security incidents and learn the salient features of an incident so that they can be
later employed to recognize similar situations and predict the likely effects of a new
attack.

1 Introduction

Network administrators’ responsibilities include, among other perimeter defense tasks, pre-
vention, detection and response to computer security intrusions1. Nowadays, Intrusion De-
tection Systems (IDSes) have become common tools (eTrust, eSafe, IntruShield, RealSecure,
etc) deployed by network administrators to combat unauthorized use of computer systems.
An IDS aims at discovering intrusion attempts and whenever an intrusion (or intrusive be-
havior) is detected the IDS notifies the network administrator by means of alerts. Commonly,
alerts take the form of emails, database or log entries, etc and their format and content vary
according to the particular IDS (Fig. 3 shows an alert signaled by Snort [16]). There are in-
trusions that require only a single action (hit-and-run intrusions) to cause a malign effect (i.e.
the Ping of Death attack2). Other intrusions, on the contrary, are sophisticated multi-stage
attacks where each intruder’s action is a step intended to result in a change of state of the
target computer system that prepares it to accept the next intruder’s action (i.e. the Mitnick
attack [15]). Normally, an isolated alert (per se) cannot be correctly classified as malicious
or innocuous. For example, imagine an alert corresponding to a scan action coming from
an unknown IP. This alert can correspond to a malefactor performing a reconnaissance or
on the contrary it could really correspond to one of our engineers checking at our customer’s

�
On sabbatical leave from iSOCO - Intelligent Software Components, S. A.

1The intentional or unintentional access to sensitive information or unauthorized use of a computer system.
2http://www.pp.asu.edu/support/ping-o-death.html

office that one of our web services is up. Thus, more evidence is needed before one can go
further and initiate a considered response (e.g. creating a new rule in a firewall).

Moreover, the current generation of IDSes generates an unmanageable number of false
positive alerts3 that in turn increases the difficulties for the proper identification of real and
malicious attacks. Network administrators are so overwhelmed that they frequently disable
the alert device due to the consistent assumption that nothing is wrong reinforced by the
fact that the alert device “cried wolf” too often. There are those who even postulate that
traditional IDSes not only have failed to provide an additional layer of security but have also
added complexity to the security administration task. Therefore, there is a compelling need
for developing a new generation of tools that help to automate security administration tasks
such as the interpretation and correct diagnosis of IDSes output. The fact of the matter is that
as long as the number of networked organizations proliferates and the number of computer
security threats increases this need accentuates.

To make the aforementioned tasks more manageable we envisage a new generation of
intrusion detection tools under the heading of agent-aided intrusion detection. Some recent
works can be seen as the prelude of this tendency [4, 8, 12, 18, 19]. This work describes a first
prototype of an agent-aided intrusion detection tool called Alba (ALert BArrage) that medi-
ates between an IDS and the corresponding network administrator. Alba rapidly produces an
alert triage (i.e. an approximate priorization for subsequent action) on behalf of its network
administrator. Alba employs a case-based strategy to analyze the sequence of alerts provided
by a conventional IDS, identifying false positives, deeming alerts due to innocuous attacks,
and predicting new alerts corresponding to malicious attacks that are still undergoing. We
will see how stored cases, in the form of alert trees and learnt through frequent episode al-
gorithms, allow Alba to identify subsequences of alerts in the alert stream that are similar to
past situations where a computer security incident occurred. Once identified a past situation
Alba uses it to predict the likely intentions of an attacker so that the corresponding alerts can
be priorized conveniently and the suitable response can be initiated as soon as possible.

This work describes the cognitive machinery that underpins Alba and proceeds as follows.
Next Section describes the task that confronts a human network administrator who must
detect a human or artificial intruder rapidly and respond appropriately to minimize damage.
Section 3 briefly overviews Alba’s cognitive architecture. Then, we concentrate on four key
components. Firstly, Sec. 4 describes SOID a simple ontology for intrusion detection that
allows Alba to reason at a higher level of abstraction than most IDSes. Secondly, Sec. 5
introduces alert trees as the knowledge structure that supports sequence recognition. Thirdly,
Sec. 6 explains how an IDS alert stream is analyzed to recognize past episodes. Fourthly,
the frequent episode discovery methods deployed by Alba are described in Sec. 7. Finally,
Sec. 8 summarizes some approaches addressing the number of alerts that a human network
administrator has to handle and Sec. 9 presents some concluding remarks.

2 Network Administration

Responding to intruders (human, artificial or a combination of both) and keeping networks
and applications safe encompasses a collection of tasks that are best explained depending on
the time at which they are performed by a network administrator: before, during or after the
occurrence of an intrusion. See the temporal model depicted by Figure 1.

3Alerts signaled when there is a manifest absence of intrusive behavior.

Monitoring Diagnosing Repairing Analysing

TimeIntrusion
Repaired

Detection Response
Auditing

Detected

Prevention

Appraised

window of
vulnerability

window of
penetrability

window of
compromisibility

Figure 1: Time axis model of incident prevention, detection, and response tasks.

Prevention Tasks Network administrators according to the security policy prepare before-
hand a collection of procedures to effectively handle future intrusions and to enable rapid
reaction. They try to minimize the likeliness of future intrusions by constantly auditing the
system and eliminating the greatest number of threats. A network administrator proactively
performs security audits testing the computer systems for weaknesses —vulnerabilities or
exposures. However scan tools (i.e. Nessus, Satan, Oval, etc) used for penetration or vulner-
ability testing only recognize a limited number of vulnerabilities given the ever increasing
frequency of newly detected possibilities for breaking into a computer system or disturbing
its normal operation. Thus, network administrators continuously update scan tools with new
plug-ins that permit to perceive new vulnerabilities. Once the existence of a vulnerability or
exposure is appraised, network administrators assess the convenience of discontinuing the
service or application affected until the corresponding patch or intrusion detection signature
is available. A tradeoff between risk level and service level is made in every assessment. Net-
work administrators aim at shrinking the window of vulnerability, the time gap between when
a new vulnerability or exposure is appraised and a preventing solution (patch, new configu-
ration, etc) is provided, as much as possible. A basic strategy to accomplish that objective
is based on two conservative tasks: first, minimizing the number of exposures (i.e. disabling
unnecessary or optional services configuring firewalls to allow only the use of ports that are
necessary for the site to function) and, second, increasing awareness of new vulnerabilities
and exposures. Finally, network administrators continuously monitor the system so that pre
intrusion behavioral patterns can be understood and used for further reference when an intru-
sion occurs. Monitoring is a preventive and ongoing task that normally conveys to detect an
intrusion.

Detection Tasks The sooner an intrusion is detected, the more chances there are for imped-
ing an unauthorized use or misuse of the computer system. Network administrators monitor
computer activities at different level of detail: system calls traces, operating system logs,
audit trail records, resources usage, network connections, etc. Normally, they constantly try
to fusion and correlate real-time reports and alerts stemming from different security devices
(i.e. firewalls, intrusion detection systems, etc) to stop suspicious activities before they have
a negative impact (i.e. degrading or disrupting operations). Different sources of evidence are
valuable given the evolving capabilities of intruders to elude security devices. The degree

of suspicion and malignancy associated to each report or alert still requires continuous hu-
man oversight. Thereby, network administrators are continuously overwhelmed with a vast
amount of log information and bombarded with countless alerts. Thereabout, network ad-
ministrators tune security devices to provide an admissible number of false alerts at risk of
not detecting real intrusions. The time at which an intrusion is detected directly affects to
the damage that an intrusion causes. An objective of network administrators is to reduce the
window of penetrability, the time span that initiates when a computer system has been broken
into and extends until the damage has been completely repaired. The correct diagnosis of an
intrusion allows a network administrator to initiate the most convenient response. However, a
tradeoff between quality and rapidness is made in every diagnostic. Diagnosing is a detection
task that conveys to respond an intrusion.

Response and Recovery Tasks As soon as a diagnostic on an intrusion is available network
administrators initiate a considered response. This response tries to minimize the impact on
the operations (i.e. do not close all ports in a firewall if blocking a unique IP is enough).
Network administrators try to narrow the window of compromisibility of each intrusion —the
time gap that starts when an intrusion has been detected and ends when the proper response
has taken effect— employing a collection of ad-hoc operating procedures that indicate how to
respond and recover from a type of intrusion. The responses to an attack range from terminat-
ing a user job or suspending a session to blocking an IP or disconnecting from the network to
disable the compromised service or host. Repairing or damage recovery entails to restore the
control, resources, and services of the compromised network entities. Network managers use
a disaster recovery process that depending on the severity of the intrusion will even require to
regenerate the complete system from scratch. Repairing usually entails keeping the level of
service while the system is being repaired what hardens automation. Often, it is impossible
to keep the level of service (i.e. when a system reboot is required after a DoS). Once the sys-
tem in completely recovered from an intrusion, network managers collect all possible data to
thoroughly analyze the intrusion, traceback what happened, and evaluate the damages. Thus,
system logs are continuously backed up. The goal of post-mortem analysis is threefold. First,
to gather forensic evidence (contemplating different legal requirements) that will support le-
gal investigations and prosecution. Second, to compile experience and provide or improve
documentation and procedures that will facilitate the recognition and rapid repelling of sim-
ilar intrusions in the future, and, third, to validate the current security policy. Post-mortem
analysis is a response task that conveys to prevent intrusions.

3 Alba Architecture

Based on Brachman’s definition of a cognitive system [3], we have defined a cognitive assis-
tant for network administration as a computer system that is capable of:

� reasoning in terms of large amounts of knowledge represented at a useful level of descrip-
tion.

� learning from past experiences and continuously improving its workings and results over
time.

� explaining itself in terms that are meaningful for a network administrator.

Snort Sensor

SOIDCVE CLSINERD Snort
Ruleset

Alert Stream

Prediction by
Partial

Subsumption

Walking Trees

NERD
Checking

Anomaly Detection

Priorized Alert Stream

Innocuous
Alert Trees

Malicious
Alert Trees

False positive
Alert Trees

Alert
stream
profile

PED

Monitoring

Diagnosing

Repairing

Mission
Goals &
Costs

Actions

Plan Recognition Countermeasure Valuation

Similarity Triage Interestingness Triage

m

fi
ffi i

m
m m

m
m m

CVE monitor Snort Sensor Snort SensorRuleset
monitor

Nessus
scanner

Perception layer

Recognition layer

Planning layer

SED

Figure 2: Alba Architecture

� accepting direction from a network administrator that tells it what to do.

� being aware of its behavior and capabilities (self-aware).

� responding in a robust manner and proactively to surprises (survivable).

� collaborating with other network administrator’s assistants to complete tasks.

In this work, for the sake of brevity, we will only address the first four capabilities. Figure
2 sketches the architecture that provides the primitive resources that allows Alba to reason,
learn, accept direction and explain itself meaningfully. Next, we provide a brief description
of the complete architecture.

Perception Layer The first layer provides, on the one hand, a collection of sensors strate-
gically placed to continuously monitor and analyze every packet on the protected network,
and, on the other hand, a number of scanners and monitors that allows several sources of
knowledge (that we will introduce later on) to be constantly updated. This layer allows Alba
to perform preventive tasks such as pinpointing security weaknesses for correction.

Recognition Layer The second layer provides Alba with deliberative capabilities. First, a
collection of models —expressed on top of the concepts defined by SOID, a simple ontol-
ogy for intrusion detection— allows Alba to reason about security incidents, vulnerabilities,
alerts, and the protected network. Second, alert trees permit Alba to represent sequential
patterns of malicious and innocuous activity and store past experiences. Third, Alba uses a
collection of methods (Checking NERD and Walking Trees) for continuously overseeing the
alert stream looking for an explanation for each isolated alert or group of alerts so that they

can be conveniently priorized. Forth, the prediction by partial subsumption method allows
Alba to predict new alerts stemming from attacks that are still underway. Fifth, a collection
of methods allows Alba to keep an updated profile of the alert stream and constantly learn
new alert trees.

Planning Layer The third layer provides Alba with reflective capabilities. Firstly, a model
of the network mission and costs allows Alba to make savvy judgements on the priorization
of certain malicious alerts as well as to keep the number of false positives under control.
Secondly, a plan recognition model uses priorized alerts and predicted alerts to properly an-
ticipate the plans of a malefactor and initiate the corresponding plan of countermeasures using
a collection of prespecified actions. Thirdly, Alba accepts direction from a network adminis-
trator who can provide it with different criteria to estimate the similarity of two sequence of
alerts and establishes different measures of interest to properly prune the discovery of new
alert trees.

Alba has been coded using Noos, an object-centered knowledge representation language
useful for developing knowledge systems that integrate problem solving and learning [1].
Noos also provides agent-programming constructs . The three basic concepts that underpin
the Noos knowledge representation language are: sorts, feature terms, and subsumption. A
sort is defined as a symbol that denotes a set of the individuals of a domain. Sorts form
a collection of partially ordered symbols. Noos is formalized using feature terms. Feature
terms are a generalization of first order terms and lambda terms. Feature terms constitute the
Noos basic data structure and can be seen as extendable records organized in a subsumption
hierarchy [1]. Feature terms are represented graphically by means of labeled directed graphs
(see Fig. 4 and Fig. 5). In Noos subsumption is defined as an informational ordering among
feature terms. A feature term

�
is subsumed by another feature term

���
when all information

provided by
���

is also provided by
�

. Subsumption is crucial in our approach since it is at
the core of the algorithms that Alba uses to compare sequences of alerts.

In the following, we describe in further detail four different components of the recognition
layer aimed at performing an effective alert triage.

4 SOID

SOID aims at providing a domain-specific representation language for alert triage in intrusion
detection. At a quick glance, in order to automate the alert triage task we have identified
four key sources of knowledge to be conceptualized (networks, incidents, vulnerabilities,
and alerts) and built a separate ontology for each of them using the knowledge representation
language Noos [1]. Finally, we have merged these partial ontologies in a more global ontology
that we have called SOID —a Simple Ontology for Intrusion Detection.

Networks A network is the computer system to be protected. We have defined a set of
concepts and relationships to model a network based on the Network Entity Relationship
Database (NERD) proposed in [7]. Properly modelling the network allows the importance
of each alert to be correctly assessed. For instance, determining whether a given alert corre-
sponds to an innocuous attack or not. That is the objective of the NERD checking method.
Network models based on SOID can easily be coded into Noos and automatically updated
translating the reports provided by Nessus (an open source network scanner).

Incidents An incident is a unauthorized use or abuse of the protected system. We have
followed CLCSI [10] that defines an incident taxonomy based on three key concepts: events,
attacks and incidents. An event is an action directed at a target which is intended to result in a
change of state of the target. An attack is defined as a sequence of actions directed at a target
taken by an attacker making use of some tool exploiting a computer or network vulnerability.
Finally, an incident is defined as a set of attacks carried out by one or more attackers with one
or more goals.

Vulnerabilities A vulnerability is a flaw in a target that could allow an unauthorized result.
Knowing the vulnerabilities in our network is the main source of knowledge to automatically
decide if a given alert corresponds to an innocuous attack or not. We have incorporated com-
mon vulnerabilities and exposures (CVE) dictionary provided by the MITRE corporation into
our ontology. A monitor advertises Alba of new published vulnerabilities. Alba contrasts new
vulnerabilities against the network model (NERD) and pintpoints new security weaknesses
for correction.

Alerts We have conceptualized alerts according to the Snort ruleset. Snort is a network IDS
where alerts are triggered by a collection of rules [16]. Each Snort rule is composed of a Snort
identification number (SID), a message that is included in the alert when the rule is triggered,
an attack signature, and references to sources of information about the attack. Each alert is
provided with an identifier, time and date, sensor identifier, triggered signature, IP and TCP
headers and payload. In Fig. 4 an alert corresponding to an attempt of propagation of the
CodeRed worm is shown.

5 Alert Trees

An alert tree is a knowledge structure to describe past security incidents. An alert tree repre-
sents the serial structure of a group of alerts that occurred together within a specified window
of time at the end of which a particular situation took place (i.e. an concrete attack). The root
node represents the goal and target of an attack and the leaf nodes the alerts corresponding to
the sequence of actions needed to achieve that goal [17]. An alert tree establishes a partial or-
der among the leaf nodes. An alert tree has two types of intermediate nodes: a-nodes (parallel
nodes) and s-nodes (serial nodes). An a-node indicates that to occur all its subnodes have to
occur before (indepently of the order) and therefore establishes a partial order among them

#(1 - 12064) [2002-11-29 18:47:22] WEB-IIS CodeRed v2 root.exe access
IPv4: 80.34.49.201 -> 172.26.0.4

hlen=5 TOS=0 dlen=112 ID=16914 flags=0 offset=0 TTL=118 chksum=37996
TCP: port=3421 -> dport: 80 flags=***AP*** seq=1955827854

ack=1657159142 off=5 res=0 win=17520 urp=0 chksum=44219
Payload: length = 72

000 : 47 45 54 20 2F 73 63 72 69 70 74 73 2F 72 6F 6F GET /scripts/roo
010 : 74 2E 65 78 65 3F 2F 63 2B 64 69 72 20 48 54 54 t.exe?/c+dir HTT
020 : 50 2F 31 2E 30 0D 0A 48 6F 73 74 3A 20 77 77 77 P/1.0..Host: www
030 : 0D 0A 43 6F 6E 6E 6E 65 63 74 69 6F 6E 3A 20 63 ..Connnection: c
040 : 6C 6F 73 65 0D 0A 0D 0A lose....

Figure 3: CodeRed Worm propagation attempt.

Figure 4: CodeRed alert in Noos

Figure 5: Innocuous Alert Tree.

whereas a s-node indicates that its subnodes are ordered following a total (lexicographic) or-
der. Therefore, an alert tree induces a partial order among all the leaf nodes. We call episode
to each one of the induced sequences of leaf nodes. The nodes of an alert tree also have other
features such as risk to indicate the possibilities of suffering the attack at the root node once
all its subnodes have occurred and cost that indicates the impact of such attack on a give
mission. Fig. 5 shows an alert-tree to represent a multi-stage attack as a sequence of Snort
alert classes with a null risk factor that indicates that the attack is innocuous.

6 PPS

Alba constantly searches the set of alert trees that best explain the current alert stream. Alba
uses a walking tree method —inspired by a family of heuristics to align biologically reason-
able strings [5]— to efficiently and incrementally computing the similarity between an alert
tree and the alert stream (see Fig. 6). Computing the similarity between two sequences of
alerts can be interpreted as the search of evidence that some alerts in the alert stream and a
past episode are derived from a common attack pattern perhaps altered using new and un-
detectable vulnerabilities. The Prediction by Partial Subsumption (PPS) method at any time
considers a window � composed of the last

�
alerts in the alert stream and looks for partial

occurrences of episodes. We define the partial occurrence of an episode and its confidence
threshold as follows:

Partial Occurrence A window �������	��
�����	���������������
��� ���
�� of length
�

on an alert stream�� ������� � �����������
 � is a partial occurrence of episode iff the optimal alignment of to � has
score at least ! .

a2 a4 a5 a7 a8 a9a1

Alert stream

Walking tree

The tree walks to
the right one alert
at a time.

m m

m m

m

mm

Figure 6: Walking Tree.

Confidence Threshold A window � � ���	��
� � ����������������
��� �����
�� of length
�

on an alert
stream

�� � ����� � �����������
 � such that � is a partial occurrence of episode then we can predict
that the whole episode will occur with confidence ! � given by the odds ratio

�������	�
�� ��
��� �	�
�� � ��
�� . Where� ������� ��� � �	����� ���
represents the probability that both sequences of alerts � and were unrelated

or appeared randomly. And
����� ��� ��� ��� ���

can be thought as the probability that the alerts on the
window � of the alert stream have been caused by an incident similar to the episode [6].

For each episode induced by an alert tree, PPS searches the optimal alignment between
a suffix of the window � and a prefix of the episode . When both the decision threshold ! and
the confidence threshold ! � are reached or exceeded then Alba is capable of foreseeing that
the corresponding suffix of such episode will occur (at least with a level of confidence ! �) and
therefore preventing the incident � �� . On the other hand, the alerts on which Alba bases this
prediction are priorized for further investigation. Notice that once a window � and a episode
 are deemed to be similar Alba will apply other methods that will look for more evidence
before it can conclude that an attack is undergoing (i.e. verifying that the source IP of the
different alerts involved are the same). Other issue that deserves attention is that a predictive
model is only as good as the trust its user (a network administrator in our case) puts in it.
Thus it is fundamental to minimize the number of false positives (“do not cry wolf too many
times”) while keeping the true positive fraction as high as possible. Alba computes an optimal
decision threshold ! with such criteria using ROC analysis. Figure 7 shows the ROC curve
generated in a set of preliminary experiments where we employed an alert stream composed
of 84168 alerts coming from 8848 different IPs that was generated after four months of real
surveillance in a networked organization using 3 Snort sensors, 18 episodes corresponding to
well-known attack patterns, an error type weighting of 1:500 (i.e. a cost of 1 for each false
positive and a cost of 500 for each false negative), and 12 variants of 3 different multi-stage
attacks. The optimal decision threshold corresponded to the iso-performance line with slope
equal to 2.2 (see Fig. 7).

7 Frequent Episode Discovery

Alert trees can be provided by a network administrator or learn by means of anomaly de-
tection algorithms4. There exists a number of algorithms for frequent episode discovery in
sequence of events. Winepi [11], Minepi [11], Seq-Ready&Go [2], etc that are valid for our
purpose. These three-phase algorithms exploit the notion that if a given episode is frequent

4An anomaly detection algorithm is a generalized inductive learning based on past cases that recognizes
unusual features of data, i.e. recurrent combinations that occur with greater or lesser frequency than originally
might be expected [9].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive fraction

tr
ue

 p
os

iti
ve

 fr
ac

tio
n

ROC Curve

Figure 7: ROC curve and optimal decision threshold.

then all its subepisodes are also frequent. In the first phase, these algorithms generate candi-
dates while in the second phase evaluate the support (the number of times that the candidate
occurs) and prune those candidates that are under a preselected support. The first two phases
are looped until no new candidates can be generated. Then, the third phase generates associ-
ation rules that are over a given confidence threshold. A drawback of these algorithms is the
unmanageable number of rules that can generate. For instance, using Winepi to mine an alert
stream composed of 31482 alerts corresponding to 3 months of activity of a Snort sensor. Af-
ter four hours of computation, we found 171566 rules with a minimal confidence of 15% and
a minimal frequency of 10% using a window of 30 seconds. Thus, Alba uses a new method
based on the Winepi [11] algorithm that is able to support noise data [20] and generalization
over a hierarchical taxonomy of sorts [2]. A novelty of this method is that it is also able to use
different interestingness measures provided by the network administrator to prune new can-
didates. We are now experimenting with different interestingness measures such as general
impressions or surprisingness [9]. We have developed two variants one for parallel episode
discovery (PED) and other for serial episode discovery (SED) —a-nodes and s-nodes respec-
tively. On the other hand, Alba continually revises models of correct behavior (alert stream
profiles i.e. number of alert per minute, frequency of alert sorts, � -rarity, IP sources, etc) and
evaluates statical deviation from past history in order to advert meaningful differences.

8 Related Work

The correct interpretation of an IDS alert stream is an active area of research in the intrusion
detection community [7, 13]. As our approach M2D2 [13] reuses models proposed by others
and integrates multiple interesting concepts into a unified framework. The most significative
difference between both approaches is that M2D2 uses the B formal method to model the dif-
ferent sources of information for the alert management task whereas we are using a descrip-
tion logic like language like [7]. Crosbie and Spafford were the first to propose autonomous
agents in the context of intrusion detection. Their initial proposal evolved to become AAFID
[18]. Other works such as Cooperating Security Managers have proposed a multi-agent sys-

tem to handle intrusions instead of only detecting them [19]. However, in these works agents
lack reasoning capabilities and are used for mere monitoring. More sophisticated agents with
richer functionality were provided by [8] where an ontology centered on computer attacks
was introduced. That ontology provides a hierarchy of notions specifying a set of harmful
actions in different levels of granularity —from high level intentions to low level actions.
It has been argued in [4] that a collection of heterogenous software agents can reduce risks
during the window of vulnerability introduced between when an intrusion is detected and the
security manager can take an active role in the defense of the computer system. Some works
have also proposed to deal with intrusion detection at higher level of abstraction. The benefit
of dealing with intrusions at higher level of abstraction is twofold: it allows irrelevant details
to be removed and the differences between heterogenous systems to be hidden [14].

9 Conclusions

Ideally, the ultimate goal of secure network administration is to make the three windows
(vulnerability, penetrability and compromisibility) of each possible intrusion converge into a
single point in time. Pursuing that objective is a manpower intensive process. Moreover, the
astounding growth of networks and the speed at which Internet software has been developed
and released inevitably has led to an exponential growth in the number of current vulner-
abilities and exposures and therefore in the complexity of network administration. Only the
smart automation of network administration tasks will alleviate the ever increasing manpower
needed for secure network administration. This work provides a brief overview of a cognitive
assistant, Alba, that reduces the burdensome output produced by current IDSes and con-
tributes to minimize the number of false positives due to innocuous attacks and to increase
the predictive power for malicious multi-stage attacks. This work forms part of a more am-
bitious effort where we are involved in developing CBR techniques for the assessment of
dynamic processes in imprecise and adversarial environments.

Acknowledgments

Part of this work has been performed in the context of the MCYT-FEDER project SAMAP
(TIC2002-04146-C05-01) and the SWWS EU-funded project under contract number IST-
2001-37134.

References

[1] J. L. Arcos and E. Plaza. Inference and reflection in the object-centered representation language Noos.
Journal of Future Generation Computer Systems, 12:173–188, 1996.

[2] J. Baixeries, G. Casas, and J. L. Balcázar. Frequent sets, sequences, and taxonomies: new, efficient algo-
rithmic proposals. Technical Report LSI-00-78-R, UPC, 2000.

[3] R. Brachman. Developing cognitive systems. a convergence of thinking. Technical report, Defense Ad-
vanced Research Projects Agency, 2002.

[4] C. A. Carver, J. M. Hill, J. R. Surdu, and U. W. Pooch. A methodology for using intelligent agents to
provide automated intrusion response. In Proc. of the IEEE WIAS, pages 110–116, 2000.

[5] P. Cull and T. Hsu. Improved parallel and sequential walking tree methods for biological string alignments.
In Proc. of the ACM/IEEE conference on Supercomputing, 1999.

[6] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis. Cambridge University
Press, 1998.

[7] R. P. Goldman, W. Heimerdinger, S. A. Harp, C. W. Geib, V. Thomas, and R. L. Carter. Information
modeling for intrusion report aggregation. In DICEX. IEEE Computer Society, 2001.

[8] V. I. Gorodetski, L. J. Popyack, I. V. Kotenko, and V. A. Skormin. Ontology-based multi-agent model of
information security system. In 7th RSFDGrC, number 1711 in LNAI, pages 528–532. Springer, 1999.

[9] R. J. Hilderman and H. J. Hamilton. Knowldege Discovery and Measures of Interest. Kluwer Academic
Publishers, 2001.

[10] J. Howard and T. Longstaff. A common language for computer security incidents. Technical Report
SAND98-8667, SNL, 1998.

[11] H. Mannila, H. Toivonen, and A. I. Verkano. Discovery of frequent episodes in event sequences. Technical
report, University of Helsinki, 1997.

[12] F. J. Martin and E. Plaza. SOID: an ontology for agent-aided intrusion detection. In 7th International
Conference on Knowledge-based Intelligent Information & Engineering Systems, 2003.

[13] B. Morin, L. Mé, H. Debar, and M. Ducassé. M2d2: A formal data model for ids alert correlation. In Proc.
of the RAID 2002, 2002.

[14] P. Ning, S. Jajodia, and X. Wang. Abstraction-based intrusion detection in distributed environments. ACM
Transactions on Information and System Security, 4(4):407–452, 2001.

[15] S. Northcutt. Network Intrusion Detection. An Analyst’s Handbook. New Riders, 1999.

[16] M. Roesch. Snort - lightweight intrusion detection for networks. In Proceedings of LISA ’99: 13th Systems
Administration Conference Seattle, Washington, USA, November 1999.

[17] B. Schneier. Modeling security threats. Dr. Dobb’s Journal, 1999.

[18] E. H. Spafford and D. Zamboni. Intrusion detection using autonomous agents. Computer Networks,
34:547–570, 2000.

[19] M. White, E. Fisch, and U. Pooch. Cooperating security managers: A peer-based intrusion detection
system. IEEE Network, 10:20–23, 1996.

[20] Q. Zheng, K. Xu, W. Lv, and S. Ma. Intelligent search of correlated alarms from database containing noise
data, 2002.

