Components for Case-Based Reasoning systems

Chema Abasolo, Enric Plaza and Josep-Lluis Arcos

ITTA - Artificial Intelligence Research Institute
CSIC - Spanish Council for Scientific Research
Campus UAB, 08193 Bellaterra, Catalonia, Spain.
{abasolo,enric,arcos}@iiia.csic.es
http://www.iiia.csic.es

Abstract In this paper we present CAT-CBR a component-based platform for developing CBR
systems. CAT-CBR uses UPML (Universal Problem-solving Methods Language) for specifying CBR
components. A collection of CBR components for retrieval of propositional cases is presented in
detail. The CAT-CBR platform guides the engineer using a case-based recommendations system to
develop a configuration of components that satisfies the requirements of a CBR system application.
We also present how to develop a runtime CBR application from the configuration resultant of the
configuring process.

Keywords: CBR, Knowledge modeling.

1 Introduction

Developing a CBR system is a very complex problem, many decisions have to be taken during the
development. These decisions concern to the techniques we want to use and how they can be integrated
in the CBR system; also a representation model of the cases must be chosen, according to the domain
where the CBR system will be applied.

Knowledge modelling aims on solving this kind of problems, developing complex software systems.
The approach we take is to model the different techniques or components as Problem-Solving Methods.
These Problem-Solving Methods represent reasoning processes or software components that achieve a
specific task.

UPML is used to specify these components. UPML is a language that allows us to describe Problem-
Solving Methods, Tasks, Domain Models and the Ontologies used by them. UPML also provides, as a
software architecture, connectors (Bridges) for these components.

In this paper we present the CAT-CBR platform; a platform for developing CBR systems. CAT-CBR
provides to the engineer a library of CBR components that he can combine in an application (a CBR
system). The platform provides to the engineer recommendations of which components will fit better to
the requirements; these recommendations are given using a case-based recommendation system based on
previous applications developed using CAT-CBR. Finally CAT-CBR gives the possibility to the engineer of
generating a runtime application from the configuration he has made; this process of generating a runtime
application has two parts: one automatic and the other has to be done manually by the engineer.

The paper is divided in the following sections. First, in section 2, the general aspects of the platform
are presented. Section 3 presents a brief description of UPML. In section 4 we present the UPML library
of CBR components. After this section 5 describes the process of configuring a CBR system using the
platform. Section 6 describes how the platform operationalizes a CBR system. Finally section 7 presents
some conclusions and future work.

2 The CAT-CBR platform

In this section, we present the general concepts of the CAT-CBR platform. This platform uses a library of
CBR components to guide the engineer in the development of CBR systems. These components describe

Q UPM L -Noos-Ontology

Lo Concept

K nowledge-Component
UPML-Ontology
Task
Domain-Model
PSM

Binary-Relation
Adapter
Bridge
O PSM-Domain-Bridge
O PSM-Task-Bridge

—O Task-Domain-Bridge

Refiner
(O Ontology-Refiner
(O Task-Refiner
—(O Domain-M odel-Refiner

Problem-Decomposer
Reasoning-Resour ce
—(O Pragmatics
—O Pragmatics-Descriptor
—O Competence

PSM -Refiner
(O Signature-Element Problem-Decomposer
—O Formula Sefiner_ .
o . i _ easoning-Resource
O peratfonal Description Refiner
O Renaming

L— Communication

Fig. 1. The UPML hierarchy of elements.

the different tasks that can appear in a CBR system and also the problem-solving methods that can
be applied to these tasks. That drives us to work with these components in a problem-solving methods
framework. The CAT-CBR platform has been developed on Noos platform [2]. Noos uses feature terms as
representation language. Noos 1s a platform used for developing CBR systems.

To describe CBR components, inside this framework, we have used UPML (Universal Problem-solving
Methods Language) [5]. UPML is a language for specifying components of knowledge systems. Two levels
can be differentiated in a component description: a specification level —where we use UPML- and an
operational level; as operational language we use Noos, defining functions that implement the components.
Using UPML and feature terms a library of CBR components has been specified.

The goal of CAT-CBR is, given the requirements of an engineer, to develop a CBR application; to
achieve this objective two processes has been specified: Configuration Process and Operationalization
Process. The configuration process consists in selecting different components and connect them in order
to specify an application. The CAT-CBR has an interactive tool where the engineer chooses the components
to be included in the application. This tool is built over a CBR system that guides and gives support
to the engineer during this configuration process. Section 5 explains in more detail this configuration
process.

Finally, the operationalization process takes an application specification (in the form of a configuration
of components) and generates an executable application. The approach we have taken to operationalize
a configuration is that the platform generates a file that links the Noos methods following the structure
of the configuration of components. This operationalization process is described in more detail in section

6.

3 The UPML Language

Problem-Solving Methods are reusable components for implementing the reasoning part of knowledge-
based systems. The UPML language aims at describing and implementing such architectures and compo-
nents to facilitate their semiautomatic reuse and adaptation.

UPML provides both a framework and a language to describe libraries of knowledge components and
their relationships to form knowledge systems. UPML is a software architecture that defines a set of

components and connectors between these components. Figure 1 shows the hierarchy of the different
components and connectors defined in UPML.

There are three main entities in the UPML: Tasks, Problem-Solving Methods and Domain Models.

A Tasks specifies the goals to be achieved by the Problem Solving Methods of the library. A Task is
characterized by its input roles and output roles together with preconditions and postconditions. Input
and output roles describe the types of elements used as input and the type of the result of the task.
Preconditions describe some properties needed by the task to be achieved; and postconditions describe
the properties that we get when a task is achieved.

Problem-Solving Methods (PSM) describe which reasoning steps and which types of knowledge are
needed to perform a task. A PSM specifies a particular way to solve a task. The main attributes of a
PSM are the input/output roles, plus the preconditions and postconditions to be fulfilled by the input
and output roles. These attributes determine when a PSM can solve a task. There are two subclasses of
PSM: Problem Decomposers and Reasoning Resources. Problem Decomposers specify decomposition of
tasks into subtasks and the data flow between the different subtasks (operational description). Reasoning
Resources are the elementary PSMs; they specify how to solve a task using external knowledge described
as Domain Models.

A Domain Model characterizes domain knowledge. A Domain Model consists of three elements: prop-
erties, meta-knowledge, and domain knowledge itself. The meta-knowledge captures the implicit and
explicit assumptions made while building a Domain Model of the real world. The domain knowledge is
the explicit knowledge of a Domain Model. The domain knowledge is build under the assumption that
the meta-knowledge is true. Properties are statements of the domain knowledge and can be directly used
in the configuration.

The UPML framework has the notion of Ontology. An Ontology defines a vocabulary used to describe
the properties of the previous components. In our case we have an ontology for describing CBR, concepts
(section 4.1).

Finally UPML as a software architecture, defines different connectors between previous entities; these
connectors are called bridges, and allow the interaction between two different entities. There are three
kind of bridges, depending os which components it connects: PSM-Task Bridges, PSM-Domain Bridges
and Task-Domain Bridges.

The different characteristics of the entities described above are defined using an Object Language.
UPML leaves open the decision of which Object Language is used to describe the components. This Object
Language will be used by the inference process in the configuration of an application. In our case, as the
platform has been built over Noos platform, the Object Language is Feature Terms and the inference
process is that of term subsumption [2].

The CAT-CBR platform supports in part the UPML software architecture. In particular, some as-
sumptions have been made to focus on the characteristics that we deem more useful for CBR system
engineering. Specifically, CAT-CBR does not support automatic use of bridges. In practice this amounts to
two effects: first, the PSM-Domain and Task-Domain bridges need be defined manually by the engineer;
second, PSM-Task bridges are not need because CAT-CBR uses only one CBR-ontology to describe Tasks
and PSMs.

4 CBR components library

The main idea of a CBR system is to use past situations (cases) to solve a new problem. A case is composed
by a past problem and the solution to this problem. A CBR system entails four phases: Retrieve, Reuse,
Revise and Retain [1], as shown in Figure 2. In CAT-CBR we are developing components for three stages:
Retrieve, Reuse and Retain. The Revise phase is not incorporated in the library of components, because
normally this process is done by an expert externally.

Currently, Retrieve PSMs for propositional cases and relational cases have been analyzed and im-
plemented. In Reuse we have started adding to the library of components for classification, and some
components for adaptation, as Constructive Adaptation [12]. We plan to incorporate components for the
Retain phase in the future.

Case-based reasoning

Precedent
cases

knowlegde Solved” Suggested
Confirmed

solution -

Fig. 2. The CBR cycle [1].

First we will present a vocabulary (ontology) used to describe CBR components (section 4.1). Then
we will introduce a description of some components for the Retrieve and Reuse stages (section 4.2).

4.1 CBR components ontology

As it is presented in section 3, the UPML entities (Tasks and PSMs) are described using an ontology.
In this section we present briefly the ontology defined for describing CBR components. This ontology
allow us to describe the preconditions and postconditions, the assumptions and the type of the input and
output roles of tasks and PSMs. Moreover, these concepts can be used to describe the type of knowledge
and its properties used in a Domain Model.

Let us start with the concepts used to characterize preconditions, postconditions and assumptions of
the components.

The CBR ontology is organized by different groups of concepts. A first group of concepts characterize
performance issues of the components. In this group we have, as example, concepts that describe: the noise
tolerance of a component (High Noise Tolerant, Noise Tolerant and Low Noise Tolerant), the accuracy
of component (High Accuracy, Medium Accuracy and Low Accuracy), the space and time consumption
(Low and High Space Consumption, and Low and High Time Consumption) and tolerance with missing
values in the data.

Furthermore we need concepts to characterize properties of the inputs and output roles of the com-
ponents. A retrieval PSM can return only a set of cases with no order, a set of cases partially ordered or
a set of cases ranked by similarity. To characterize these properties the ontology has concepts such as:
retrieve-similar-cases, retrieve-similar-cases-with-similarity.

Moreover, in this vocabulary there are concepts for describing the types of inputs and outputs used by
a task or PSM, and the knowledge of a Domain Model. In this way we have, for example, Dtree- Model (that
represents a Decision Tree), Case-Base-Model and Case-Language-Model (that represents the language
of attributes used to describe propositional cases). Other models in CAT-CBR include: Weight-Model and
Order-Model (used for aggregation PSMs); and k-Model (used in the k-NN-Retrieval).

L gt

+

r-Ontolagy
Ht‘ Formula
trleuz Similar-Cases
gmm K-Similar-Cases
d—Remm Tases-Vith-Similarity
de\ 0K

Mudal Lase

Mudal Class

mque ><

J—K Model-Cluster

|se Tolerance
Htich-hoise-Tolerant
mse Tolerant

ey
rich-hcauracy
edlum -Accuracy

J—Low ~Accuracy

ITss\fcatlon “Variability

\gh ~ariability

J—an ~Wariability

ifference-Bias
mall-Difference -Bias
@-Large-Differance-Biss
Tine-Tonsumption
ow-Time-Consum
@-High-Time Consum
ce-Consumption
ow-Space-Consum
@High-Space-Consum
sing-Infarmation
o-Missing-Values
@blissing-Yalues
rouped-Heighbours
ndividual-Neighbours
réttribute-feleiznce-ianation
ropositionsi-Case
2 quires-Oasses
ast-Test-Selected
roblem-Classified
se-Similarity-Evalusted

@-fttribute-Similarity-Evalusted

rCUﬂstruEted-Dtree-Mude\
f—Genel&ted*K'Made\
f—Genel&ted*We\ght*Made\
Test-Dataset
artition-Evaluation
ggregated-Yalue
educed-Decision-Tree

@ClassNumber-Sensitive

L
d—Ft‘-S\gnature-E\ement

T—c.ase—aasa—Mnda\

iimlamty-MudE\
rouped-Model
eb-0f-Cases
0-Get
C-Pairs
lass
re-Collection
br-Case
sess-Model
Test
e-Language-Model
ist-Values
Model
ttree-Madel
rder-Model
ight-hode|
@-Feature-Similarity-Model

Fig. 3. Hierarchy of concepts defined in the CBR Ontology

4.2 CBR Components

In this section we will explain in detail part of the library, specifically we will focus on tasks and PSMs
for retrieval with propositional cases®. Also we describe other Tasks and PSMs for classification (Retrieve
and Reuse).

The process to construct this library involves analyzing existing techniques from a task-method de-
composition point of view. Once this analysis is made, the different components are specified in UPML.
The conclusion is that different components can be used in a same problem decomposition, giving us the
notion of families of PSMs for solving a task.

The family of PSMs related with k-Nearest Neighbour can be described as a problem decomposer with
two subtasks: Assess-Similarity and Select-k. These PSMs are used with propositional cases and achieves
the retrieve stage. Figure 4 shows this decomposition and the different PSMs that can be applied for its
subtasks, which are described below.

The Asses-Similarity task is achieved for propositional cases by a problem decomposer, called Feature-
Similarity-and-Aggregation. This component has to subtasks: Feature-Similarity, that evaluates the sim-
ilarity of the attributes one by one, and Aggregation, that aggregate the similarities of the attributes
in an unique value. The Feature-Similarity task can be solved by two reasoning resources, depending
if the cases have missing values or not; these two components are: Feature-Similarity-without-Missing-
Values and Feature-Similarity-with-Missing- Values. For the Aggregation task the following PSMs can
be applied: City-Block-Aggregation, Euclidean-Aggregation, Tzebitzev-Aggregation, Weighted Mean, OWA
and WOWA. These three first PSMs do not need any additional domain model to aggregate the Feature
Similarity; while the others need a Weight Model of the attributes to achieve Aggregation (in Weighted-
Mean and WOWA), and a Order Model between the attributes in OWA and WOWA. For other type
of cases, more complex and more expressive, new PSMs will be added to the platform for achieving
Assess-Similarity task.

For the Select-k task different PSMs can be applied depending on the available domain model. These
PSMs are reasoning resources that use a model of k. These are the PSMs included in the library:

k-selection: Tt 1s a reasoning resource that uses a unique £ as model to select the cases. It returns the
k nearest neighbors of the problem. The value of k£ can be learned using techniques like leave-one-out or
can be given by the engineer.

! PSMs for relational cases include: LAUD, LID and Perspectives, but they are not presented here for lack of
space.

G

« Feature Similarity
Feature -
Asses Similarity & Feature No MissingValues
Similarity A Y Similarity + Feature Similarity
ggregatiol Missing Vales
Legend
-Eucli('iearAggregati_m
*TxebitxevAggregatio
Problem Aggregation +City-Block Aggregatio
9greg *Weighted- Mean
« OWA

*WOWA

Reasonig
Resources|

* k Selectio
« k Selectio Case
« Group Seletion Class

* Group Seletion Cluser

Select

Fig.4. K Nearest Neighbour decomposition and the different PSMs that can be applied.

k-selection-case: It is a reasoning resource that adaptively selects a value of k for a problem given a
k-case model (a model characterizing for each case in the Case Base the k values that are better classifying
that case).

Group-selection-class: Tt is a reasoning resource that uses a k-class model (this model has a k value
for each class). This reasoning resource returns the neighbors grouped by classes (Grouping Model).

Group-selection-cluster: Tt is a reasoning resource that uses k-cluster model (this model has a k value
for each cluster). This reasoning resource returns the neighbors grouped by clusters (Grouping Model).

The CBR library also includes PSMs for learning this different models of k£ given a Case Base.

Another family of PSMs for the Retrieve phase use Decision Trees to retrieve similar cases. Retrieval
using Decision-Trees is a PSM that uses a Decision Tree model indexing cases in a Case Base. This
Decision Tree model has cases in its leaves nodes; the cases in a leaf node are those which satisfy all the
test nodes in the path from the root to the leaf. There are four reasoning resources that solve Decision
Tree Retrieval task:

DT-Retrieval: Tt is a reasoning resource that assumes no unknown values on the current problem.
DT-Retrieval-Missing- Values: 1t is a reasoning resource that retrieves a set of cases from a decision tree
allowing missing values in the current problem. When a missing value is found the PSM returns all the
cases found on the leaves under the node where the missing value has been found. DT-Retrieval-MostF'V:
in this reasoning resource when a missing value is found, the PSM evaluates which is the most frequent
value and continues the retrieve through this branch. DT-Retrieval-AllBranch: in this reasoning resource
when a missing value is found, this PSM continues the retrieve process through all the branches (notice
that this PSM is different from DT-Retrieval-Missing- Values in that it continues the retrieve process while
DT-Retrieval-Missing- Values stops the retrieve process in the node where a missing value is found).

The library has two PSMs for inducing Decision Trees:

DT-Construction: It is a problem decomposer that has three subtasks: Stop-Criteria, Select-Test and
Branching. The PSM evaluates whether a collection of cases satisfies the Stop-Criteria. If they do not
satisfy it, then Select-Test determines the best criteria to split the collection into subcollections. After
this, Branching generates all the branches for each subcollection. This PSM is applied recursively until
all the final branches satisfy the Stop-Criteria. DT-Construction-Pruning: Tt is a problem decomposer
that works in the same way than the previous one, but after the decision tree is made, a Pruning task
eliminates branches in the Decision Tree in such a way that the accuracy improves.

The two main subtasks in these two PSMs are Select-Test and Pruning. For Select-Test task the library
has several heuristic reasoning resources: Gain [13], Chi-Square ([6],[11]), G-Statistic [11], GINI-Indez [4],

[Reasoning-Resource |

Feature | Range | Default
NHame String
Pragmatics Pragmatics
Ontologies Upml-Ontalogy Empty-5et
Communication Communication
Input-Rales War Empty-Set
Output-Roles War Empty-Set
Competence Competence
Enowledge-Rales Signature-Element Empty-Set
Azzumptions Formula Empty-5et

Fig. 5. Features of a reasoning resource and default values.

Gain-Ratio [8] and RLM-Distance [10]. For Pruning task the library has the following reasoning resources:
Error-Complexity [4], Critical- Value [7], Minimum-FError [14], Reduce-Error [9] and Pessimistic-Error [8].

Classification Classification in CBR, can be described as a problem decomposer with two subtasks;
a Retrieve task and a Reuse task. For the retrieve task, the PSMs that can be applied are the ones
described above. Reuse is a task that receives a Similarity Model (from the retrieve task) holding the
cases retrieved that are more similar to current problem. The goal of the Reuse task is to determine a
class for the current problem based on the information of the similarity model. For the reuse task the
following three PSMs are included in the library:

Majority-Classification: This is a reasoning resource that selects the majority class from the set of
cases in the similarity model. Probabilistic-Classification: This is a reasoning resource that selects a class
probabilistically from the set of cases in the similarity model. Grouping-Classification is a reasoning
resource that selects the most representative class, using a Grouping-Model (this is a model obtained
from PSMs Group-Selection-Class and Group-Selection-Cluster). This similarity model has a grouping
for each class. The reasoning resource determines the grouping that is best (according to an entropic
criterion) and classifies in the class of that grouping.

5 CBR system Configuration

Before explaining the configuration process itself, the representation of the elements used in the CAT-
CBR will be introduced. As is presented before, this platform is developed on the Noos platform, and the
representation language are feature terms.

CAT-CBR uses feature terms to represent both UPML and the Object Language. That is to say, every
element of UPML is represented as a feature term and every type of UPML element is represented as a
sort; see, for instance, figure 5 where a sort for Reasoning Resource 1s shown.

The configuration process starts with an engineer input, that is what we call a Consult. A Consult con-
tains the requirements for the target application, specifying its inputs, preconditions and postconditions,
plus the Domain Models available for configuring an application. As preconditions the engineer describes
all the properties that he can assure that are true, while the postconditions represents the properties that
he wants to be satisfied by the application. Figure 6 shows the Consult sort.

A target application will be a configuration of components of the library that satisfies the consult.
A configuration specifies a PSM for each Task. A PSM can be decomposed in new subtasks (problem
decomposer) or be elementary (reasoning resource). A configuration also specifies which Domain Models
available will be used by each reasoning resource. Figure 7 shows an example of configuration.

|User-Consult |

Feature | Range | Default
Task Task Emmpty-Set
Preconditions Formula Empty-Set
Pastconditions Formula Empty-5Set
Inputs Signature-Elament Empty-5Set
Knowledge-Roles Domain-Madel Empty-Set

Fig. 6. Features and default values of the Consult sort.

qi—FEEitr*ieue
,*,—K-|Hr‘|—F|E triewal
q:.l—FIslsegs—S imi Larity
*—Felqtur*e—S imi lar i ty—-And-Aggregation
ature=5imilarity
SFgature-Simi lari ty—Ho-Missing—Yalues
I Foose-Base-fodel
i‘l Hoase-Language—Hode |
c‘i—Fh;'gr*eg-:l tion
&g ighted-Mean

I=Height-Model >

ﬁel lect-kK-M=ighbours
*—K-|Se lection
I -Meodel
|

I Hoase-Language—HMode L

Fig.7. A Configuration of a CBR application, where balls represent tasks, triangles represents PSMs and con-
tainers represents domain models.

f Goals, Preconditions & Inputs V Domain Models \

Allowed Postconditions: Allowed Preconditions: Allowed Inputs:

Retrieve-t-5Simi lar-Coses = Retrieve-K-Simi lar-Coses = Coze-Base-Mode | =
Retrieve-Cases-MHith-Simi larity Retrieve-Coses—Hith-Similarity Grouped-Hode |

Retrieve-Simi lar—Cases Retrieve-Simi lar-Cases Set-0f-Coses

K-Model-Case K-Mode |-Case Po-Set

K-Model-Class K-Model-Class Cs-Pairs

Unique-k Unique-k Simi lari ty-Hodel

K-Model-Cluster K-Mode |-Cluster Class

High-Hoise-Tolerant High-Moize-Tolerant Coze-Collection

Hoise-Tolerant Moise-Tolerant Cbr-Case
High-Accuracy High-RAccuracy Rssess-todel

Med i um—-Accuracy Med ium-Accuracy Test

Low-Acouracy Low-fccuracy Cose-longuage-Model

D]
]
4]

Remove Remove Add Remove]|
Selected Postconditions: Selected Preconditions: Selected Inputs:
|Retrieve—K—Simi lar-Cases | | |Prupos\tional—CasE ‘ | ‘Cbr—Case | |

Fig. 8. Interface that shows the options to the engineer to start the configuring process.

The configuration process has been developed as a case-based recommendation. CAT-CBR needs in-
formation about past configurations in order of giving the recommendations to the engineer. These past
configurations are modeled as Configuration Case, and are stored in a Case Base.

Once we have seen the representation of the components and some extra elements, let us start de-
scribing the configuring process.

First of all, the engineer has to determine his requirements of the CBR, system he wants to develop.
For that purpose, CAT-CBR presents a first interface to the engineer (see fig.8) where he can select the
goals, assumptions, inputs and domain models (knowledge that is available) for his CBR system and that
constitutes the Consult. After this the platform searches, in the configuration-case case base, for a past
configuration that satisfies these requirements; if there is one configuration, the CAT-CBR presents to the
engineer the possibility of reusing this past configuration as a solution.

During the configuring process, the engineer selects a task as top level task of his CBR system. Then,
CAT-CBR presents to the engineer an ordered list of PSMs that can be used to solve that task. The
PSMs presented by the system are those which match with the task, in the sense of component matching
explained presently.

Component matching has two parts, signature matching and specification matching. Thus, for two
components, a task and a PSM, they match when they have signature matching and specification match-
ing.

Signature matching requires that their input and output signatures match, and in our context this
means that a problem-solving method has input and output signatures that are equal or that refine those
of a task.

Moreover, specification matching requires that a problem-solving method has weaker preconditions
than a task and stronger postconditions than a task.

The PSMs are presented, to the engineer using a case-based recommendation criterion. First it com-
putes the similarity of the new consult with the consults of the configuration-case case base. This similarity
measure allows us to derive a ranking of the most similar configurations to the new problem. As simi-
larity function we have used LAUD [3], that evaluates the similarity between two structures of feature
terms. The PSMs are ordered using this ranking in such a way, a PSM is better than other one if the
configuration where it appears is more similar than the other one.

Once the PSMs are presented, the engineer selects the one that will be used to solve the task. To
make this selection easier to the engineer, the interface presents some extra information (see Fig.9). This
extra information includes the goals and assumptions that are achieved and the ones that are not yet
satisfied in the partial configuration. Also the interface shows the specification of the PSMs that match
a particular task.

The process of selecting PSMs for each open task continues until the partial configuration is considered
a final one. A configuration is final when: a) all the requirements of the engineer are achieved and b) it is

7

{_Consuitation %/ Partial Configuration V Configuration \

Available Components: Component Info:

RERBONIHG-RESOURCE T He | ghted—Hean B
Input Fio le

-\J‘Rit:(ieve

jsess—sim\ larity
H
hFaature-ini lari ty-Fnd-Aggr: e

utp :
Home: AGGREGATED-YALUE Sort: HUMBER
P

ALUE
Knouledge Rioles:

ME I GHT-MODEL
fissumptions :

im KID

Fres

@-figgregation

LI

-
-

@-Select-K-Heighbours

Add Component
Pending Precond & Assum: Pending Goals: Unavailable Knowledge:

RERFTBUE2—G mi [ar | t0-Eva luated
fagregatad-value

4]
]
]

Achieved Frecond &Assum: Aciieved Goais: Used Knowiedge:
Propas|tlona-Case Tase-Sin] lori t—Evaluated

Retrieve-Cases-Hith-Similarity
Retrieve-K-Simi lar—Cazes

4[]
]
D]

4[]

Auto-Configure

[T

Fig. 9. Interface that shows a partial configuration and all the extra information.

complete. A configuration is complete when all the tasks have a PSM to solve them and all the domain
models needed by the reasoning resources of a configuration are available.

During the configuration process the engineer can take back his decisions; moreover he can use an auto-
configure option, this starts an automatic configuring process starting in the last partial configuration.
This automatic process is done using Constructive Adaptation [12]. This automatic process is a best-first
search process in the space of legal configurations. Constructive Adaptation uses similarity with past
configurations to direct the search process. The search is exhaustive, so cases are used only to order
the sequence in which alternatives are considered. Once the process is ended the engineer can store the
configuration in the Configuration case base.

6 Operationalization

The configuration process yield a configuration of UPML components (see fig.7). A configuration must
be operationalized to get an executable application. As we have seen a configuration is a task-method
decomposition. To operationalize a configuration, the different PSMs that solve the tasks and the Domain
Models used by the reasoning resources must be linked. CAT-CBR provides support for operationalizing
a CBR system. CAT-CBR provides the “glue code” that links the implementations of the different PSMs
following the structure of the configuration. CAT-CBR does not generate automatically the connectors
between reasoning resources and Domain Models; these connectors must be manually defined by the
engineer.

The two kinds of PSMs (problem decomposer and reasoning resource) have different implementation.
First, the problem decomposer has an operational description; this expresses the control and data flow
between the different subtasks of a PSM. In our case the operational description is described in a functional
way. Let us see an example, we present, for instance, the operational description of the k-NN-Retrieval
Problem Decomposer:

(use-subtask

(Select-K-Neighbours
Problem
(use-subtask
(Assess-Similarity Problem))))

This Problem Decomposer (PD) has two subtasks (Assess-Similarity and Select-k-Neighbours) and
one input (Problem of sort CBR-Problem). The operational description expresses (with the use-subtask
construct) that the Assess-Similarity subtask has as input Problem (the input of k-NN-Retrieval) and
that Select-k-Neighbours has as inputs the Problem and the result of the Assess-Similarity task.

On the other hand, a Reasoning Resource (RR) solves a Task using input roles and some domain mod-
els. For instance, the K-Selection reasoning resource will be used to solve the Select-k-Neighbours in our
example. This reasoning resource has as inputs the problem to be solved (Problem of sort CBR-Problem)
and the output of the Assess-Similarity Task (a Assess-Model). This RR also uses two domain models, a
Case-Language-Model (that characterizes the kind of attributes used for describing a propositional case)
and k-Model (model of k). The resource identifier in the pragmatics feature determines the name of the
function (k-Selection), that implements the reasoning resource.

The operationalization process generates the “glue code” that calls, at the appropriate places, the
operational descriptions of PDs and the code of the “resource identifier” of the RRs. Moreover, the
domain models used by a RR, are referenced using an identifier. CAT-CBR provides a Project file where
the engineer declares the files or URLs containing each domain model, and determines an identifier for
each one.

Let us see an example: consider the PD k-NN-Retrieval and assume that for subtask Assess-Similarity
the PSM Feature-Similarity- And- Aggregation is chosen, and for subtask Select-k-Neighbours task the PSM
k-Selection is chosen. CAT-CBR generates the following Noos-method for this PD:

(define-method k-NN-Retrieval-Code
((Problem CBR-Problem))
(k-Selection
Problem
(Feature-Similarity-And-Aggregation-Code
Problem))
!Case-Language-Model
k-Model))

The name of the Noos-method is the name of the PD with the -Code ending and the input parameter is
a Problem of sort CBR-~Case. The body of this method corresponds with the operational description of the
PD, substituting the use-subtask calls with the methods that implement the PSMs that solve the tasks.
In our example use-subtask of Select-k-Neighbours is substituted by k-Selection with input parameters
Problem and the result of the Assess-Similarity task; moreover, as k-Selection, being a RR, uses domain
models they are added as parameters (Case-Language-Model and k-Model). The use-subtask of Assess-
Similarity is substituted by Feature-Similarity-And-Aggregation-Code (that is the implementation of the
PD selected) with input parameter Problem; notice that the result of this method (of sort Assess-Model)
is the second input parameter of the k-Selection method.

All the Noos-methods generated and the functions of the resources identifiers, together with the
domain models declared by the engineer, constitutes the runtime application that implements the CBR,
system configured by the engineer.

7 Conclusions

This paper presents the CAT-CBR platform for rapid and flexible development of CBR systems. The
platform uses a library of CBR components described with UPML. UPML is a language for describing
problem-solving methods, tasks, domain models and ontologies. In this paper we have described only the
relevant aspects of UPML used in our work.

Using UPML we have analyzed in more detail the phases of the CBR cycle as tasks. We have presented,
for propositional cases, the retrieval methods more frequently used and have modeled them in a family
of components that use a common CBR ontology.

We have also presented how CAT-CBR guides the engineer in the development of a CBR system
using a case-based recommendation system. In this configuration process, CAT-CBR only presents to the
engineer those PSMs that match with a task and presents them in a ranking recommendation (based on
a similarity between past configurations and the current requirements).

CAT-CBR provides the engineer a runtime CBR, application for the components configuration. This
runtime application is generated automatically, except for the connectors between PSMs and domain
models that have to be manually defined by the engineer.

Currently Reuse phase includes components for classification; we plan to incorporate components for
design and configuration tasks. Finally, components for the Retain phase of the CBR cycle also will be
incorporated.

Acknowledgements

This research has been supported by the Esprit Long Term Research Project 27169: IBROW the TIC Project
2000-1094-C02 Tabasco and FPI T1C2000-1094-C02-02 grant.

References

1. Agnar Aamodt and Enric Plaza. Case-based reasoning: Foundational issues, methodological variations, and
system approaches. Artificial Intelligence Communications, 7(1):39-59, 1994.

2. Josep Lluis Arcos. The Noos representation language. PhD thesis, Universitat Politécnica de Catalunya, 1997.

3. Eva Armengol and Enric Plaza. Similarity assessment for relational cbr. In Proceedings ICCBR 2001, LNAIL
Springer Verlag, 2001.

4. Breinman L. et al. Classification and regression trees. Wadsworth International, 1984.

5. D. Fensel, V. R. Benjamins, M. Gaspari S. Decker, R. Groenboom, W. Grosso, M. Musen, E. Motta, E. Plaza,
G. Schreiber, R. Studer, and B. Wielinga. The component model of upml in a nutshell. In Proceedings of the
International Workshop on Knowledge Acquisition KAW’98, 1998.

6. A. Hart. Experience in the use of an inductive system in knowledge engineering. In M. Bramer, editor,
Research and Developments in expert systems. Cambrdge University Press, 1984.

7. Mingers J. Expert systems-rule induction with statistical data. Journal of the Operational Research Society,
1987.

8. Quinlan J.R. Inducing of decision trees. Machine Learning, 1, 81-106, 1986.

9. Quinlan J.R. Simplifying decision trees. International Journal of Man-Machine Studies, 1987.

10. Ramon Lépez de Mantaras. A distance-based attribute selection measure for decision tree induction. Machine
Learning, 6:81-92, 1991.

11. J. Mingers. Expert systems-rule induction with statistical data. Journal of the Operational Research Society,
1987.

12. E. Plaza and J.L. Arcos. Constructive adaptation: A search-based approach to reuse in cbr. In Submitted,
2002.

13. J.R. Quinaln. Learning efficient calssification procedures and their application to chess and games. In
J. G. Carbonell R. S. Michalski and T. M. Mitchell, editors, Machine Learning: An Artificial Intelligence
approach. Morgan-Kaufmann, 1983.

14. Niblett T. Construction decision trees in noisy domains. Progress in machine Learning, 1986.

