Problem-Solving Methods and Cooperative
Information Agents

Mario Gomez, Enric Plaza, Chema Abasolo

ITTA - Artificial Intelligence Research Institute
CSIC - Spanish Council for Scientific Research
Campus UAB, 08193 Bellaterra, Catalonia, Spain.
{enric,mario,abasolo}@iiia.csic.es
http://www.iiia.csic.es

Abstract. Cooperative Information Agents and modern information
systems in general have to access large amounts of information dis-
tributed across multiple heterogeneous sources. A great challenge of such
systems is to evolve by adding new information sources or adapting the
existing components for different domain knowledge. We propose the
UPML framework as a methodology to build Information Agents by
reusing a library of problem-solving components that are defined in a
domain-independent manner. Moreover, the UPML language is used as
an Agent Capability Description Language (ACDL) suitable to configure
an agent-based application.

From this approach, a new application is built by linking the components
of the library with a particular domain and a collection of heterogeneous
information sources. Adaptability and dynamic configuration of such a
system 1s achieved by reasoning about the UPML specification of the
agent capabilities. Independence of the domain and semantic interoper-
ability are achieved by using ontologies and bridges (mappings between
ontologies), while independence from the information sources is based on
the use of ontologies to achieve semantic heterogeneity, and wrappers to
achieve syntactic interoperability.

1 Introduction

Modern information systems shall manage or have access to large amounts of in-
formation and computing services. The different system components can conduct
computation concurrently, communicating and cooperating to achieve a com-
mon goal. These systems have been called Cooperative Information Systems[18].
One major goal of this field is to develop and build information systems from
reusable software components. This goal can be achieved by assembling infor-
mation services on demand from a montage of networked legacy applications
and information sources [23]. A promising approach to this problem is provided
by Cooperative Information Agents, computational software entities that ac-
cesses one or multiple, heterogeneous and distributed information sources [14].
A critical requirement for these systems is the independence of the reasoning

components from the domain knowledge. We propose UPML as a framework for
developing such domain-independent information components in the context of
multi-agent systems, using the notion of agent-mediated institutions. The key
ideas driving our work are the use of the UPML meta-ontology as an Agent Ca-
pability Description Language —a language to describe the functionality offered
by agents, plus the configuration of an application at two levels: configuration at
the knowledge modelling level, that is called brokering, and the operationaliza-
tion of the configuration, that is achieved by forming a team of agents suitable
for that configuration.

From this approach, agent capabilities described in UPML becomes a library
of problem-solving methods that is matched against a task specification describ-
ing the requirements of the problem to be solved, therefore a new configuration
of the application is built for each request to solve a problem. The entire appli-
cation is built by linking the components of the library with a particular domain
and a collection of heterogeneous information sources. Independence of the do-
main and semantic interoperability are achieved by using ontologies and bridges
(mappings between ontologies), while independence from the information sources
is based again in the use of ontologies to overcome semantic heterogeneity and
wrappers to achieve syntactic interoperability.

We have built an application that shows how to build Cooperative Informa-
tion Agents by using the UPML framework: the Web Information Mediator. The
overall goal of WIM is to provide a mediation service for information tasks of
a professional user looking for bibliographic references. A mediator is an agent
that offers an added value to the information sources it accesses[21]. Typical
services offered by a mediator include selection of information sources, informa-
tion retrieval, and fusion of information from different sources. We have built
a library of components to solve this kind of tasks belonging to the field of
Intelligent Information Integration (I3) [22]. WIM is a multi-agent information
system dealing with the problem of looking for medical literature, thus it has
been built connecting the components in the I3 Library with a medical domain
and some web-based information sources that serve bibliographic references in
medicine. We want to emphasize the independence between the library (13), the
domain knowledge (medicine) and the external information sources (Pubmed,
Healthstar, iSOCO).

The WIM application is configured on-the-fly for each problem request, and
the configuration is made according to the kind of problem to be solved and the
preferences of the user requesting it. We view the overall process of solving a
problem decomposed in three different activities:

— Problem specification and Brokering: the problem is specified by the user
and transformed into a UPML problem specification. Brokering is the pro-
cess of obtaining a new configuration of the application for that problem
specification.

— Team formation: the configuration obtained during the brokering process is
operationalized by forming a team of problem solving agents able to solve
the problem according with that configuration.

— Problem solving: the activity of solving the problem for which the application
is configured, this activity is carried on by a team of problem-solving agents
formed during the team formation activity.

The overall description of UPML is presented in §2, the 13 Library is briefly
described in §3. The WIM application is described at the conceptual level in
84. The WIM multi-agent architecture is described in §5, while the process of
configuring WIM 1is divided in two sections:

86 addresses the configuration at the UPML level, and §7 describes the op-
erationalization of a configuration. Finally, some conclusions are summarized in

§8.

2 An overview of UPML

Problem-solving methods provide reusable architectures and components for im-
plementing the reasoning part of knowledge-based systems. The Unified Problem-
solving Method description Language (UPML) has been developed to describe
and implement such architectures, and components to facilitate their semiau-
tomatic reuse and adaptation. Spoken in a nutshell, UPML is a framework for
developing knowledge intensive reasoning systems based on libraries of generic
(domain-independent) problem-solving components.

The goal of software architectures is learning from system developing ex-
perience in order to provide the abstract recurring patterns for improving fur-
ther system development. As such, software architectures contribution is mainly
methodological in providing a way to specify systems. A software architecture
has the following elements: (i) components, (ii) connectors, and (iii) a config-
uration of how the components should be connected [11]. UPML is a modern
software architecture for knowledge systems[8]. The connectors in UPML are
called bridges, the architecture is shown in Fig.1. Furthermore, UPML offers a
meta-ontology to describe the components in the architecture. This ontology
defines de concepts needed to describe each component, but the object language
inside UPML concepts is not defined, we are free to choose the language that
better fits our requirements or preferences, like for example a First-Order Logic
or Feature Terms.

First we will briefly explain the basic elements of the UPML architecture,
together with the main UPML concepts used to describe each component, and
second, how this architecture addresses the problem of the independence of the
reasoning components from the domain.

2.1 UPML components

The UPML software architecture consists of six different elements (see Figure 1:
tasks define the problems that should be solved (the “what”) by a system,problem-
solving methods define the reasoning components of the system (the “how”), and
a domain model describes the domain knowledge used by tasks and problem-
solving methods (the “with”).

PN

~Ta PSM

rid
.. ""
(==
v

Domain
model

omain
fin

Fig. 1. The UPML software architecture.

Tasks define the problem that should be solved by the system. A description
of a task specifies goals that should be achieved in order to solve a given problem,
assumptions about domain knowledge and preconditions on the input. Precon-
ditions are conditions on dynamic inputs, while assumptions are conditions on
knowledge consulted by the reasoner, but not manipulated.

Feature | Range | Default
Hame Skring
Fragmatics Pragmatics
Ontalogies Upml-Ontolagy Empty-Set
Uszez Task Empty-5et
Input-Rales War Empty-5et
Output-Foles War Empty-5et
Compatence Competence
bzzumptions Farmula

Fig. 2. UPML description of a Task

Problem-Solving Methods (PSM) describe which reasoning steps and which
types of knowledge are needed to perform a task. A PSM specifies a particular
way to solve a task. The main attributes of a PSM are the input/output roles,
plus the preconditions and postconditions to be fulfilled by the input and output
roles. There are two subclasses of PSM: Problem Decomposers and Reasoning
Resources. Problem Decomposers specify decomposition of tasks into subtasks.
Reasoning Resources specify how to solve a task, it does not describe its internal
structure, which is regarded as an implementation aspect.

Domain Models describe the domain knowledge that is used by tasks and
PSMs. A domain model is characterized by a domain knowledge and its proper-
ties.

The UPML framework has the notion of Ontology. An ontology defines a
terminology and its properties. UPML has different ontologies, one for task’s de-
scription, one for PSM’s description and the domain ontology for domain models.

[Reasoning-Resource |

Feature | Range Default
Name String
Pragmatics Pragmatics
Ontalogies Upml-Ontalogy Empty-Set
Communication Communication
Input-Raoles War Empty-Set
Output-Roles War Empty-Set
Competence Competence
Enowledge-Raoles Signature-Element Empty-Set
Pzzumptionz Farmula Empty-Set

Fig. 3. UPML description of a Reasoning Resource(PSM)

Domain-Model

Feature | Range | Default

Hame String

Fragmatics Fragmatics

Ontologies Upml-Ontology Empty-5et

lUses Domain-todel Empty-5et
Propertie:s Farmula Empty-Set

herta ken ool e d g Farmula Empty-5et
Enowledge Signature-Element Empty-Set

Fig.4. UPML description of a Domain Model(PSM)

The fact of describing tasks, PSMs and domain models with different ontologies,
makes task and PSM independent of the domain. This independence enables the
reuse of task descriptions in different domains, the reuse of PSMs across differ-
ent tasks and domain, and the reuse of domain knowledge for different tasks or

PSMs.

UPML, as a software architecture, has a specific kind of connectors called
bridges. A bridge models the relationship between two different components.
The function of the bridges is to connect components with different ontologies,
translating concepts among them. A bridge provides mapping axioms and as-
sumptions about the components that it relates. There are three kinds of bridges:
Task-PSM, Task-Domain Model and PSM-Domain Model (see Fig.1).

Feature | Range Default

Argumentl Concept

Argument? Concept

Pragmatics Pragmatics

Ontologies Application-Ontology Empty-5Set
Renamings Renaming Empty-5et

Uses Bridge Empty-Set
Mapping-&xiams Formula Empty-5et
Azzumptions Formula Empty-Set

Fig. 5. UPML description of a Bridge

2.2 UPML and domain-independence

Once we have described the UPML components, let’s see how to achieve domain-
independence using UPML[10]. First of all we have to differentiate two concepts:
Library and Application. A Library is a collection of UPML descriptions of tasks
and PSMs. A Library is totally independent of the domain because tasks and
PSMs are described in terms of their own ontologies, and not in terms of the
domain ontology.

An Application is made of one or more libraries, a set of domain models, and
the bridges linking the components in the library with some domain models.
The mapping axioms of the bridges allow to translate the concepts of the domain
model’s ontology into concepts of the PSM and Task ontologies. This translation
enables the PSM to work with the domain knowledge of any domain model
whenever a bridge is defined.

This approach makes the library independent of the domain. This indepen-
dence allows the library to be reusable, in the sense that the same library can
be used to build different applications.

3 Overview of the I3 library

The Intelligent Information Integration (13)[22]) library offers a collection of
problem-solving methods to solve some of the usual tasks carried on by Infor-
mation Agents (see for instance [4] [2] [12] [15] [17]. Information integration is a
concept that originally means the integration of multiple databases and nowa-
days is being focused to the integration of multiple web sources with the use of
ontologies [9].

Instead of adopting the information retrieval approach (IR), we adopt a vi-
sion more close to meta-search. IR focuses on improving retrieval methods, while
meta-search focus on exploiting existing “information sources”, where each re-
source posses a specific content accessible by a “local” retrieval engine. For this
reason, the library and the WIM application focus on this process -and do not
include components that can be found inside retrieval engines.

A second consideration is the paradigmatic distinction between the concept
of ”relevance” in classical TR and the more rich conceptualizations currently in
use for intelligent information agents [3]. The canonical concept of relevance in
IR is a test where the results for of a query by a retrieval engine are compared
to a gold standard provided by a human expert that assesses false positives and
false negatives. The problem of that approach is that “relevance” is independent
of the purpose of the specific user in posing a query. The I3 Library includes some
methods to elaborate and rank information according to an utility measure. This
measures are given by external domain knowledge, therefore new utility measures
can be included adding the appropriate domain knowledge. The way to do that
is explained in §4.1.

I3 can be seen as an adaptation process with four subtasks: transformation
of the user consultation , selection of information sources, information retrieval
and integration of information from multiple sources.

/,j Infor mation-search
-, 1S-without-elaboration
| 1S-in-source
1 1S--in-source-without-elaboration

Fusion

Aggregate
domain queries

Information search -

Elaborate
quer, y,/A\

irEIaboraIeLWith-synonyms

1 Exhaustive-elaborate-with-synonyms! i Customised
| Elaborate-with-categories retrieve

i Exhauistive-elaborate-with-categories!

Customise [Retrieve }[Aggregat(_e j
source queries

Fig. 6. Task decomposition of the 1S-general-PSM

Adaption refers to the process of elaborating the user consultation to better
fulfill his interest, as well as adapting the queries for the idiosyncratic syntactics
of each information source. Once the retrieval is performed, the results from
different queries are aggregated for each source, and finally the results for each
source are aggregated again to obtain a unique result for the user consultation.

We have adopted a general approach for the overall process of information
integration that is based on using query weighting and numerical aggregation op-
erators [13]. Query weighting refers to the process of assigning weights to queries
generated according to some domain knowledge, while numerical aggregation op-
erators are the mechanism used to merge items coming from different queries
and sources, and combining the different scores to obtain an unique score for
each item retrieved. This mechanism allows to score documents retrieved from
engines that originally do not give any score , and defining user-oriented utility
measures simply by defining the appropriate knowledge categories (see §4.1).

3.1 Task decomposition

Tasks are decomposed into subtasks following a hierarchical task/subtask decom-
position schema. The top-level task of our library is called Information-Search.
There are four PSMs of the problem-decomposer class for solving the Information-
search (IS) task: IS-general-PSM, IS-without-elaboration, IS-in-source and IS-in-
source-without-elaboration. The more general one is IS-general-PSM that decom-
poses Information-Search in four tasks: elaborate-query, select-sources,source-retrieval
and fusion.

3.2 Adaptation of queries

We adopt a very well known approach to queries as vectors of keywords instead
of complex database query languages. This decision is justified because nowadays
professional databases could often be accessed through the use of a web-based

search-engine, where queries are made of keywords belonging to a particular do-
main. We also include search filters as optional constrains allowing to restrict
the search. A bibliographic ontology have been used to model the kind of filters
allowed by professional bibliography search-engines, like publication date, lan-
guage and so on. Let’s see the both types of query adaptation: adaptation of
queries with respect to the domain, and customization of queries for particular
information sources.

Query elaboration: refers to the adaptation of queries for a particular user
interest, within a particular domain. This task can be achieved using “semantic”
domain knowledge, like synonyms, hyponyms or predefined knowledge categories.

Query customization: a query is customized for a particular information
source by translating keywords and filters from the common ontology into the
search modes and filters of a particular search engine. This task is different from
the one performed by wrappers, where keyword-based queries are transformed
in the particular syntax of the source, following the rules and particular features
of each source at the syntactic level.

Selection of sources: it isn’t a query elaboration method, but is needed when
more than one source is available, so it is very related with the query adaptation
process, and in particular, with the query customization task. The selection of
sources could be done by asking the user or by using an automatic method,
like Case-Based Reasoning (CBR). In the current version of WIM there are four
information sources (search engines) available.

3.3 Aggregation of results

Aggregation 1s a kind of merging where the rankings assigned to the repeated
apparitions of an item are combined using an aggregation operator to obtain
a unique ranking that summarized the utility or relevance of each item for the
user.

A numerical aggregation operator is necessary because of the nature of the
query adaptation procedure, where queries are weighted with numerical values.
Hence, the results for a query inherit the weight of the query. It means that even
results non ranked by the retrieval engine can be ranked, by using the weight
associated to the query for which they are a result. If the queries are weighted
according to “utility” rather than relevance, then the results will also be ranked
taking into account these utility criteria (See example 2 in §4.1).

Four numerical aggregation operators have been implemented as problem-
solving methods in the the library: the arithmetic-mean, the weighted-mean, the

Ordered Weighting Average (OWA) and the Weighted OWA[20].

4 The WIM application

Before to describe the WIM application we want to clarify the distinction be-
tween a library of reusable components and a configurable application. In IBROW,

a library 1s a collection of tasks and PSMs described in terms of its own ontolo-
gies. A library is reusable because it can be employed to build different appli-
cations. An application is a system composed of one or more libraries, a set of
domain models, and the bridges linking components in the library with domain
models and external resources. A configurable application refers to an applica-
tion where there are different components to solve problems of the same class.
In particular, a UPML based application is configurable when it has different
PSMs to solve the same task, or there are different domain models available. A
configurable application is suited to solve one (or more) class(es) of problems
(Tasks) with some domain models, but this problems could present some differ-
ences, and the same problem could be solved with a different configuration, thus
the application configuration is driven by the problem requirements, where the
user preferences may be embodied.

The core of WIM 1is the I3 Library, but there is other components needed
to build an application. In our approach, an application is built linking the
reasoning components the library some domain knowledge and a collection of
information sources.

4.1 Linking the library with the domain knowledge

Domain knowledge does not belong to the library; this is one of the most im-
portant features of our UPML, because the independence from the domain is
considered a basic requirement to achieve reuse[16].

The domain chosen to build the WIM application is medicine, and in partic-
ular Evidence-Based Medicine (EBM). EBM proposes a medicine practice which
calls for careful clinical judgment in evaluating the “best available evidence”[7].
The main task for the WIM application is looking for medical literature, and
the utility criteria used to rank documents are those given by the EBM com-
munity to asses the quality of medical bibliography. Hence, we need also some
bibliographic knowledge to describe queries and results for the queries, and some
knowledge about the information sources accessed by the application. Let’s see
the different domain models and how are they used by problem-solving methods:

— A general medical thesaurus is used to select the keywords to pose a query
and during the elaboration of the queries. We have chosen MeSH, a thesaurus
that can be accessed through a web-based retrieval engine called the MeSH
Browser. This domain model is used by the PSM query-elaboration-with-
synonyms.

— An ontology about bibliographic datais used to describe the filters typically
allowed by bibliographic search engines. This domain model is used to pose
the queries and by the PSM query-customization.

— A collection of source descriptions, where the search modes and allowed filters
of each source are described, including the translation sentences between
the common bibliographic ontology and the different search-engines. This
domain knowledge is used by the PSM query-customization.

— A collection of predefined categories describing the keywords and filters that
are useful to rank documents according to the EBM criteria. This knowledge
is used by the PSM query-elaboration-with-categories.

Example 1: The query weighting approach adopted for the query adaptation
task has great advantages to rank documents using different criteria, not only
classical IR’s relevance. To introduce new utility criteria we have built a method
to elaborate queries with predefined knowledge categories.

From the point of view of the EBM, it is very important to use the biblio-
graphic references according to the quality of the evidence they rely on; hence,
we have defined some categories expressing concepts about evidence quality in
terms of a medical thesaurus and the defined ontology for bibliographic data, fur-
thermore these concepts are weighted, allowing to weight the queries according
to these “evidence quality” indicators.

A category is a collection of terms and filters associated to one topic, which
are weighted according to the strength of that association. For example Good-
FEuvidence is a category that defines some filters to get only papers based on a
good evidence quality (below is shown a partial sample of this category):

(define (Category :id Good-Evidence)
(name "Good Evidence Quality")
(terms Empty-set)
(filters
(define (Filter-Weighting)
(filter (define (Filter)
(attribute "Publication Type")
(value "Meta-Analysis")))
(weight 1))
(define (Filter-Weighting)
(filter (define (Filter)
(attribute "Publication Type")
(value "Randomized Controlled Trial")))
(weight 0.9)))

Given the query Q = (Levofloxacin, Pneumonia) and applying the PSM
Query-expansion-with-categories with this category, we get the following set of
queries:

Q1 = (Levofloxacin, Pneumonia, Publication Type = Meta-Analysis),
weight = 1.0
Q2 = (Levofloxacin, Pneumonia, Publication Type = Randomized

Controlled Trial), weight = 0.9

4.2 Linking the library with the information sources

Information sources are not domain models, they are accessed through search-
engines, components of the system modelled as external problem-solving meth-
ods suitable for the the task retrieval. There is a domain model called source-
descriptions containing the knowledge used by the tasks customization and re-
trieval.

Example 2: The query-customization PSM expands a query expressed in
a source independent way in a collection of queries in terms of a particular
information source, using the search modes and filters allowed by that source.
This knowledge is described in the sources domain model. For example, this is
our description of the HealthStar information source -when accessed through
the retrieval engine called Internet Grateful Med (only a partial description is
shown):

(define (Source :id Healthstar-Igm)
(name "HealthStar-IGM")
(weight 1)
(search-attributes
(define (Attribute-Weighting)
(attribute "Title+Word")
(weight 0.5)))
(basic—-attribute
(define (Attribute-Weighting)
(attribute "Subject")
(weight 1)))
(filter-attributes
(define (Attribute-Translation)
(domain-attribute "Author Name")
(source-attribute "Author+Name'))
(define (Attribute-Translation)
(domain-attribute "Publication Type")
(source-attribute "publication"))
(define (Attribute-Translation)
(domain-attribute "Begin Year")
(source-attribute "begyear"))))

Given the query Q = (AIDS, Diagnosis, Begin Year = 1980), the resultant
set of queries, after applying the Query-Customization method is given below:

— Q1 = (Subject = AIDS, Subject = Diagnosis, (begyear = 1980), Weight = 1)
— Q2 = (Title+Word = AIDS, Subject= Diagnosis, begyear = 1980), Weight = 0.5
— Q3 = (Subject =AIDS, Title+Word = Diagnosis, begyear = 1980), Weight = 0.5

New sources can be added to the application by including their descriptions
according to the sources domain model, and building the appropriate wrappers
(task-psm bridges) between the retrieve task and the retrieval engines for that
sources.

5 The WIM multi-agent architecture

This section deals with the mapping between the knowledge components of WIM

—within and without the library— and the WIM agent-based application.
Different multi-agent architectures and methodologies could be used to build

agent-based applications. We propose a new methodology that combines the

Librarian onfiguration PA

ser Profile

Problem Solving Agents

nformati onII
SO

urces
Fig.7. WIM multi-agent architecture

UPML architecture with the approach of Agent-Mediated Institutions (AMIs,
also called e-institutions[6].

This section will briefly describe the kind of agents used in the WIM ap-
plication and the use of UPML as an Agent Capability Description Language
(ACDL). Our goal when integrating UPML and AMIs is to develop an open
agent architecture designed to build dynamically configurable applications. Fur-
thermore, we claim our framework is well suited to design scalable applications
which components are easy to reuse.

WIM is a configurable application; the components used to solve a problem
are chosen for each problem-solving request. A configuration is a structure of
UPML components suited to solve a problem given by the user or its personal
assistant. WIM uses a configuration described in UPML to form a team of coop-
erative problem-solving agents suited to solve the problem that originates that
configuration. The architecture presented here is based on the interaction be-
tween four different classes of agents: personal assistants, brokers, librarians and
problem-solving agents. A broker is an agent able to obtain a configuration of
the application for a given problem. Personal assistants mediate between users
specifying problems in a non formal manner, and brokers, that work with prob-
lems described in UPML. Librarians acts like “yellow pages”, providing the link
between the knowledge level (UPMLconfigurations) and the operational level
(agent teams). Figure 7 shows the five classes of agents in WIM and the main
scenes where they interact:

1. Personal Assistant: An agent acting on behalf of a human user. This agent
is responsible of mediating between the user request and the services offered by
the application. The PA is able to specify problems in terms understood by
the broker, that is UPML. Furthermore, the PA is able to use a configuration
expressed in UPML terms to form and instruct a team of cooperating problem-
solving agents able to solve the problem given by the user.

2. Broker: The role of the broker is to configure an application for a user
(through its representing PA) requesting to solve a problem. Brokers in IBROW
use the UPML specification of a problem to generate a configuration: a structure
of UPML components matching the specification of the problem. A broker in our
scenario do not carry on the operationalization of the application configuration,
in agents terms: formation of a team of agents committed to solve a problem.
The configuration obtained by the broker will be used later by the PA during
the team formation.

3. Librarian: This agent holds the UPML descriptions of the reusable com-
ponents: tasks, PSMs, domain models and ontologies. PSMs are the declarative
representation of the agent capabilities. The library can be dynamically up-
dated or extended with new functionalities. The key to do that is that new
agents can enter WIM by registering their capabilities to the librarian in UPML.
Therefore, the librarian agent is a dynamic repository of UPML described com-
ponents, allowing other agents or humans to query about components in the
library. Moreover, the librarian could be used as “yellow pages”, just keeping
and up-to-date register of the association between UPML components and the
agents implementing them. Once a requester agent knows which component to
call, it can query the librarian to know which agent is capable of executing that
component.

4. Problem-Solving Agents (PSA): These agents are responsible of executing
the components in the library. UPML is used to describe the capabilities of the
agents. Problem-solving agents can enter or leave the system dynamically, just
informing the librarian and registering or deregistering its capabilities. This is
a simple way to make the librarian aware and up-to-date of the capabilities
available in the system at any moment. There are two complementary visions
of these agents. One approach is considering these agents as implementing the
problem-solving methods of an existing UPML library. From this point of view,
the development process starts specifying the library of UPML components, then
some PSAs are built fulfilling the specification of tasks and methods in the
library. Another approach is to consider existing agents, and then express its
capabilities using UPML. Both approaches are compatible and complementary.
We present a framework allowing both approximations to the design of agent-
based (also knowledge-based) applications.

5. Wrappers: This is a very specific kind of agents responsible of solving
the interoperability issues between agents in the system, and external —mot
agent— resources. In our architecture, wrappers implement a class of Task-
PSM bridges where the tasks belong to the library, while the PSMs are external
components. In WIM, these wrappers are used to connect the retrieval task
to multiple retrieval-engines accessed through the http protocol and the CGI
protocol.

WCystomi sed-Fetrieve
''CL15 tomise-And-Retriewve
=tomise—Ouery
S yery-Customization

| FSource-Descriptionss

T:r* iewe

s Fubmed
w-Aggregate—Query-Modeis

|

SAggregate-| tem—Infos

T—E quor‘qte—l tems
I S~E laborate-| tam—Infos

1
W-Aggregate-| tems

Sk thmetic-Mean

Fig. 8. WIM configuration example

6 Problem specification and brokering

The brokering process has the goal to find a configuration of UPML components
(specified in a library managed by a Librarian agent) given an input specifying
some problem to be solved. This input specifies not only the problem, but the
kind of task it belongs to, and the properties that are to be met in the problem
solving process. Thus the process starts when a user puts a new request to its
Personal Assistant (or a scheduled task is automatically launched by the PA as
derived from some initial user request). The user specifies the problem using its
own concepts on a web interface, not UPML. In the context of the WIM medical
application this means that the user use concepts of the medical domain to
select the terms and criteria for the information gathering task she is interested
in. Then, the PA transforms the user input into a description of task requirements
in terms of the UPML specification and later the PA requests the broker for an
adequate configuration with a message containing these requirements.

The Broker is an agent able to reason about UPML component descriptions.
In particular, it has to obtain a configuration of the application that is able
solve a problem specified in UPML. The brokering algorithms are briefly ad-
dressed later in this section. The output of the brokering process is a UPML
task configuration where a) each task has an associated PSM that can achieve it
an each Reasoning Resource has associated those Domain Models it needs, and
b) the whole configuration complies to the input requirements. Figure 8 shows
a configuration found by the broker agent.

The brokering related interactions include two steps:

[PA-Broker Ontology |

Problem-Specification Task-Configuration —@PSM-Configuration
task-name:Symbol task-name: Symbol PSM-name: Symbol {4
preconditions:Formula inputs-roles: Signature-element y
postconditions: Formula |_psm-configuration: W

input-roles: Signature-element
knowledge-roles: Symbol

PD-Configuration
inputs: Signature-Element

L subtask-configuration: Task-Configuration
Symbol For%ula | Signatur €-El t operational -description: Operation-Description

@ RR-Configuration

inputs: Signature-Element
domain-models: Symbol

Fig. 9. PA-Broker ontology

1. The PA sends a request to the broker, asking for a configuration. The
content of the message include the UPML specification of the problem.

2. If the broker accepts the request, it sends an “accept” message (if not it
send a “reject” message). When agreed, the broker starts a brokering process
over the UPML components described in the library. If a configuration is found,
the broker sends an “inform” with a Configuration description in the content, if
not, the broker must send a “failure” message to indicate that no configuration
has been found.

6.1 The brokering process

The input for the brokering process is a task requirements specification com-
posed of: a) the name of the task to be achieved, b) the pre-conditions that are
established to hold, c) the postconditions that have to hold when the task is
achieved, and d) the knowledge sources (domain models) that are available for
achieving the task.

We will now summarize the broker agent strategy for constructing a config-
uration of UPML components such that the input task requirements is satisfied.

We view the the brokering process as a state-space search in the space of con-
figurations. The process starts when the broker receives a Problem specification
and generates an initial state, it continues generating new states until one of the
new states is assessed as a final state: a state such that the configuration is com-
plete (all task have an associated PSM and every Reasoning Resource has the
Domain Models it needs) and valid (all pre- and post-conditions are satisfied).

Feature Range | Default

Goals Formula Empty-Set
FAssumptions Formula Empty-5Set
Inputs Signature-Elemeant Empty-Set
fet-Goals Formula Empty-Set
Met-fssumptions Formula Empty-Set
Met-Knowledge Domain-kadel Empty-5Set
Used-Knowledge Uzed-Knowledge Empty-Set
Open-Bindings Tp-Binding Empty-Set
Open-Knowledge Signature-Element Empty-Set
Top-Task Task

Tp-EBindings Tp-Binding Empty-Set
Current-Tp-Binding Tp-Binding

Fig. 10. Features and default values of a State

Later we will see how the new states are generated from a given state. The
open bindings are tasks with no PSM bound to them. So, taken a task that has
no PSM bound, the will retrieve form the Library those PSMs that “match”
with the task, in the sense of component matching explained presently.

Component matching has two parts, signature matching and specification
matching. Thus, for two components (T' € T, P € P) their matching is:

T <M P =T =<s1¢ PANT <sprc P

Signature matching requires that their input and output signatures match,
and in our context this means that a problem solving method P has input and
output signatures that are equal or that refine those of a task T')i.e. T <g;¢ P =
T‘in j Pzn /\Tout j Pout~

Moreover, specification matching requires that a problem solving method P
has weaker preconditions than a task 7" and stronger postconditions than T,
thus: T' jSPEC P = Ppre j Tpre A Tpost j Ppost A Pasm j Tasm~ When a task
has assumptions (Tysm # @) only a reasoning resource can match since problem
decomposers do not have assumptions. For all the PSMs that match with the
task a new state is generated, updating the bindings and the met-goals and
met-assumptions.

The search process used by the Broker agent can use any of the usual search
techniques like depth-first or best-first. Currently, WIM uses a Case-based Rea-
soning (CBR) approach to guide the search process using past “cases” (config-
urations elaborated in the past by the same Broker). Let us now consider the
search process as a twofold process where a) new states are expanded from an
existing state, and b) open states (those not yet expanded) are ordered by a
heuristic from more to less likely to yield a final solution.

The main issue to be represented in a state is the set of task-method bind-
ings used in a partial configuration. That is, a state represents not the whole
configuration but only the subset of tasks included in a configuration and the
tasks that have some binding with a specific PSM at a given point in time of the
brokering process. The second important issue for a state is determining which

pre- and post-conditions of the User Consult are satisfied by the components
involved in a partial configuration—and which are not yet satisfied.

The generation of successor states from a given state is a follows. For an
open state, check whether it is complete: if 1t is valid a solution is found, if
not the state is an invalid complete configuration and the state is discarded.
Otherwise successor states are generated and become open states. For an open
task in the state, the broker retrieves PSM components from the Library such
that satisfy they match the task (with matching criterion explained before). For
each retrieved PSM, a new state (called successor state) is generated. This new
state represents a new partial configuration where all relevant information is
updated.

The broker follows this process of generating new successor states and check-
ing if they are complete and valid until if finds a solution. The way in which
these states are explored is the strategy of the search process; e.g. if states are
stored in a stack and the broker pops the topmost state we have a depth-first
strategy. The CBR strategy is a best-first strategy where all open states are as-
signed a “goodness” value based on the similarity of that state to the cases (the
configurations constructed in the past by the broker and stored in a case base).
The configurations of the case base are used just to improve the efficiency of the
search, i.e. the likelihood of expanding less states to reach a solution state.

More information about the brokering strategy and the broker case-based
reasoning approach can be found in [1]. The result of finding a solution state is
the specification of a configuration of UPML components capable of achieving
the task specified in the input. Recall that we propose a two-level approach to
configuring an agent-based application the first level is conceptual and results in
an abstract description of a configuration of components, as we have explained
in this section. The next section explains the second level: the formation of a
team of agents capable of realizing the configuration of components.

7 Team formation

This section describes the operationalization of the configured application as
the process of forming a team of problem solving agents that is able to solve a
problem, according to the UPML specification of the configuration obtained dur-
ing the brokering process. This section is organized in five subsections: §7.1 de-
scribes the relation between some UPML notions and concepts of agent-mediated
institutions, §7.2 deals with the agent management activities allowing the oper-
ationalization of a configuration: registering and deregistering agent capabilities,
§7.3 addresses the issue of finding out agents with the required capabilities, while
87.4 explains how to select the agents to form a team, and finally, the process of
instructing the agents in the team is described in §7.5

7.1 From UPML to MAS: UPML as an ACDL

The PA receives a problem described by the user and transforms it into a UPML
specification. This specification is sent to the broker, the agent responsible for

finding a configuration of components suited to solve that problem while fulfilling
its requirements, and this configuration is also expressed in UPML terms: tasks,
problem-solving methods and domains. The PA should use the configuration
given by the broker to form a team of problem-solving agents that will cooperate
to solve the user problem. To find and select the appropriate agents for a UPML
configuration, we will now establish a mapping between UPML concepts and
agent notions. Qur approach is to describe agent capabilities in UPML, thus
using UPML as an agent capability description language (ACDL). We propose
the following association between UPML components and agents:

- Tasks are associated to agent roles. Solving a task is equivalent to play a role
in a team of problem solving agents willing to solve a problem. This approach is
very useful when describing the operational description of a problem decomposer,
as explained later in this section.

- Problem-solving methods are mapped to agent capabilities. This relation is
very intuitive: both concepts refer to the basic “building blocks” or “reasoning”
components of a system. Problem-solving methods are the reasoning components
of an application in the UPML architecture, whereas capabilities are the elements
used to describe the services offered by agents.

Since according to UPML there are two classes of problem-solving methods
we will consider two kind of capabilities:

Reasoning resources are primitive capabilities, they cannot be further de-
composed. This means that tasks requiring these activities are not solved by a
team, they are solved by a single agent.

Problem decomposers are specifications of a task decomposition into sub-
tasks, including the operational description of the decomposition process. In our
framework, the operational description is described as a scene: the pattern of
interactions between agent roles. Tasks decomposed by a problem decomposer
can be solved by a team of agents, each one playing a different role (solving a
different task).

We have decided to use just one scene to describe the operational descrip-
tion of a problem decomposer. The operational description in UPML describes
the control scheme and internal data flow over the subtasks provided by the
problem-decomposer. A scene is the concept of an e-institution that better fits
this notion, this is the main reason to stablish a one-to-one mapping from an op-
erational description to a scene. Since a scene is described in terms of roles, and
we map tasks to roles, a scene for an operational description describes the pat-
tern of interactions that occur between the role corresponding to the task being
decomposed, and the roles associated to the subtasks in which 1t is decomposed.

Figure 11 shows an example of such a operational description. The task
being decomposed is the Information-search task. The problem decomposer IS-
without-source-selection-without-elaboration decomposes that task in two sub-
tasks: Source-retrieval and Aggregation. The scene for the operational descrip-
tion of this problem decomposer includes three roles: Information-search, Source-
retrieval and Aggregation.

| S-without-source-sel ection-without-el aboration Scene

Roales:. IS, SR
IS: Information search v

SR: sourceretrieval
AG: aggregation @
State transitions
1. request(!x, ?t:sr, retrieve(!g-models, 7s))
2. request(!x, s, retrieve(!g-models, 7)) 3(c4, ch)
3. inform(?u:sr, !X, ?g-model)
4. inform(?u:sr, !x, 2g-model)
5. request(!x, ?v:ag, aggregate(?g-models))
6. inform(!v, !x, Aw-items) Ql! 6
Congtrains over state transitions
cl. ?s0 ! selected-sources
c2. s0!,,sS (not to send the same source more than once to source-retrieval)
€3. |l anstl = |! selected-sources | (as many requests to source-retrieval as selected sources)
cd 0 st

S5, |Nswell < 'wawst] (waiting answers from source retrie_/al)
C6. !, 506U = uanst (@l answers from source retrieval received)

1(cl)

Fig. 11. Example of a scene using [SLANDER

The scene begins with two agents playing the roles Information-search (IS)
and Source-retrieval (SR). First state is reached when IS sends a first request
to SR with a set of query models and the source to be queried. The first state
(w1) is hold while the IS agent sends the requests for all the sources (c3), until
all the requests have been processed and the answers sent back to the requester
(c6). An agent playing the Aggregation (AG) role enters the scene at the second
state (w2), that changes to the third when the IS sends all the information to be
aggregated to AG. The scene ends when AG sends the result of the aggregation
process to IS.

7.2 Registering/Deregistering agent capabilities

This section describes the activities needed to let the Librarian be aware and up-
to-date of the agents available in the system at any moment, and the capabilities
they are equipped with.

A new concept called capability is defined in the Team-ontology (figure 12)
allowing agents to register its capabilities. Following the mapping scheme pre-
sented in §7.1, a capability is described with a PSM. Therefore, a capability has
aname that that is the name of a problem-solving method, while the description
is an string encoding the UPML description of the PSM using one of the exist-
ing web-syntax formats for UPML: XML and RDF (this is indicated by the slot
encoding.

Team Ontology

?
| |

Capability Team-Role —+Team-Component
name: Symbol config-1D: String role: Symbol
description: String capability: Symbol agent-1D: Symbol
encoding: String scene: Symbol

role: Symbol

team: Team-Component

Fig. 12. Team ontology

The registering scene is very simple. When a PSA enters the agent platform,
it sends a “register” message with the list of capabilities it is equipped with.
The librarian builds a table with the bindings between capabilities and agents,
in order to answer questions about which agents are equipped with a particular
capability (PSM), as described in the next section.

Deregistering is easier than register because the librarian keeps the existing
binding between capabilities and agents. When a PSA will leave the platform
it sends a “deregister” message to the librarian, and the librarian erases all the
bindings between that agent and the capabilities it has registered.

7.3 Finding capable agents

The goal of this scene is for the PA to find out which problem-solving agents are
equipped with the capabilities required by a UPML configuration (obtained by
the broker, as explained in §6). This scene involves the PA, that holds the con-
figuration of the application, and the librarian, that keeps the bindings between
capabilities and agents.

For each problem-solving method in the configuration the PA queries the
librarian which agents in the platform have registered that PSM. A query to the
librarian is a “request” message with the command “Find agents” and the name
of the PSM required. The Librarian acts like a yellow pages service in this scene,
matching the PSM required by the PA to the capabilities registered and stored
in the agent-capability binding table, and answers the PA with the list of all the
capable agents.

7.4 Selecting agents for the team

This scene describes the process of selecting one and only one agent for each
capability and each task (notice that the same capability could be required for
different subtasks of the problem) required to operationalize a configuration.

PA, PSA 2(cl,c2)

3(c4)
4(c5)

@ 1(c1) #/ oo1< 2(c1,c2,c3)

Roles: 3(c4)
PA: Personal Assistant 4 (ch)
PSA: Problem-Solving Agent

3(c4, c6)
4 (c5, c6)

1. request(?x:pa,?y:psa, join-team (PSM))
2. request(!x,?y:psa, join-team (PSM))

3. inform(?z:psa, !X, accept(PSM))

4. inform(?:psa, !x, refuse(PSM))

5. T (time out) PA, PSA 7(c8)
6. inform(!x, 2v:psa, selected(PSM))

7. inform(!x,?w:psa, non-selected(PSM))

cl. % O ! capable-agents 6.1z 0!t=1y (all answers received)

c2.?y Oy (not to request twice the same agent) c7. vz

c3. ly = capable-agents (all capable agenst requested) 8wz

c4. 7z 0 ! capable-agents 9.1z 0 !t =y (all agents that accepted to join
5. 2 0! capable-agents the team have been informed)

Fig. 13. Selecting team members

This interaction is carried on in a similar way to the contract-net protocol.
For each pair of task and problem-solving method in the configuration, the PA
requests all the capable agents (the process of finding capable agents is described
in above) if they accept to join a team of agents to solve a part of the problem
using the required capability.

Problem-solving agents can decide autonomously on accepting or refusing
that request (see figure 13). The PA waits until all the available agents have
answered or a time out is reached, then, the PA decide between alternative
agents for the same task which one to select as a member of the team.

Different algorithms and strategies can be used to select team members. A
simple, but meaningful one, 1s to select the agent that answered first to the
join-team request, as this is an indicator of its availability and a low cost of
communicating with that agent. But the framework presented here is suitable
for a wide range of selection strategies that can be embodied in the PA.

After selecting the team members, both selected and non-selected agents are
informed of that condition with an “accept” or “refuse” message. The selected
agents are committed' to form part of the team. The process of instructing them
to form the team is addressed below, in the next section.

7.5 Instructing agents to form a team

This scene describes how to instruct the agents selected to form a team about
the task to be carried on as part of the team (the role to play), the capability

Commitments are specified as normative rules of the electronic institution, see ?

PA, PSA 1(c1,c2)

V4
@ 1(cl) >

Roles: 2(c4
PA: Personal Assistant
PSA: Problem-Solving Agent 2(cA, c5)

1. request(?x:pa, ?y:psa, team-configuration)

2. inform(?z:psa, !x, agree) PA, PSA
cl. %y O !selected-agents
c2.yOly (not to request twice the same agent)
c3. !y = Iselected-agents (all the selected agents requested)
c4.2z0ly
c5.1z=ly (al answers received)

Fig. 14. Instructing selected team members

required for that task (a PSM), and the other members of the team to cooperate
with.

Since selected team members have been committed to form part of the team,
they are waiting for the instructions to participate in that team. For each task
in the configuration, the PA sends an “inform” message to the selected agent for
that task, including all the necessary information encapsulated by the concept
Team-role, that is described in the Team-ontology (see figure 12).

A Team-role consist on the following elements: A unique identifier of the
team (as there is a team for each configuration of the application, we use the
identifier of the configuration for the team), the name of the scene, the name of
the required capability (a PSM) and the role to play in the scene (the Task to
be solved). If the required capability corresponds to a problem decomposer, then
the team-role fills also the slot team: a set of team-component, which specifies
the agents playing the other roles in the scene.

A team-component (see figure 12) is a pair consisting in a role name R and an
agent identifier A, meaning that the role R in the scene describing the operational
description (corresponding to a subtask in the problem decomposer) will be
played by agent A. The agent receiving a Team-role specification does not need
to know which capability is required of other team components, because this
information is sent to that agents separately, with another team-role instance.

8 Conclusions

We have presented a framework to develop configurable information agents by
integrating a knowledge modelling architecture (UPML) and agent-mediated in-
stitutions. The knowledge modeling architecture aims at maintaining the inde-
pendence between the domain (domain knowledge and ontology) and the infor-
mation agents (with separate ontologies), while agent-mediated institutions give
a formalism for representing interaction protocols in multi-agent systems.

We have described WIM, a configurable agent-based application developed
upon the proposed framework. Agents in WIM annotate their capabilities with
a domain-independent ontology—the same by which PSMs are described. The
WIM application is built by linking the “knowledge requirements” specified in
UPML to specific domain resources using bridges —examples shown are the
MeSH thesaurus and the EBM models.

Describing agent capabilities is an active field of research, as this is an im-
portant issue to achieve interoperability in open agent architectures. The most
widely adopted approach to solve the interoperability problem is the combined
use of middle agents [5] and agent capabilities description languages (ACDL).
An example of an ACDL is LARKS, and ACDL that is being included in the
RETSINA multi-agent infrastructure [19] to be used within the matchmaking
process. 2. Qur framework shares some ideas and characteristics of other ACDLs,
but there are some major differences. We will expose here the main contributions
of our work to this field:

(1) Our framework is based on a well defined architecture for describing soft-
ware components from a knowledge modelling perspective (UPML).

(i1) UPML allows to describe problem-solving methods and tasks, but also
domains, keeping the independency between them. This i1s achieved by using
bridges to connect components described with its own ontologies.

(iii) We have described a general framework for developing reusable problem-
solving libraries that allows to build configurable applications. Furthermore, an
application built following this framework can be dynamically extended or mod-
ified with new competencies, just registering new agent capabilities to the librar-
ian.

(iv) Other particularity of UPML is that it is neutral about the content
language, thus giving developers a great flexibility. Different content languages
will support different “matching” techniques between requirements (a problem
specification) and services provided (agent capabilities)

(v) An aspect of special relevance is the notion of brokering. We have pre-
sented a particular brokering algorithm based on CBR over attributes described
with UPML and feature-terms as the content language. Our framework allows to
use different brokers and personal assistants in the same platform at the same
time. The only requirement is that they should follow the scene called Problem
specification and brokering, that is explained in section §6.

(vi) Moreover, we have distinguished between library and application. A li-
brary is a repository of UPML descriptions of agent capabilities as problem-
solving methods. A new application is built selecting a collection of agents and
developing the bridges required to link library-registered agents with domain
resources and domain ontologies. A configurable application is a collection of
components that are selected (brokering) and connected (team formation) to
solve a particular problem.

2 http://www.cs.cmu.edu/ softagents/interop.html

(vii) Finally, ISLANDER, the formalism used to describe agent communi-

cation scenes provides our framework with a graphic editor and computational
support for verifying agents follow specification.

References

10.

11.

12.

13.

14.
15.

16.

17.

. Chema Abasolo, Josep-Lluis Arcos, Eva Armengol, Ramon Lopez de Mantaras, and

Enric Plaza. Component matching. Technical report, IIIA-CSIC, 2001. IBROW3
Deliverable 3.1.

Yigal Arens, Chin Y. Chee, Chun-Nan Hsu, and Craig A. Knoblock. Retrieving
and integrating data from multiple information sources. International Journal of
Cooperative Information Systems, 2(2):127-158, 1993.

Jaime Carbonell. ISMIS 2000 invited talk, 2000.

Sudarshan Chawathe, Hector Garcia-Molina, Joachim Hammer, Kelly Ireland,
Yannis Papakonstantinou, Jeffrey D. Ullman, and Jennifer Widom. The TSIMMIS
project: Integration of heterogeneous information sources. In 16th Meeting of the
Information Processing Society of Japan, pages 7-18, Tokyo, Japan, 1994.

. K. Decker, K. Sycara, and M. Williamson. Middle-agents for the internet. In

Proc. of the 15th International Joint Conference on Artificial Intelligence, Nagoya,
Japan, 1997.

M. Esteva, J. A. Rodriguez, C. Sierra, P. Garcia, and J. L. Arcos. On the formal
specifications of electronic institutions. In Agent-mediated Electronic commerce.
The FEuropean Agentlink Perspective, LNAT 1991:126-147, 2001.

A.R. Feinstein and R.I. Horwitz. Problems in the evidence of evidence-based
medicine. American Journal of Medicine, 103:529-535, 1997.

D. Fensel, V. Benjamins, S. Decker, M. Gaspari, R. Groenboom, W. Grosso,
M. Musen, E. Motta, E. Plaza, G. Schreiber, S. Studer, and B. Wielinga. The
component model of UPML in a nutshell. In Proc. First Working IFIP Conference
on Software Architecture WICSA, San Antonio, Texas, 1999.

D. Fensel, C.A. Knoblock, N. Kushmerick, and M.C. Rousset. Workshop on intel-
ligent information integration (iii99), 1999.

Dieter Fensel, V. Richard Benjamins, Enrico Motta, and Bob J. Wielinga. UPML:
A framework for knowledge system reuse. In IJCAI pages 16-23, 1999.

D. Garland and D. Perry. Special issue on software architectures. FEFE Transactions
on Software Engineering, 1995.

Michael R. Genesereth, Arthur M. Keller, and Oliver M. Duschka. Infomaster: an
information integration system. In Proc. ACM SIGMOD International Conference
on Management of Data, pages 539-542, Tucson, USA, 1997.

Mario Gomez and Chema Abasolo. Improving meta-search by using query-
weighting and numerical aggregation operators. In Proc. 9th International Con-
ference on Information Processing and Management of Uncertainty in Knowledge-
Based Systems, 2002.

Matthias Klusch, editor. Intelligent Information Agents. Springer, 1999.

Alon Y. Levy, Anand Rajaraman, and Joann J. Ordille. Query-answering algo-
rithms for information agents. In Proceedings of the AAAI Portlan, USA, 1996.
E. Motta. Reusable components for Knowledge Modelling, volume 53 of Frontiers
in Artificial Intelligence and Applications. 10S Press, 1999.

Marian H. Nodine, William Bohrer, and Anne H. H. Ngu. Semantic brokering over
dynamic heterogeneous data sources in infosleuth. In ICDF, pages 358-365, 1999.

18.

19.

20.

21.

22.

23.

International Foundation on Cooperative Information Systems. Second interna-
tional conference on cooperative information systems, 1994.

K. Sycara, M. Paolucci, M. Van Velsen, , and J.A. Giampapa. The retsina mas
infrastructure. Technical report, Robotics Institute, Carnegie Mellon University,
2001. tech. report CMU-RI-TR-01-05.

Vicen Torra. Weighted owa operators for synthesis of information. In Proc. 5th
IEFEE Inter. Conference on Fuzzy Systems, pages 966-971, New Orleans, USA,
1996.

Gio Wiederhold. Mediators in the architecture of future information systems.
Computer Magazine of the Computer Group News of the IEFE Computer Group
Society, 1992.

Gio Wiederhold. Intelligent integration of information. In Proceedings of ACM
SIGMOD Conference on Management of Data, pages 434-437, Washington DC,
USA, 1993.

G. De Michelis E. Dubois M. Jarke F. Matthes J. Mylopoulos K. Pohl J. Schmidt C.
Woo and E. Yu. Cooperative information systems: A manifesto. In Proc. 4th Intl.
Conf. on Cooperative Information Systems, Brussels, Belgium, 1996.

