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Resum

Lazy learning methods are based on retrieving a set
of cases similar to a new case. An important issue
of these methods is how to estimate the similar-
ity among a new case and the precedents. Most of
work on similarities considers that the cases have
a propositional representation. In this paper we
present SHAUD, a similarity measure useful to es-
timate the similarity among relational cases repre-
sented using feature terms. Also we present some
preliminary results of the application of SHAUD for
solving classification tasks. In particular we used
SHAUD for classifying marine sponges and for as-
sessing the carcinogenic activity of the compounds
in the Toxicology dataset.

1 Introduction

Lazy learning algorithms are based on retrieving a
set of cases similar to a new case. A very impor-
tant part of such algorithms is how evaluate the
similarity of two cases in order to retrieve an ad-
equate set of precedents. Most of lazy learning
algorithms handle cases represented as vectors of
pairs attribute-value, i.e. cases having a propo-
sitional representation. Usually, when the cases
have a propositional representation, the similarity
among them is assessed by comparing the similar-
ity of the value of each atribute and then aggregat-
ing the similarities of all the attributes to obtain a
global similarity of the cases.

Currently, there is most work on relational repre-
sentation focus on inductive techniques. However,
relational representation can also be useful for lazy
learning techniques. An important approach to re-
lational lazy learning algorithms is RIBL [8]. Re-
cently, RIBL has been extended allowing represen-

tations with lists and terms [10]. In this new version
of RIBL the similarity between cases is assessed us-
ing the standard similarities for numerical and dis-
crete attributes, and a similarity based on the con-
cept of edit distance for attributes with lists and
terms.

The feature terms is a formalism that we used for
representing the objects handled by different learn-
ing techniques ([1], [2]). In [3] we defined LAUD
a similarity measure that assessess the similarity
of two cases represented as feature terms. LAUD
proved to be useful in the classification task. Never-
theless, LAUD can be improved since this similarity
does not take into account the complete structure of
the feature terms but only the leaves of this struc-
ture. In this paper we introduce SHAUD, the natu-
ral improvement of LAUD. The main goal in intro-
ducing SHAUD is to take benefit of all the structure
provided by the feature terms. SHAUD assessess
the similarity of two cases based on the complete
structure of the cases (i.e. the leaves and the inter-
mediate nodes of the feature terms). Thus, given
two cases represented as feature terms, SHAUD
distinguishes two parts in their structure: the one
formed by the features and nodes present in both
cases, and the part is formed by those features and
nodes that are only present in one of the cases. For
the common part SHAUD uses the sort hierarchy
to compare the feature values. The resulting sim-
ilarity is normalized using the whole structure of
both cases.

The paper is organized as follows: the section
2 introduces the feature term formalism. Section
3 defines what is a relational case and then the
SHAUD similarity is introduced. Section 4 shows
some of the results obtained from the application of
SHAUD in solving the classification task in two real
domains: marine sponges and toxicology. Finally,
section 5 discusses some of the previous work done



on similitude with relational cases.

2 Relational Cases

We propose to represent the relational cases us-
ing the feature terms formalism introduced in [1].
Given a signature Σ = 〈S,F ,�〉 (where S is a set
of sort symbols that includes ⊥; F is a set of fea-
ture symbols; and � is a decidable partial order
on S such that ⊥ is the least element) and a set ϑ
of variables, a feature term is an expression of the
form:

ψ ::= X : s[f1
.
= Ψ1 . . . fn

.
= Ψn]

where X is a variable in ϑ called the root of the
feature term, s is a sort in S, f1 . . . fn are features in
F , n ≥ 0, and each Ψi is a set of feature terms and
variables. When n = 0 we are defining a variable
without features. The function root(X) returns the
sort of the root.

A path π(X, fi) is defined as a sequence of fea-
tures going from the variable X to the feature fi.
The depth of a feature f in a feature term ψ with
root X is the number of features that compose the
path from the root X to f , including f , with no
repeated nodes.

A feature term can be seen as a labelled graph
where the nodes are values (also represented as fea-
ture terms) and the edges are features. Given a
maximum feature depth k, a leaf feature of a fea-
ture term is a feature fi such that either 1) the
depth of fi is k or 2) the value of fi is a term with-
out features. We call leaves (ψ, k) the set of leaf
features of a term ψ.

Sorts have an informational order relation (�)
among them, where ψ � ψ′ means that ψ has less
information than ψ′ or equivalently that ψ is more
general than ψ′. The semantic interpretation of fea-
ture terms brings an ordering relation among fea-
ture terms that we call subsumption. Intuitively, a
feature term ψ subsumes another feature term ψ′

(ψ v ψ′) when all information in ψ is also contained
in ψ′. See (referencia) for a more formal definition
of the subsumption.

Using the � relation, we can introduce the no-
tion of least upper bound (lub). The lub of two sorts
is the most specific sort generalizing both. Fea-
ture terms form a partial ordering by means of the
subsumption relation. The anti-unification is de-
fined over the subsumption lattice as an upper lower

bound with respect to the subsumption (v) order-
ing.

Intuitively, the anti-unification (AU) of two fea-
ture terms gives what is common to both (yielding
the notion of generalization) and all that is common
to both (the most specific generalization). There-
fore, the AU of two feature terms F1 and F2 pro-
duces a feature term D that contains the features
that are common to both F1 and F2. The values
of the features in D have to satisfy the following
conditions:

1. If a feature f has the same value v in both
examples F1 and F2, the value of f in D is also
v.

2. In a feature f has value of sort s1 in F1 and
value of sort s2 in F2, the value of f in D is
the most specific sort common to s1 and s2,
i.e. the least upper bound of s1 and s2 in the
� sort order.

3. otherwise, the examples F1 and F2 cannot be
anti-unified.

The anti-unification of a set-valued feature with
value the set V1 in F1 and the set V2 as value
in F2 is a set AU(V1, V2) whose elements are ob-
tained in the following way. First the set C =
{dk = AU(xi, yj)|xi ∈ V1 and yj ∈ V2 is built
with Card(C) = Card(V1) × Card(V2). The set
AU(V1, V2) is the subset of C containing the feature
terms dk that does not subsumes any other feature
term in C. The cardinality of the set AU(V1, V2)
must be min{Card(V1), Card(V2)}.

3 Similarity of Relational

Cases

There are three aspects that we need to define in
order to perform CBR on relational cases: 1) to
define a case from a constellation of relations, 2)
to assess the similarity of values, and 3) to define a
way to assess similarity between cases.

A case is a term defined (in feature terms) by two
parameters: a root sort and a depth. That is to say,
assuming a “case base” expressed as a collection of
feature terms, a case is a feature term whose root
node is subsumed by the root sort and whose depth
is at most depth. An example of case specification
is case[root-sort

.
= sponge, depth

.
= 4] in the marine

sponges domain (see §4).



In this section we introduce a new similarity mea-
sure called SHAUD. This measure takes into ac-
count both the common features present in both
input cases and the relevant features that are those
features that occurs at least in one of the two
cases (notice that the relevant information also in-
cludes the shared features). SHAUD compares the
common part obtaining in this way an assessment
of how similar are both feature terms. The non-
common part provides information about the infor-
mation that two feature terms could share.

A feature term has two kind of features: leaf fea-
tures and intermediate features. When a feature
is a leaf the similitude among its values is assessed
using the basic similitude explained in section 3.1.
Otherwise, the similitude of the values of an inter-
mediate feature is assessed by the aggregation of
the basic similitudes of the leaves as explained in
section 3.2.

3.1 Elementary Similarity

Let f be a leaf feature common to the feature terms
F1 and F2. Let v1 be the value that f takes in F1

and v2 the value that f takes in F2. When v1 and v2
are numerical values with range [a, b] the similarity
of v1 and v2 is computed, as usual, by means of the
following expression:

sim-values(v1, v2) = 1 −
| v1 − v2 |

b− a

When v1 and v2 are symbolic, their similarity is
computed using the hierarchy of the sorts S given
by the subsumption relation. The idea is that the
similarity between two values depends on the level
of the hierarchy where their lub is situated with
respect to the whole hierarchy: the more general
lub(v1, v2) the greater is the distance between v1
and v2. Formally, let sf ∈ S be the most gen-
eral sort that can take the values of a feature f .
We consider sf as the root of a subsort hierarchy,
therefore the depth of sf is 1. Given a subsort s
of sf (i.e. s � sf ) we define the level of s as fol-
lows: level(s) = M − depth(s) + 1, where M is the
maximum depth of the hierarchy of root sf .

Thus, the similarity sim-values(v1, v2) of two
symbolic values v1 and v2 is 1 when v1 = v2, other-
wise it is estimated using the following expression:

1 −
1

M
level(lub(v1, v2))

where 1
M
level(lub(v1, v2)) is a distance [3].

3.2 Structural Similarity

Given a feature term ψ, we call Fψ the set of fea-
tures of root(ψ). Let C1 and C2 be two feature
terms and CS(C1, C2) = FC1

∩ FC2
the set con-

taining the features that are common to root(C1)
and root(C2); let RS(C1, C2) = FC1

∪ FC2
be the

set formed by the relevant features of root(C1) and
root(C2); NS(C1, C2) = RS(C1, C2) \ CS(C1, C2),
and let nnodes(v) be a function that given a fea-
ture term returns the number of nodes composing
the feature term.

SHAUD associates to each feature fi ∈
CS(C1, C2) a tuple T (fi) = 〈si, wi, ri〉 where si is a
similitude, wi is a measure of the common nodes to
C1 and C2), and ri is a measure of the total num-
ber of nodes present either in C1 or C2; below these
two measures are explained in detail. Let v1 be the
value that fi takes in C1 and v2 the value of fi in
C2. The tuple T (fi) is computed as follows:

Case 1. When v1 and v2 have no common fea-
tures, the tuple 〈si, wi, ri〉:

• si = sim(v1, v2) (see sim in section 3.1)

• wi = 1

• ri = nnodes(v1) + nnodes(v2) − 1

since wi is the number of common nodes, wi = 1
because the pair (v1, v2) corresponds to one com-
mon node and they have no common features (i.e.
there is no more common structure). ri is the num-
ber of nodes present in the terms v1 and v2 (up to
the leaves defined by the depth we are considering).

Case 2. When neither v1 nor v2 are sets then let
be CSfi

= CS(v1, v2), RSfi
= RS(v1, v2), NSfi

=
RS(v1, v2) \ CS(v1, v2). We call V S(v1, v2) =
{uj |uj = v1.fj or uj = v2.fj , ∀fi ∈ NSfi

}, i.e.
the set of values of the features in NSfi

. Finally,
let T (CSfi

) = {T (fj) = 〈sj , wj , rj〉|fj ∈ CSfi
} be

the set of tuples associated to the features of CSfi
.

The tuple associated with the feature fi is com-
puted as follows:

• si = 1
ri

[

sim(v1, v2) +
∑

T (fj )∈T (CSfi
) sj · wj

]

• wi = 1 +
∑

T (fj )∈T (CSfi
) wj

• ri = 1 +
∑

T (fj )∈T (CSfi
) rj +

∑

uj∈V S(v1,v2)
nnodes(uj)



wi is the number of nodes common to v1 and v2,
thus wi aggregates the number of common nodes
computed in lower levels by the tuples of the com-
mon features (plus 1, that counts the current com-
mon node corresponding to the pair (v1, v2) under
consideration). ri takes into account both the num-
ber of nodes that are common and the number of
nodes that appear in only one of the feature terms.
The value of ri is computed aggregating the r values
of the lower levels that are present in the tuples (for
the common structure) and the number of nodes of
the structure that is not shared using the nnodes
function. The similitude si is normalized using ri
—i.e. the total number of nodes below the current
node. In other words, the similitude of two fea-
ture terms is assessed taking into account all the
structure present in the description of both feature
terms.

Case 3. If either v1 or v2 is a set, SHAUD
uses anti-unification because the idea is finding
those pairs whose similarity is higher. For a pair
p = (xj , yk) of symbolic values the more spe-
cific their lub(xj , yk) the higher is their similarity.
Therefore we want to find the collection of pairs
{p1 . . . pmin(n,m)} whose lubs are more specific: this
is precisely the definition of anti-unification shown
in §2. Therefore the anti-unification of the sets of
values v1 = {x1 . . . xn} and v2 = {y1 . . . ym} pro-
vides the pairs that have the highest similarity.

Let AUS be the set of pairs whose anti-
unification belong to the anti-unification of the sets
v1 and v2, i.e. AUS = {(x, y)|x ∈ v1 ∧ y ∈
v2∧AU(x, y) ∈ AU(v1, v2)}. For each pair (xl, yl) ∈
AUS, SHAUD associates a tuple 〈sl, wl, rl〉 that is
computed as in cases 1 and 2 above taking xl as
v1 and yl as v2. Let T (AUS) be the set of tuples
of the pairs (xl, yl) ∈ AUS and US(v1, v2) the set
containing the elements of v1 or v2 that have not
been used in anti-unifying the sets v1 or v2 (i.e. the
ones not present in any pair of AUS).

The tuple associated to the feature fi is the fol-
lowing:

• si = 1
ri

∑

T (fj)∈T (AUS) sj · wj

• wi =
∑

T (fj )∈T (AUS) wj

• ri =
∑

T (fj)∈T (AUS) rj +
∑

zk∈US(v1,v2) nnodes(zk)

Let C1 and C2 be cases represented as feature
terms. SHAUD assesses the similarity of both cases
as the similarity si in case 2.

SHAUD(C1, C2) =
1

rt

∑

T (fi)∈T (CS(C1,C2))

si · wi

where

rt =
∑

T (f)∈T (CS(C1,C2))

ri +
∑

ui∈V S(C1,C2)

nnodes(ui)

In other words, the similarity of two cases is the
aggregated similarity of the common part of both
cases normalized by the total number of nodes used
in the representation of the cases.

4 Experiments

We have used SHAUD for solving the classification
task in several domains that we explain in next sec-
tions. In all them SHAUD is able to obtain ac-
ceptable classifications. The method followed for
evaluating the predictivity of SHAUD is the leave-
one-out method.

4.1 Marine Sponges Dataset

In this section we describe some experiments that
use the similarity to identify the order of marine
sponges. Marine sponges are relatively little stud-
ied and most of the existing species are not yet fully
described. Main problems in the identification are
due to the morphological plasticity of the species, to
the incomplete knowledge of many of their biologi-
cal and cytological features and to the frequent de-
scription of new taxa. Moreover, there is no agree-
ment around the species delimitation since it is not
clear how to characterize the taxa.

We used a case base containing 307 marine
sponges belonging to three orders of the demo-
spongiae class: astrophorida, hadromerida or poe-
cilosclerida. The sponges are represented using fea-
ture terms. In each experiment we take out one
sponge sp and then we compute the similarity of
sp with each one of the remaining 306 sponges. Fi-
nally, sp is classified as belonging to the same order
than the sponge estimated as more similar.

Figure 1 shows the results of these experiments,
detailing the accuracy, and the number of cor-
rect and incorrect answers for each order. Thus,
there are 95 sponges in the case-base belonging to
the order astrophorida. For 93 of these sponges
the similarity finds that the most similar sponge



SHAUD LAUD
order N Correct Incorrect %accuracy %accuracy

astrophorida 95 93 2 97.89 92.63
hadromerida 117 113 4 96.58 92.30

poecilosclerida 95 83 12 87.37 90.53
TOTAL 307 289 18 94.14 91.86

Figure 1: Results of both LAUD and SHAUD to classify marine sponges.

is an astrophorida, i.e. they are correctly classi-
fied. Similarly, 113 of the 117 sponges of the order
hadromerida and 83 of the 95 sponges of order poe-
cilosclerida are correctly classified. Summarizing,
from the 307 sponges of the case-base, 289 of them
are correctly classified with respect the order where
they belong. This represents an accuracy of 94, 14%
that is better than the accuracy achieved by LAUD
in the same dataset.

4.2 The Toxicology Dataset

The Toxicology Dataset has been provided by
the US National Toxicology Program (NTP)
(http://ntp-server.niehs.nih.gov). In this dataset
there are descriptions of around 500 compounds
that may be carcinogenic for two animal species:
rats and mices. The carcinogenic activity of the
compounds has proved to be different in both
species and also among the sex of the same species.
Therefore there are, in fact, four datasets. The
compounds of the dataset can be classified in eigth
solution classes according to the laboratory exper-
iments: positive, clear evidence, some evidence,
equivocal, equivocal evidence, inadequate study, neg-
ative and negative evidence. Nevetheless, most of
the authors working on this dataset consider the
classes positive, clear evidence and some evidence
as the class “positive”; the classes negative and neg-
ative evidence as the class “negative”; and the com-
pounds belonging to the other classes are removed.

For the Toxicology dataset there are two open
problems: 1) the representation of the com-
pounds, and 2) the classification of the com-
pounds into positive or negative carcinogenic ac-
tivity. With respect to the representation, there
are several representations for the compounds
(http://www.informatik.uni-freiburg.de/ ml/ptc/).

In our experiments, we have represented the com-
pounds using feature terms (figure 2). This repre-
sentation is based on the chemical name of the com-
pound since we consider that the chemical name

provides enough information for a good descrip-
tion of the molecular structure. For instance, the
chemical name 2-amino-4-nitrophenol describes a
molecule having a benzene as main group and three
radicals: an alcohol in the position 1, an amine
in position 2 and a nitro-derivate in position 4.
Figure 2 shows the translation of the 2-amino-4-
nitrophenol to feature terms. In this representa-
tion a compound is a feature term of sort organic-
compound with two features or relations: main-

group and radicals. The feature main-group contains
the part of the molecule that is either the biggest
or that located in a central position. The radicals

feature is a set of feature terms of sort radical repre-
senting the groups of the molecule that are usually
smaller than the main group. Each radical, in turn,
has the features main-group and position. The posi-
tion of a radical in the molecule is always described
in relation with the main group. For example, the
2-amino-4-nitrophenol has three radicals: an alco-
hol placed in the position 1 of the benzene (the
main group of the molecule); an amine placed in
the position 2; and finally, a nitro-derivate placed
in the position 4 of the benzene.

There are several authors ([9]) that use data min-
ing and machine learning techniques for solving the
task of classifying the carcinogenic activity of a
molecule. Most of authors use induction for obtain
general rules classifying the compounds. The max-
imum accuracy obtained by the different methods
is around 65% (Pfahringer obtained an accuracy of
70% using a votation system among the individual
methods of the other authors). In fact, the correct
classification score for human experts in the domain
ranges from 28% to 78% ([12]).

Our goal is to investigate two issues in this
dataset: 1) if a lazy learning approach is feasible
for solving the classification task, and 2) if the cur-
rent representation based on the chemical name of
the compounds is sufficient. For this purpose we
have performed several experiments using SHAUD
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Figure 2: Representation of compound TR-339, 2-amino-4-nitrophenol, with feature terms.

for classifying a compound as having positive or
negative carcinogenic activity. We used only the
first 234 compounds of the dataset and, as other
authors, we removed the compounds with activity
equivocal, equivocal evidence and inadequate study ;
the classe positive is formed by the compounds hav-
ing activity positive, clear evidence and some evi-
dence; and the class negative is formed by the com-
pounds having activity negative and negative evi-
dence. Table 3 shows the total number of positive
and negative compounds for each dataset.

In the preliminary experiments we used the k-NN
algorithm with SHAUD as distance and the leave-
one-out method for evaluating the results. We ex-
perimented with different values for k and the best
results are obtained for k = 5. One of the most
usual criteria for classifying a new compound is to
use the majority class (i.e. the new compound is
classified as belonging to the same class than the
most of the k retrieved precedents) but our exper-
iments using this criteria do not provide a good
accuracy (around the 50% in rats).

The criteria we used for classify a new compound
is the following. Let c be the compound to be classi-
fied and Rk the set of the k precedents more similar
to c according to the SHAUD results. Each prece-
dent ci ∈ Rk has associated the following data:

1. The structural similarity si among c and ci, i.e.
si = SHAUD(c, ci), and

2. For each dataset (i.e. male rats, female rats,
male mices and female mices), the compound ci
has a positive or negative carcinogenic activity.

For one of the datasets, let A+ be the set contain-
ing the precedents ci ∈ Rk with positive activity

positive negative total Acc (%)
MR 81 125 206 62.13
FR 66 140 206 64.08
MM 63 139 202 64.85
FM 78 138 216 62.50

Figure 3: Distribution of the examples in each dataset.
MR = male rats; FR = female rats; MM = male mices;
FM = female mices.

in that dataset, and A− be the set containing the
precedents ci ∈ Rk with negative activity. From
the sets A+ and A− we define sim-pos and sim-
neg as the respective averages of the similarities
of the positive and negative precedents retrieved,
i.e. sim-pos = 1

|A+|

∑

ci∈A+ si and sim-neg =
1

|A−|

∑

ci∈A−
si.

The carcinogenic activity of a compound c is ob-
tained according to the following criteria:

if sim-pos < sim-neg then c has negative carcino-
genic activity

else c has positive carcinogenic activity
Using k = 5 and this classification criteria we

obtained the accuracy shown in table 3.
In the future we plan to experiment with the com-

plete dataset using k-NN with SHAUD. Our plan is
to explore the feasibility of using the existing tech-
niques [14] allowing the determination of k for each
individual class or for each individual case. De-
pending on the results of these experiments we also
will revise the representation of the compounds. In
the current representation we have not taken into
account neither spatial information nor other in-
formations of the molecule such as charge, relative
positions of the atoms, etc. The necessary could



be easyly included in the current representation by
adding features to the organic-compound sort.

5 Related Work

Most of work on relational representation focus on
inductive learning techniques. ILP [11] is a wide
field of research focused on solving different aspects
on concept learning using objects represented as
Horn clauses. The relational representation, that is
much more expressive than the propositional repre-
sentation, has not been exploited in depth in lazy
learning techniques. An important problem to be
solved in lazy learning techniques is how to estimate
the similarity among relational cases. Again, there
are many work on estimating the similitude among
propositional cases, nevertheless only a few works
propose similarities for relational cases.

Some of these works [6, 7, 5, 13, 4] propose the
notion of “structural similarity” for evaluating the
similarity of relational cases. Thus, [7] use tech-
niques of subtree isomorphism and subgraph iso-
morphism. Other authors such as [5] and [4] com-
pute two kinds of similarity: the similarity among
the elements of a same class (intra-class) and the
similarity among of the classes among them (inter-
class). In SHAUD, as in [3], both kinds of simlar-
ity are implicitly considered in the representation
of the feature terms and in the sort hierarchy of the
nodes.

The closest work to SHAUD is RIBL in the ver-
sion extended to lists and terms [10]. The main dif-
ference between SHAUD and RIBL is the case rep-
resentation since RIBL uses Prolog clauses whereas
SHAUD uses feature terms. Also, RIBL assumes
that the objects are always described by a fixed
set of features. In SHAUD we assume that some
of the features describing a case may be unknown
(i.e. they do not appear in the representation of the
case). In fact, SHAUD assessess the similitude of
two cases taking into account that there is a part
that is no common to both cases.

In [2] and [13] we proposed a similitude between
cases represented as feature terms. Nevertheless in
those works the similarity is not numerical but sym-
bolic. We defined the similarity term as a feature
term containing the features that has been more
relevant in order to classify a case.

6 Conclusions

In this paper we introduced SHAUD, a new mea-
sure for assess the similarity of relational cases rep-
resented using feature terms. SHAUD estimates
the similarity of relational cases taking into account
both the estructure shared by the cases and the
structure that they do not share. Thus, the simi-
larity is estimated on the nodes of the description
part that is common to the cases. Then this sim-
ilarity value is normalized by the total number of
nodes present in both cases.

In feature terms, there is an informational order
relation (�) between the sorts of the values. Using
this relation we define the anti-unification opera-
tion in order to obtain the most specific generaliza-
tion of two feature terms. The relation � and the
anti-unification operation are used to compute the
similitude of the symbolic values.

The preliminary results obtained from the appli-
cation of SHAUD on two real datasets are satis-
factory. Nevertheless, in the case of the Toxicology
dataset it is necessary to analyze the representation
more accurately.
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