
Integrating Knowledge Modeling and Multi-Agent Systems

Mario G ómez and Enric Plaza
Artificial Intelligence Research Institute - Spanish Scientific Research Council

Campus UAB
08193 Bellaterra
Barcelona, Spain

{mario, enric}@iiia.csic.es

Abstract

This paper outlinesORCAS, a framework for open
Multi-Agent Systems (MAS) that maximizes the reuse
of agent capabilities through multiple application do-
mains, and supports the automatic, on-demand configu-
ration of agent teams according to stated problem re-
quirements. Considerable effort has been devoted to
the applicability of the framework, which resulted in the
implementation of an infrastructure to develop and de-
ploy cooperative MAS. This infrastructure explores the
idea of configuring an electronic institution on-the-fly
to fit the specific requirements of each problem to be
solved by a group of agents.

Introduction
Open MAS require a new way of managing and integrating
agent capabilities based onmiddleware: connectivity soft-
ware that enables multiple processes running on one or more
machines to interact across a network. When implemented
in MAS, the middleware layer is usually provided bymid-
dle agents(Decker, Sycara, & Williamson 1997), such as
matchmakers(Decker, Williamson, & Sycara 1996),facil-
itators (Erickson 1996; Genesereth & Ketchpel 1997) and
brokers(Nodine, Bohrer, & Ngu 1999). Typically, the func-
tion of a middle agent is to pair requesters with providers
that are suitable for them, a process calledmatchmaking.

Matchmaking is the process of verifying whether the
specification of an agent capability “matches” the specifi-
cation of a request to do something (a task to achieve):
two specifications “match” if certain relation holds between
them, usually a capability being able to achieve some task.
Since matchmaking compares the specification of requests
and advertisements, both providers and requesters must
share a common language to describe them. This language
is usually called an Agent Capability Description Language
(ACDL). Semantic matchmaking, which is based on the use
of shared ontologies to annotate agent capabilities (Guar-
ino 1997), improves the matchmaking process and facilitates
interoperation. However, the reuse of existing capabilities
over new application domains is still difficult because capa-
bilities are usually associated to a specific application do-
main.

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Moreover, in addition to capability discovery through
matchmaking, we want an ACDL to support other activities
involved in MAS interoperation, namely: invocation, com-
position (team-design), team-formation and coordination.

• Invocation: an agent willing to invoke the capability pro-
vided by another agent must provide the input data in an
appropriate format and using a shared interaction proto-
col.

• Composition: refers to the aggregation of several capabil-
ities to achieve a global team goal. This process requires
a combination of matchmaking, capability selection, and
verification of whether the aggregated functionality sat-
isfies the specification of the global goal. We call this
process Team Design.

• Team Formation: is the process of allocating tasks to
agents, according to the constrains determined during the
Team Design process. Team members can be selected
among several candidate agents, either in a distributed or
centralized manner, and agents must agree upon the in-
teraction protocols to coordinate during the cooperative
activity.

• Coordination: team members must synchronize their ac-
tions so as to avoid deadlocks and effectively cooperate.

We want an ACDL to support both requesters and
providers through all these activities. Our main goals are to
extend matchmaking so as to maximize capability reuse, and
to support the automatic composition of capabilities accord-
ing to stated problem requirements. In a wide sense of the
word, our focus is on the reuse issue, that we define as how
to reuse an agent capability for different tasks, across sev-
eral application domains, and interacting with other capabil-
ities provided by different, probably heterogeneous agents.
Therefore, in order to maximize the reuse of agent capa-
bilities, we have explored the potential of the knowledge-
modelling stance and the ideas brought about by the compo-
nential approach to software development. The result of our
work is ORCAS a multi-layered framework for the design,
development, and deployment of Cooperative MAS in open
environments. But instead of going through theORCAS
framework layer by layer, this paper describes the corner-
stones of theORCAS framework transversally.

The aspects of theORCAS framework we focus herein
are theORCAS model of the Cooperative Problem Solving



(CPS) process, and theORCAS Agent Capability Descrip-
tion Language (ACDL).

Overview of the ORCAS framework
This section provides an overall view of the framework
and reviews the most important concepts needed to under-
stand the other sections. The reader is referred to (Gómez
2004) for a complete, detailed description of the framework.
ORCAS has three layers, namely: the Knowledge Mod-
elling Framework, the Operational Framework and the In-
stitutional Framework:

1. TheKnowledge Modelling Framework(KMF) proposes
a conceptual and architectural description of problem-
solving systems from a knowledge-level view, abstract-
ing the specification of components from implementation
details. In addition, the KMF incorporates a bottom-up
design process to configure a system out of elementary
components, until a system configuration is found that
satisfies some global requirements. This process is used
to design the organization of a team and the competence
required for each team role during the problem-solving
process.

2. TheOperational Frameworkdeals with the link between
the specification of components in the KMF, and the oper-
ational aspects of Multi-Agent Systems. This framework
comprehends an extension of the KMF to obtain a full-
fledged Agent Capability Description Language, together
with a new model of the Cooperative Problem Solving
process that includes a Team Design stage prior to the
Team Formation stage.

3. The Institutional Frameworkdescribes an implemented
infrastructure for developing and deploying Multi-Agent
Systems configurable on-demand, according to the the re-
quirements of the problem at hand.

Figure 1: The three layers of theORCAS framework

Figure 1 shows the three layers as a pyramid made of three
blocks. The block at the bottom corresponds to the more
abstract layer, while upper blocks corresponds to increas-
ingly implementation dependent layers. Therefore, develop-
ers and system engineers can decide to use only a portion of
the framework, starting from the bottom, and modifying or
changing the other frameworks according to its preferences
and needs.

Figure 2: TheORCAS Abstract Architecture

Knowledge Modelling Framework
The ORCAS Knowledge Modelling Framework (KMF)
proposes a conceptual description of Multi-Agent Systems
at theknowledge level(Newell 1982), abstracting the spec-
ification of components from implementation details. The
purpose of theKnowledge Modelling Framework(KMF) is
twofold: on the one hand, the KMF is a conceptual tool to
guide developers in the analysis and design of Multi-Agent
Systems in a way that maximizes capability reuse across dif-
ferent domains; on the other hand, the KMF provides the ba-
sis for an Agent Capability Description Language (ACDL)
supporting the automatic, on-demand configuration of agent
teams according to stated problem requirements.

TheORCAS KMF is based on theTask-Method-Domain
(TDM) paradigm prevailing in existing Knowledge Mod-
elling frameworks. This paradigm distinguishes between
three classes of components:tasks, problem-solving meth-
ods(PSM) anddomain models. In ORCAS there are tasks
and domain models, while PSMs are replaced by agent capa-
bilities, playing the same role as PSMs, but including agent
specific features concerning communication and coordina-
tion. Adopting this KMF we expect theORCAS Abstract
Architecture to provide an effective organization for con-
structing libraries with large “horizontal cover” (Breuker &
Van de Velde 1994; Valente, Van de Velde, & Breuker 1994;
Motta 1999), thus maximizing reusability and avoiding the
brittleness of monolithic libraries (Mottaet al. 1999).

A task is a functional description of a type of problem
to be solved. A task is functionally characterized byinput
roles, output roles, and the relationship between them, which
is specified as a set ofpreconditionsandpostconditions.

A capability describes a particular method for solving
problems with some specific properties. A capability is
specified from a functional viewpoint by stating theinput
roles, output roles, preconditionsandposconditions. In ad-
dition, a capability can specify the type of domain knowl-
edge (knowledge-roles) it requires, and some properties that
have to be fulfilled by the domain knowledge to sensibly ap-
ply that capability (assumptions).

There are two types of capability:task-decomposerand
skill. While skills are used to describe primitive, atomic rea-
soning steps, task-decomposers are used to describe com-
plex reasoning methods that decompose a problem into sev-



eral subtasks.
Finally, adomain model(DM) specifies the concepts, re-

lations and properties characterizing the knowledge from
certain application domain.

The ORCAS KMF extends matchmaking in two ways
(Gómez & Plaza 2004): first, in addition to provide its own
version of atask-capability matching, ORCAS introduces a
capability-domain matchingto decide whether a capability
is suitable to be applied over certain application domain; and
second,ORCAS addresses the composition of capabilities
on-demand, according to the requirements of the problem at
hand.

We regard the composition of capabilities as a “bottom-up
design problem”(Hafedh Mili & Mili 1995), which in agent
terms would be rewritten as:given a set of requirements,
find a set of agent capabilities whose combined competence
and available knowledge satisfies those requirements. The
main difficulty to solve that problem is how to decompose
the requirements in such a way as to yield component spec-
ifications. Our approach to this problem is to use a search
process over the space of possible configurations. InOR-
CAS, the bottom-up design process is called Team Design,
and the result is atask-configuration, a hierarchical decom-
position of a task into subtasks, and capabilities bound to
tasks according to matching relations, in such a way that the
resulting task-configuration satisfies the global problem re-
quirements.

Figure 3: Task-configuration example

Figure 3 shows an example of a task-configuration for the
Information-Search task, which is used within theWIM
application. This task is being decomposed into four tasks
by the Meta-search task-decomposer:Elaborate-query,
Customize-query, Retrieve andAggregate, which is fur-
ther decomposed by theAggregation capability in two sub-
tasks: Elaborate-items and Aggregate-items. The ex-
ample shows some skills requiring domain knowledge, e.g.
theQuery-expansion-with-thesaurus requires a thesaurus
(e.g. MeSH, a medical thesaurus), and theRetrieval and
Query-customization skills require a description of infor-
mation sources.

Operational Framework

The Operational Framework describes a mapping from con-
cepts in the Knowledge-Modelling Framework to concepts
from Multi-Agent Systems. Specifically, the Operational
Framework describes how a composition of capabilities rep-
resented at the knowledge-level can be operationalized by a
customized team of agents; in other words, how to form a
team of agents able to carry on the execution of a particu-
lar composition of capabilities, over a particular application
domain.

The Operational Framework proposes a hierarchical
model of teamwork that is straightforwardly derived from
the hierarchical decomposition of tasks into subtasks thatis
the backbone of the TDM paradigm. This model of team-
work is embedded within a complete model of the Coopera-
tive Problem Solving process that covers all the stages, from
the specification of a problem to be solved to the activities
carried on by agents willing to solve it.

In order to effectively use a KMF in open agent envi-
ronments, a capability description language should include
some way of specifying the communication and the coor-
dination mechanisms required by agents to cooperate. Our
approach to describe such aspects of a capability is based on
the macro-level (societal) aspects of agent societies, which
is focused on the communication and the observable behav-
ior of agents, rather than adopting a micro-level (internal)
view on individual agents. In particular, we are using con-
cepts from theelectronic institutionsformalism to describe
such aspects, as explained in the next section.

Institutional Framework

An electronic institution (e-Institution), is a “virtual place”
designed to support and facilitate certain goals to the human
and software agents concurring to that place (Noriega 1997;
Rodŕıguez-Aguilar 1997). Since these goals are achieved by
means of the interaction of agents, an e-institution provides
the social mediation layer required to achieve a successful
interaction: interaction protocols, shared ontologies, com-
munication languages and social behavior rules.

The ORCAS Institutional Framework devises a institu-
tional model covering all the stages of theORCAS Coop-
erative Problem Solving process: theORCAS e-Institution,
a platform for developing and deploying cooperative MAS
that supports both providers and requesters of capabilities
along the different stages of theORCAS model of the CPS
process.

The e-Institutions formalism was originally conceived to
deal with static organizations encompassing a fixed role
structure and fixed interaction protocols, while theORCAS
institutional framework (both conceptually and in the imple-
mented agent platform) is an electronic institution that al-
lows other institutions to be configured on-the fly. The point
is that in theORCAS platform, each team formed to solve
a problem implies that a new electronic institution is com-
posed on demand out of the interaction protocols agents are
equipped with, and that institution is used as the social me-
diation layer required by team members to effectively com-
municate and coordinate during the CPS activity.



The integration of the knowledge-modelling stance and
the electronic institutions formalism within theORCAS e-
Institution favors the development of highly configurable
and reusable MAS in open environments.

Remark that in addition to implement an agent infrastruc-
ture using the electronic institutions formalism, we are us-
ing the concepts proposed by the e-Institutions approach to
specify the communication and coordination mechanisms of
individual agents.

In order to demonstrate the applicability of theORCAS
framework, we have builtWIM, a MAS-based configurable
application to search bibliographic information in the In-
ternet (Ǵomez & Abasolo 2003; Ǵomez 2004). WIM is
an e-Institution that results of linking a library of informa-
tion search and aggregation (ISA) capabilities provided by
agents, and domain knowledge from medicine, and more
specifically, Evidence-Based Medicine (EBM). Figure 4
outlines the architecture of theWIM application. TheOR-
CAS e-Institution provides the mediation service for agents
to communicate and cooperate. The institution provides a
yellow pages service (through a librarian agent) where prob-
lem solving agents register their capabilities. The capabili-
ties in the library are link to some domain models character-
izing the application domain (EBM). User requests to per-
form search tasks solve problem are received through a Per-
sonal Assistant agent that expresses them using the ISA on-
tology. This agent acts as mediator between the user and the
institutional agents providing the services required to carry
on the CPS process: to find a valid task-configuration (Team
Design), to allocate tasks to agents (Team Formation), and to
coordinate individual agent behaviors to achieve the global
task cooperatively(Teamwork). The figure depicts also the
existence of wrappers, ad-hoc elements that are used to
agentify external information sources, making them acces-
sible to agents.

Figure 4: Task-configuration example

The ORCAS model of the Cooperative
Problem-Solving process

Most of the research done in the field of cooperative MAS
fits into one or more or the stages of the Cooperative

Problem-Solving process as presented in (Wooldridge &
Jennings 1994), which consists of four stages:recognition,
team formation, planningandexecution.

Although the proposers of this model believe many in-
stances of the CPS process exhibit these stages in some form
(either explicitly or implicitly), they stress that the model is
idealized. In other words, there are cases that the model can-
not account for (Wooldridge & Jennings 1999). Since team
formation is not guided by a preplan to achieve the overall
goal, but is just a commitment to joint action, then neither
the agents joining a team (committing to carry on joint ac-
tion) are guaranteed to play one role in the team once a plan
was decided at the subsequent planning stage, nor the result-
ing team assures that a global plan can be found.

The SharedPlans theory (Grosz & Kraus 1996) and the
frameworks based on it, e.g. (Giampapa & Sycara 2002),
have emphasized the need for a common, high-level team
model that allows agents to understand the requirements to
achieve a global team goal and select a plan. Team plans
are used by agents to acquire goals, to identify roles and to
relate individual goals to team goals. A plan allows the ini-
tiator of the team formation process to know which are the
subgoals and (optionally) the actions or capabilities required
to achieve each subgoal. Therefore, the initiator of a CPS
process can use an initial plan to guide the team formation
process (Tidhar, Rao, & Sonenberg 1996). However, there
is still another limitation of most planning frameworks used
in real, implemented MAS: plans are tightly bound to a very
specific domain and generic tasks. Consequently, plans are
hardly reusable for different domains, and cannot be adapted
to fit specific requirements of the problem at hand (e.g. dif-
ferent users may prefer different ways of achieving a task,
and thus different capabilities may be preferable depending
on the user preferences).

Finally, most planning-based MAS devise an internal per-
spective of agents, whose internal state is used as the basis
for evaluating the cooperative behavior. Concerning this is-
sue, though we recognize there are well founded reasons to
adopt an internal perspective in several contexts, we think
a external view has some notable advantages under certain
circumstances; in particular, it is more appropriate for open
systems because it avoids imposing a model of the internal
agent architecture to external agent developers.

Summing up, we address some requirements for devel-
oping Cooperative MAS in open environments that are not
entirely covered by previous models of the CPS process: (1)
the need for initial plans to guide the team formation pro-
cess; (2) the consideration of the user preferences and spe-
cific problem requirements as a constrain over the compe-
tence of a team; and (3) an external view centered on ob-
servable events, rather than an internal view imposing a par-
ticular agent architecture.

As a result of our work upon these issues we have con-
ceived a new model of the CPS process with four sub-
processes (Figure 5), namely Problem Specification, Team
Design, Team Formation and Teamwork.

The Problem Specification process produces a specifica-
tion of problem requirements to be met by a team, includ-
ing a description of the application domain (a collection of



Figure 5: Overview of theORCAS Cooperative Problem
Solving process.

domain models) and the problem data to be used during the
Teamwork process. The Team Design process uses the prob-
lem requirements to build a task-configuration —a composi-
tion of tasks, capabilities and domain models. The resulting
task-configuration is used during the Team Formation pro-
cess to allocate tasks and subtasks to agents, and instruct
agents to ensure that the requirements of the problem are
achievable. Finally, during the Teamwork process, team
members try to solve the problem cooperatively, following
the instructions received during Team Formation, and thus
complying with the specific requirements of the problem at
hand .

TheORCAS model of the CPS process should not be un-
derstood as a fixed sequence of steps. Actually, we have im-
plemented strategies that interleave Team Design and Team
Formation with Teamwork, thus enabling distributed con-
figuration, lazy configuration and dynamic reconfiguration
of teams on runtime(Ǵomez 2004).

The ORCAS Agent Capability Description
Language

The functional description of a capability as provided in the
Knowledge-Modelling Framework enables the automated
discovery and the composition of capabilities, without tak-
ing into account communication and coordination require-
ments. Nonetheless, the invocation of capabilities and the
interoperation of multiple agents are not supported by the
functional description of a capability. In order to deal with
these activities, we have to include information concerning
thecommunicationrequirements of an agent over the capa-
bilities he provides, and theoperational description(control
and data flow) of tasks-decomposers . Figure 6 shows the
main concepts specifiable in theORCAS ACDL.

In ORCAS, both the communication and the operational
description of a capability are described using concepts from
the electronic institutions formalism (Estevaet al. 2001),
which adopts an external view on agents. Specifically,OR-
CAS usesscenesto describe the communication require-
ments of an agent over a particular capability, and perfor-
mative structures to specify the operational description of a
task-decomposer. Since we are using those concepts in a
new way, a brief review of the electronic institutions con-
cepts used inORCAS is pertinent now:

Figure 6: Main features of theORCAS ACDL

1. Agent roles: Agents are the players in an electronic
institution, interacting by the exchange of speech acts,
whereas roles are standardized patterns of behavior re-
quired by agents playing part in given functional relation-
ships.

2. Dialogic framework: A dialogic framework determines
the valid illocutions that can be exchanged among the
agents participating in an electronic institution, which in-
volves a vocabulary (ontology) and some agent commu-
nication language (ACL).

3. Communication scenes:A scene defines an interaction
protocol among a set of agent roles, and using some di-
alogic framework.

4. Performative structure:A performative structure is a net-
work of connected scenes that captures the relationships
among scenes. A performative structure constrains the
paths agents can traverse to move from one scene to an-
other, depending on the roles they are playing.

Communication
Agent capabilities should be specified independently of
other agents in order to maximize their reuse and facilitate
their specification by third party agent developers. In the
general case, agent developers do not know a priori the tasks
that could be achieved by a particular capability, neither the
domains they could be applied to. As a consequence, the
team roles an agent could play using a capability are not
known in advance, thus the scenes used to specify the com-
munication requirements of an agent over certain capabil-
ity cannot be specified in terms of specific team-roles, but
in terms of abstract, generic problem solving roles. Since
ORCAS teams are designed in terms of a hierarchical de-
composition of tasks into subtasks, then teamwork inOR-
CAS is straightforwardly organized as a hierarchy of team-
roles. Some positions within a team (team-roles) are bound
to a task-decomposer, thus the agents playing those team-
roles are responsible of delegating subtasks to other agents,
receiving the results, and performing intermediate data pro-
cessing between subtasks. In such an scenario, we can estab-
lish an abstract communication model with two basic roles:
coordinator, which is adopted by an agent willing to decom-
pose a task into subtasks, andoperator, which is adopted by
the agent having to perform a task on demand, using the data
provided by another agent that acts as coordinator of a top-
level task



Figure 7: Example of a communication scene

Figure 8: Choosing scenes during Team Formation

Figure 7 shows an example of a scene depicting the com-
munication requirements of an agent over a capability. This
example shows a typical request-inform protocol in terms
of the ORCAS generic roles:coordinator (requester) and
operator(informer).

Operational description
The ORCAS approach to specify the operational descrip-
tion of a task-decomposer is based on performative struc-
tures, with some distinctive features. InORCAS, as in
the e-institutions formalism, each scene within a performa-
tive structure corresponds to an interaction protocol. How-
ever, inORCAS the scenes within a performative structure
are not instantiated beforehand. Actually, these scenes are
instantiated during the team-formation process using as a
source the set of communication scenes shared by the agents
willing to interact

Each scene corresponds to the communication required to
solve a subtask, which implies an agent acting as coordina-
tor invoking the capability provided by another agent acting
as operator. Both the coordinator and the operator must ad-
here to the same scene in order to communicate, and as a
consequence, the scene must be chosen out of the scenes
supported by both agents (see Figure 8). Since agents are
selected dynamically during the Team Formation process,
then the scenes used withinORCAS performative structures
must also be chosen dynamically, before starting Teamwork.

Figure 9 shows an example of a performative structure
specifying the operational description of theAggregation
task-decomposer, which decomposes a task into two sub-
tasks:Elaborate-items andAggregate-items. Therefore,
this performative structure has two scenes (in addition to
theStart andEnd scenes), one for each subtask, and three
roles: x, y, z. There is one role of typecoordinator(x) to

be played by the agent applying the task-decomposer, and
as many operators as subtasks. In the example there are two
operators, one (y) participating in theElaborate-items (EI)
scene, and another (z) participating in theAggregate-Items
(AI) scene. Notice that the coordinator (x) is the same in
both scenes, it enters first the EI scene, and can enter the AI
scene only after finishing the EI scene.

Figure 9: Task-decomposer operational description

So far, we have addressed the performative structure as-
sociated to a single task-decomposer, but what about the op-
erational description of an entire team?

TheORCAS organization of a team adheres to the hier-
archical decomposition of task into subtasks embodied by a
task-configuration: starting from a top team-role, each team-
role associated to a task-decomposer introduces a set of
team-roles subordinated to it. Since each task-decomposer
has an operational description described by a performative
structure, therefore, the operational description of a team can
be modelled as a nested structure of performative structures
(Figure 10 shows an example). There is one performative
structure for each task-decomposer, starting from the team-
role associated to the root task of a task-configuration (the
team-leader).

Figure 10: Teamwork as a nested structure of performative
structures

Figure 10 sums up the specification of the teamwork ac-
tivity as a nested structure of performative structures. No-
tice that there is a performative structure for each task-
decomposer in the task-configuration, and there is one scene
for each task. Performative structures embody which roles



are required to play each scene, and the dependencies among
scenes, e.g. some scenes must be finished before starting an-
other scene, other scenes can be performed in parallel, and
some scenes can be instantiated multiple times.

The teamwork process follows the hierarchical structure
of a task-configuration, decomposing a task into subtasks
when there is a task-decomposer. The teamwork process
starts with a team-leader having to apply a task-decomposer.
The team-leader initiates teamwork by following the perfor-
mative structure specified in the operational description of
its task-decomposer (Metasearch in Figure 10). Each scene
within the performative structure refers to a communication
scene to be played by the team-leader acting as coordinator
and another agent allocated a subtasks, and playing the oper-
ator role. Since some of the subtasks may be bound to task-
decomposers, a new performative structure must be carried
over for each new task-decomposer. The first performative
structure (the one initiated by the team-leader) cannot finish
until the subsequent performative structures are finished,in
other words, performative structures are nested.

In Figure 10, there are two task-decomposers
(Metasearch and Aggregate), and thus there are two
performative structures, one (Aggregate)) within the
other. Each time a new team is formed complying with a
task-configuration, a new structure of nested performative
structures is composed and their scenes instantiated. We
regard this structure as a dynamic institution, since it
is configured on-the-fly, out of the communication ca-
pabilities of agents and the operational descriptions of
tasks-decomposers.

Conclusions
TheORCAS framework explores the feasibility of the Prob-
lem Solving Methods (PSMs) approach to describe agent ca-
pabilities in a way that maximizes their reuse across multi-
ple application domains. However, since PSMs were not de-
signed having agents in mind, we have had to adapt them
to deal with agent specific concepts such as communica-
tion, coordination and cooperation. Having situated our
framework in the context of mediated architectures for co-
operation, we have extended PSMs to obtain a full-fledged
Agent Capability Description Language including not only
the functional description of a capability, but also the com-
munication requirements and the operational description of
capabilities. We have adapted electronic institutions con-
cepts to specify such aspects of a capability. Specifically,
communication requirements are specified as scenes, and the
operational description of task-decomposers is specified us-
ing performative scenes.

ORCAS integrates the architectural patterns that are the
core of the knowledge modelling stance, and the require-
ments of an agent-centered approach to cooperative problem
solving. The result is a model of the Cooperative Problem
Solving process that enables a MAS to conform by to the
requirements of every particular instance of a problem. The
key of the model is a Team-Design stage, that applies and
solves a ”bottom-up design problem” in the context of coop-
erative MAS. This process determines a possible configura-
tion of a team in terms of the tasks to be solved, the capabil-

ities required, and the domain knowledge available, in such
a way that the specific requirements of the problem at hand
are satisfied.ORCAS ideas are endorsed by the implemen-
tation of an agent infrastructure that has been tested in prac-
tice: theORCAS e-Institution. But rather than being just an
application of the e-Institutions formalism, theORCAS in-
frastructure can be seen as a meta institution where dynamic
problem-solving institutions are configured on-the-fly so as
to satisfy stated problem requirements. Some elements from
the electronic institution formalism have been adapted and
incorporated as components of theORCAS ACDL. These
elements —-scenes and performative structures— are de-
fined for each capability, and are used as building blocks to
build a new electronic institution each time a team is formed.
That institution configured on-the-fly is the shared social
layer used by team members to effectively communicate and
coordinate during the teamwork.

Some of our proposals are related to recent research
on interoperability among heterogeneous agents. The way
our approach describes agent capabilities is similar to the
LARKS ACDL (?), used in the RETSINA infrastructure (?),
but there also notable differences: first of all,ORCAS intro-
duces domain models as a key element to maximize reuse of
capabilities across several application domains; and second,
while the RETSINA approach is focused just in the func-
tional aspects of a capability (Grosz & Kraus 1996), the
ORCAS framework covers also the communication and the
coordination aspects of teamwork, using concepts from the
e-Institution formalism.

We adhere to the view of Internet as an open environment
where providers and requesters of capabilities meet and in-
teract to solve specific problems by using the resources at
hand. This view of Internet as a distributed computational
platform is in spirit the same of the Semantic Web initia-
tive, in particular, our view of agent capabilities is closer
to Semantic Web Services frameworks such as the DAML-
S ontology (The DAML-S Consortium 2001). From the
Semantic Web Services paradigm, building an application
is basically a process of composing, connecting and veri-
fying the properties of web services in a way that resem-
bles the compositional approach taken in theORCAS Team
Design stage. There are, however, two outstanding differ-
ences between Semantic Web Services andORCAS. On the
one hand,ORCAS agents are autonomous entities that can
decide to accept or to refuse a request, while services are
reactive, passive entities which are directly invoked by the
client; therefore, instead of a centralized composition ofser-
vices, we view the composition of capabilities as a negotia-
tion process among autonomous agents. On the other hand,
our language for describing capabilities is domain indepen-
dent, since it is intended to maximize reuse, while existing
SWS frameworks ignore this issue, since they are assume
to be domain dependent by nature (a Web service is associ-
ated to some concrete domain, like the weather of a specific
country in a weather forecasting service).

References
Bansal, S., and Vidal, J. M. 2003. Matchmaking of web
services based on the DAML-S service model. InProceed-



ings of the Second International Joint Conference on Au-
tonomous Agents and Multiagent Systems.
Breuker, J., and Van de Velde, W., eds. 1994.Com-
monKADS Library for Expertise Modelling. IOS Press.
Bryson, J. J.; Martin, D.; McIlraith, S.; and Stein, L. A.
2002. Agent-based composite services in daml-s: The
behavior-oriented design of an intelligent semantic web.
In Zhong, N.; Liu, J.; and Yao, Y., eds.,Web Intelligence.
Springer-Verlag.
Decker, K.; Sycara, K.; and Williamson, M. 1997. Middle-
agents for the internet. InProceedings the 15th Interna-
tional Joint Conference on Artificial Intelligence, 578–583.
Decker, K.; Williamson, M.; and Sycara, K. 1996. Match-
making and brokering. InProceedings of the 2nd Interna-
tional Conference in Multi-Agent Systems.
Erickson, T. 1996. An agent-based framework for interop-
erability. In Bradshaw, J. M., ed.,Software Agents. AAAI
Press.
Esteva, M.; Rodriguez, J. A.; Sierra, C.; Garcia, P.; and Ar-
cos, J. L. 2001. On the formal specifications of electronic
institutions. InAgent-mediated Electronic commerce. The
European AgentLink Perspective, volume 1991 ofLecture
Notes in Artificial Intelligence, 126–147.
Esteva, M. 1997.Electronic Institutions: From Specifica-
tion to Development. Ph.D. Dissertation, Universitat Aut-
noma de Barcelona.
Genesereth, M. R., and Ketchpel, S. P. 1997. Software
agents.Communications of the ACM37(7).
Giampapa, J. A., and Sycara, K. 2002. Team-oriented
agent coordination in the retsina multi-agent system.
Technical Report CMU-RI-TR-02-34, Robotics Institute,
Carnegie Mellon University, Pittsburgh, PA. Presented at
AAMAS 2002 Workshop on Teamwork and Coalition For-
mation.
Gómez, M., and Abasolo, J. M. 2003. A general frame-
work for meta-search based on query weighting and nu-
merical aggregation operators. InIntelligent Systems for
Information Processing: From Representation to Applica-
tions. Elsevier Science. 129–140.
Gómez, M., and Plaza, E. 2004. Extending matchmaking
to maximize capability reuse (to appear). InProceedings
of the Third International Joint Conference on Autonomous
Agents and Multi Agent Systems.
Gómez, M. 2004.ORCAS: Open, Reusable and Config-
urable Multiagent Systems. Ph.D. Dissertation, Universitat
Autnoma de Barcelona.
Grosz, B. J., and Kraus, S. 1996. Collaborative plans for
complex group action.Artificial Intelligence86(2):269–
357.
Guarino, N. 1997. Semantic matching: Formal ontolog-
ical distinctions for information organization, extraction,
and integration. In Pazienza, M., ed.,Summer School on
Information Extraction, 139–170. Springer Verlag.
Hafedh Mili, F. M., and Mili, A. 1995. Reusing soft-
ware: Issues and research directions.Software Engineering
21(6):528–562.

Motta, E.; Fensel, D.; Gaspari, M.; and Benjamins, A.
1999. Specifications of knowledge components for reuse.
In Proceedings of SEKE ’99, 1999.
Motta, E. 1999. Reusable Components for Knowledge
Modelling, volume 53 ofFrontiers in Artificial Intelligence
and Applications. IOS Press.
Newell, A. 1982. The knowledge level.Artificial Intelli-
gence28(2):87–127.
Nodine, M.; Bohrer, W.; and Ngu, A. 1999. Semantic
brokering over dynamic heterogeneous data sources in in-
fosleuth. InICDE, 358–365.
Noriega, P. 1997.Agent-Mediated Auctions: The Fish-
Market Metaphor. Ph.D. Dissertation, Universitat Aut-
noma de Barcelona.
Park, J. Y.; Gennari, J. H.; and Musen, M. A. 1998. Map-
pings for reuse in knowledge-based systems. InProceed-
ings 11th Workshop on Knowledge Acquisition, Modelling
and Management.
Payne, T. R.; Paolucci, M.; and Sycara, K. 2001. Advertis-
ing and matching daml-s service descriptions. InSemantic
Web Working Symposium (SWWS).
Rodŕıguez-Aguilar, J. A. 1997.On the Design and Con-
struction of Agent-mediated Electronic Institutions. Ph.D.
Dissertation, Universitat Autnoma de Barcelona.
The DAML-S Consortium. 2001. Daml-s: Semantic
markup for web services. InProceedings of the Interna-
tional Semantic Web Workshop.
Tidhar, G.; Rao, A.; and Sonenberg, E. 1996. Guided
team selection. InIn Proceedings of the 2nd International
Conference on Multi-agent Systems (ICMAS-96).
Valente, A.; Van de Velde, W.; and Breuker, J. 1994. The
CommonKADS expertise modelling library. In Breuker,
J., and Van de Velde, W., eds.,CommonKADS Library for
Expertise Modeling, volume 21 ofFrontiers in Artificial
Intelligence and Applications. IOS-Press. 31–56.
Wooldridge, M., and Jennings, N. R. 1994. Towards a the-
ory of cooperative problem solving. InProceedings Mod-
elling Autonomous Agents in a Multi-Agent World, 15–26.
Wooldridge, M., and Jennings, N. R. 1999. The coopera-
tive problem-solving process.Journal of Logic and Com-
putation9(4):563–592.


