
Learning to Form Dynamic Committees

Santiago Ontañón
∗

and Enric Plaza
IIIA, Artificial Intelligence Research Institute

CSIC, Spanish Council for Scientific Research
Campus UAB, 08193 Bellaterra

Catalonia (Spain).

(santi,enric)@iiia.csic.es,
http://www.iiia.csic.es

ABSTRACT
Learning agents can improve performance when they cooperate
with other agents. Specifically, learning agents forming a commit-
tee outperform individual agents. This “ensemble effect” is well
know for multi-classifier systems in Machine Learning. However,
multi-classifier systems assume all data is know to all classifiers
while we focus on agents that learn from cases (examples) that are
owned and stored individually. In this article we focus on the selec-
tion of the agents that join a committee for solving a problem. Our
approach is to frame committee membership as a learning task for
the convener agent. The committee convener agent learns to form
a committee in a dynamic way: at each point in time the convener
agent decides whether it is better to invite a new member to join
the committee (and which agent to invite) or to close the member-
ship. The convener agent performs learning in the space of voting
situations, i.e. learns when the current committee voting situation
is likely to solve correctly (or not) a problem. The learning pro-
cess allows an agent to decide when to individually solve a prob-
lem, when it is better to convene a committee, and which individual
agents to be invited to join the committee. Our experiments show
that learning to form dynamic committees results in smaller com-
mittees while maintaining (and sometimes improving) the problem
solving accuracy.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Artificial Intelligence—Dis-
tributed Artificial Intelligence; G.3 [Mathematics of Computing]:
Distribution functions; I.2.11 [Computing Methodologies]: Arti-
ficial Intelligence—Learning

General Terms
Experimentation

∗Main author, student

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2002 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Keywords
Cooperative CBR, Multiagent CBR, Collaboration Policies.

1. INTRODUCTION
A main issue in multiagent systems is how an agent decides

when to cooperate with other agents. Specifically we focus on the
issue of an agent that has to decide whether it is able to individu-
ally solve a problem or asks others to help it to solve the problem
forming a Committee. For our purpose, a Committee is a collection
of agents that cooperate in solving a problem by casting a vote on
a (individually endorsed) solution where the overall solution is that
with maximum votes. The voting can have several schemes, major-
ity voting or approval voting—we’ll see we will be using bounded
weighted approval voting (BWAV).

Concerning the incentive of agents to cooperate in the form of a
Committee, the basic reason is that they can improve their perfor-
mance in solving problems—since we focus on classification tasks,
the Committee organization improves (in general) the classification
accuracy with respect to individual agents. This called “ensemble
effect” is well know for multi-classifier systems in Machine Learn-
ing. However, multi-classifier systems assume all data is known
to all classifiers while we focus on agents that learn from cases
(examples) that are owned and stored individually. The ensemble
effect essentially means that when the individual classifiers error
is not correlated to other classifiers, the Committee improves with
respect to all individual classifiers.

A second issue on multiagent cooperation involves the selection
of which agents we want to cooperate with. In terms of our current
framework, this involves the selection (by a convener agent) of the
agents invited to join a Committee. Because of the ensemble effect,
the default selection policy is to invite all available and capable
agents to join a Committee. However, this process can be expensive
or slow if the committee is big, and it is not evident that this policy
is the best on all situations.

We present a learning framework that unifies both the “when”
and “who” issues: learning a decision procedure for when to col-
laborate and selecting which agents are better suited for collabo-
ration. In this framework the convener agent learns to assess the
likelihood that the current committee will give a correct solution.
If the likelihood is not high, the convener agent has to invite a new
agent to join the Committee and has to decide which agent to in-
vite. The initial situation of this framework starts with the convener
agent that receives a problem forming a “Committee of one” and
then deciding whether the problem can be solved in isolation or it
is better to convene a Committee.

We present a proactive learning approach, in which an agent per-

forms some activity on the multiagent system in order to learn this
decision procedure (or policy) that we call the Dynamic Committee
policy. The agent performs learning in the space of voting situ-
ations, i.e. learns when the current committee voting situation is
likely to solve correctly (or not) a problem. Specifically, an agent
using our proactive learning approach induces a decision tree that
classifies the current voting situation as positive (likely to be cor-
rect) or negative—in which case the Committee needs to be en-
larged. We will see that the decision tree can also learn when a
specific agent is recommended to be invited to join the Committee.
Our experiments show that learning to form dynamic committees
results in smaller committees while maintaining (and sometimes
improving) the problem solving performance.

The structure of the paper is as follows. First, we define a mul-
tiagent system, a Committee and voting scheme. Then we intro-
duce the Dynamic Committee interaction protocol with an individ-
ual Dynamic Committee policy. Section 4 explains proactive learn-
ing of the Dynamic Committee policy and section 5 shows the em-
pirical results of several experiments using this policy. The paper
closes with a section on related work and some conclusions.

2. MULTIAGENT CBR SYSTEMS
We focus on agents that use Case Based Reasoning (CBR) to

solve problems. CBR techniques suit perfectly into multiagent sys-
tems and give the agents the capability of autonomously learn from
experience by just retaining new cases (problems with known solu-
tion). Therefore, we talk about Multiagent CBR Systems (MAC).

The agents in a MAC system are able to solve problems indi-
vidually, i.e. agents can apply a CBR method using only their local
case base to solve a new problem. Problems to be solved can arrive
to an agent by an external user, or by another agent. By allowing
an agent to send problems to another agent, MAC systems gain a
lot of flexibility. For instance, if an agent Ai receives a problem
from an user and decides that there is not enough information to
solve the problem in the local case base, the problem can be sent to
another agent Aj expecting that Aj can solve the problem. There-
fore, agents in a MAC system can collaborate with other agents in
the process of finding a solution for a problem.

Formally, a MACsystem M = {(Ai, Ci)}i=1...n is composed
on n agents, where each agent Ai has a case base Ci. In this frame-
work we restrict ourselves to analytical tasks, i.e. tasks (like clas-
sification) where the solution is achieved by selecting from an enu-
merated set of solutions K = {S1 . . . SK}. A case base Ci =
{(Pj , Sk)}j=1...N is a collection of pairs problem/solution. Each
agent Ai is autonomous and has learning capabilities, i.e. each
agent is able to collect autonomously new cases that can be incor-
porated to its local case base.

Moreover, since we focus in analytical tasks, there is no obvi-
ous decomposition of the problem in subtasks. Therefore, when
an agent Ai wants to cooperate with another agent Aj for solving a
problem P , they cannot decompose the problem and each one solve
a particular part. The only way is to send the complete problem P
to Aj . After Aj answers Ai with the solution found for P , Ai can
do anything with this solution. A simple way for Ai to use this
solution is to compare it with the solution found by himself, if both
solutions agree Ai can increase the degree of confidence on the so-
lution found, and if both solutions disagree, maybe it’s interesting
to send the problem to some other agent to have a third opinion.

When an agent Ai asks another agent Aj help to solve a problem
the interaction protocol is as follows. First, Ai sends a problem
description P to Aj . Second, after Aj has tried to solve P using its
case base Cj , it sends back a message that is either :sorry (if it
cannot solve P) or a solution endorsement record (SER). A SER has

the form 〈{(Sk, Ej
k)}, P, Aj〉, where the collection of endorsing

pairs (Sk, Ej
k) mean that the agent Aj has found Ej

k cases in case
base Cj endorsing solution Sk—i.e. there are a number Ej

k of cases
that are relevant (similar) for endorsing Sk as a solution for P. Each
agent Aj is free to send one or more endorsing pairs in a SER
record.

In our framework, agents use a voting mechanism ibn order to
aggregate the information contained in various SERs coming from
other agents. This voting scheme is explained in the next section.

2.1 Voting Scheme
The principle behind the voting scheme is that the agents vote

for solution classes depending on the number of cases they found
endorsing those classes. However, we want to prevent an agent
having an unbounded number of votes. Thus, we will define a nor-
malization function so that each agent has one vote that can be for a
unique solution class or fractionally assigned to a number of classes
depending on the number of endorsing cases.

Formally, letAt the set of agents that have submitted their SERs
to the agent Ai for problem P . We will consider that Ai ∈ A

t and
the result of Ai trying to solve P is also reified as a SER. The vote
of an agent Aj ∈ A

t for class Sk is

V ote(Sk, Aj) =
Ej

k

c +
P

r=1...K
Ej

r

where c is a constant that on our experiments is set to 1. It is easy to
see that an agent can cast a fractional vote that is always less than
1. Aggregating the votes from different agents for a class Sk we
have ballot

Ballott(Sk,At) =
X

Aj∈A
t

V ote(Sk, Aj)

and therefore the winning solution class is the class with more votes
in total, i.e.

Solt(P,At) = arg max
k=1...K

Ballot(Sk,At)

This voting scheme can be seen as a variation of Approval Vot-
ing [1]. In Approval Voting each agent vote for all the candidates
they consider as possible solutions without giving any weight to its
votes. In our scheme, Approval Voting can be implemented making
V ote(Sk, Aj) = 1 if Ej

k 6= 0 and 0 otherwise.
There are two differences between the standard Approval Voting

and our voting scheme. The first one is that in our voting scheme
agents can give a weight to each one of its votes. The second differ-
ence is that the sum of the votes of an agent is bounded to 1. Thus
we can call it Bounded-Weighted Approval Voting (BWAV).

The next section presents the Committee collaboration strategy,
that uses this voting scheme.

2.2 Fixed Committee Strategy
In this collaboration strategy the agent members of a MAC sys-

tem M are viewed as a committee. An agent Ai that has to solve a
problem P, sends it to all the other agents inM. Each agent Aj that
has received P sends a solution endorsement record 〈{(Sk, Ej

k)},
P, Aj〉 to Ai. The initiating agent Ai uses the voting scheme above
upon all SERs, i.e. its own SER and the SERs of all the other agents
in the multiagent system. The problem’s solution is the class with
maximum number of votes.

Since all the agents in a MAC system are autonomous CBR
agents, they will not have got the same problem solving experi-
ence. Therefore, the cases in their case bases will not be the same.
This ensures that the errors that each agent make in the solution of
problems will not be very correlated, i.e. each agent will not make
errors in the same problems. Thus, using the committee collabo-
ration policy an agent can increase its problem solving accuracy
because it matches the preconditions of the ‘’ensemble effect”.

3. DYNAMIC COMMITTEES
Using the Committee collaboration policy, all the agent members

of aMAC take part in the solution of every problem. However, this
policy can have several drawbacks. First of all, if theMAC system
is composed of a large collection of agents, making every agent
to take part part in the solution can have a great cost. Moreover,
there can be some agents not willing to take part in the solution of
every problem. But even if the cost is not a problem and all the
agents are willing to take part in the solution of each problem it is
not clear that the best strategy to solve a problem is by aggregating
always the solution of all the agents in the system. For example,
if a group of agents inside the MAC have a error correlation (i.e.
they fail to solve almost the same problems), it would be better
to ask only one agent of that group, since asking the others will
only report redundant information. For these reasons, it would be
interesting to have dynamic committees, i.e. each time an agent
needs to solve a new problem, this agent should decide which is
the best subcommittee to solve that problem.

Choosing an optimum committee given a new problem can be a
difficult task, and for that reason we propose an incremental pro-
tocol to build the committee based on learning techniques. This
protocol is called the Dynamic Committee (DC) Protocol.

Let Ai be an agent that wants to solve a problem P . Ai wants to
choose the best committee to solve that particular problem P , thus
we will call Ai the committee convener. Let A = {A1, . . . , An}
be the set of all the agents in the MAC and Ar

t be the set of all
the agent in the MAC that still have not been invited to join the
committee at a time t. The DC protocol works as follows:

1. Initially t = 0 and Ar
t = A− {Ai}.

2. Ai solves the problem P individually. Rt = {sP
i }, where

sP
i is the SER obtained by Ai for the problem P . We can

consider that initially Ai has created a committee consisting
on only one member, himself.

3. Unless Ar is emptyAi has to decide whether to invite an-
other agent to join the committee or not. If Ar is empty the
protocol moves to the step 6.

• If Ai decides not to invide another agent to join the
committee the protocol moves to the step 6.

• Otherwise, Ai has to decide which agent Aj from the
remaining agents Ar

t to invite to join the committee.

4. Aj is removed from the set of remaining agents: Ar
t+1 =

Ar
t−{Aj} and Ai waits for the answer of Aj to the invitation

to join the committee.

• If Aj refuses to join the committeeRt+1 = Rt and the
protocol moves to the step 3.

• Otherwise, the problem P is sent to Aj .

5. When the SER from Aj is received we add it to the current
list of SERs: Rt+1 = Rt ∪ {s

P
j }. Then the protocol moves

to the step 3.

6. The final solution is obtained using the voting process among
the set of SERsRt of all the agents of the current committee
for the problem P . The protocol ends.

In order to use the DC protocol, an agent needs to have a pol-
icy to decide when to invite new agents to join the committee and
which will be these agents. This is called the Dynamic Committee
(DC) policy. The DC policy is the responsible of of keeping small
committees and of choosing which agents will be part of the com-
mittee. Also notice, that the first time that the DC policy is used,
is to decide wether to collaborate with other agents or not. Thus,
if at the first iteration the DC policy decides that there is no need
of inviting any more agent to join the committee, the agent Ai will
solve the problem in isolation.

In the following sections we will formally define the DC policy,
then we will present a learning technique that allows each agent to
proactively learn its own DC policy. After that, we will show how
to integrate this learned DC policy into the DC protocol.

3.1 Dynamic Committee Policy
Let us define in more detail the task of the DC policy, given an

agent Ai that wants to solve a problem P . At a time t the agent
Ai has build a committee composed of a set of agents At and have
received a set of SERs Rt coming from the agents of the current
committee. The set of all the remaining agents to be invited to join
to committee will be noted by Ar

t . The task of the DC policy is to
predict whether the solution obtained by using the voting process
among the SERs in Rt is likely to be correct or not. In the second
case, the agent has to choose one agent of the remaining ones to
invite it to join the committee. There’s situations where it is not
clear which one of the other agents is the best to join the committee,
in these cases the DC policy can just say that a new agent should
join the committee but without giving any preference to anyone.

We can now formally define the DC policy. The DC policy is
a function DCPolicy(Ar

t ,Rt) that can output values in the fol-
lowing set: {+, ∗} ∪ Ar

t , i.e. the output can be + (meaning that
there is no need to include more agent in the current committee),
∗ (meaning that a new agent has to join the committee but without
giving preference to anyone), or the name of one of the remaining
agents. We will call positive to the + output, because it means that
the current candidate solution is likely to be correct, and negative to
any other output, because they mean that the current candidate so-
lution isn’t likely to be correct. The following sections explain how
each agent can learn its own DC policy using a proactive learning
strategy.

4. PROACTIVE LEARNING
Since the Dynamic Committee policy is a function DCPolicy

(Ar
t) with output {+, ∗}∪Ar

t , the it can be seen as a classification
task where we have n + 2 classes ({+, ∗, A1, . . . , An}).

We will call a voting situation to the set of current SERs Rt

received from the current members of the committee because they
completely characterize the voting situation. Thus, the learning
task is to assign a class to each voting situation. In order to learn
the DC policy, each agent needs experience on the situations where
the policy should be applied, i.e. examples from where to learn.

The next section defines these examples. Then, we will explain
the proactive strategy that the agents can use to obtain the examples,
and finally how to learn the DC policy from those examples.

4.1 Defining the Training Examples
Each voting situation Rt will be characterized by several at-

tributes in order to be represented as a attribute-value vector:

• The attributes At
1 . . . At

n are boolean. At
i = 1 means that at

the time t the agent Ai is a member of the committee, and
a value 0 means that that agent still is not a member of the
committee.

• St
c, the candidate solution class.

• V t
max, the votes for the candidate solution class.

• V t
r , the sum of the votes for the rest of classes.

• ρt = V t
max/(V t

max+V t
r), the ratio of votes for the candidate

solution.

We will use these attributes to define our examples. Specifically,
we define a υ-example as the tuple 〈At

1...A
t
n, St

c, V
t

max, V t
r , ρt〉.

Each υ-example belongs to one of these classes {+, ∗, A1, ..., An}.
Therefore, we can have positive υ-examples: eg. (+, 〈At

1 . . . At
n,

St
c, V t

max, V t
r , ρt〉), characterizing voting situations where the can-

didate solution Sc is likely to be the correct one, and also negative
υ-examples: eg. (∗, 〈At

1 . . . At
n, St

c, V t
max, V t

r , ρt〉), characteriz-
ing voting situations where the candidate solution Sc is not likely
to be correct, and that it would be better to ask a new agent to join
the committee.

4.2 Obtaining the Training Examples
In this section we are going to present the proactive process that

an agent follows in order to obtain υ-examples from where to learn.
Since every agent Ai has a case-base (collections of problems

with known solution), Ai can obtain υ-examples of voting situa-
tions from which to learn the termination check. An agent Ai can
send its own problems to the other agents and then assess the cor-
rectness of the voting processes derived from the SERs received
from those agents. Thus, an agent Ai obtains a training set for
learning the DC policy as follows:

1. Choose a subset Bi of cases from its own case-base Bi ⊆
Ci.

2. For each problem P in Bi.

3. Ai sends P to the other agents, they send back a SER.

4. Ai solves P by itself by a leave-one-out method, i.e. it solves
P using Ci − P as the case base, creating its own SER.

5. With the set Rt of SERs obtained in steps 3 and 4, Ai builds
υ-examples of voting situations.

Note that from the collection Rt of SERs obtained in the step 5
we can build more than one υ-example. In fact we can build a υ-
example for any possible non empty subset Rx

t ⊆ Rt. Thus, step
5 is decomposed in 3 subsetps:

1. Choose a collection R of non empty subsets of Rt, i.e. R ⊆
P(Rt).

2. For each voting situation Rx
t ∈ R let υx = 〈At

1...A
t
n, St

c,
V t

max, V t
r , ρt〉 be the example characterizing that situation.

3. If the most voted solution is the correct class, build a positive
example (+, 〈At

1 . . . At
n, St

c, V
t

max, V t
r , ρt〉) otherwise build

a negative example.

In the step 3, when a negative υ-example has to be built, the spe-
cific negative class (from ∗, {A1, . . . , An}) has yet to be chosen.
A υ-example belonging to a class Aj will mean that Aj is the next

agent to be asked to join the committee in the voting situation char-
acterized by the υ-example. To choose this specific negative class,
the agent has to find if there is any agent Aj (from the subset of
agents that still haven’t joined the committee) that if added to the
committee, the outcome of the voting process can change to be the
right solution class. This can be done just by adding the SER sent
by the agent Aj to the set Rx

t and testing the outcome of the voting
process with the right solution class. If there is no such an agent
Aj that added to the committee can change the result of the voting
process, the υ-example will be considered simply to belong to the
∗ negative class. Now it is clear that the reason to include this new
negative class is to be able to express the lack of knowledge about
which agent to choose in an explicit way. When using the learned
DC policy, the interpretation is that a ∗ class means that we have to
ask another agent to join in the committee (because the current can-
didate solution is not right), but we don’t have evidence on which
agent to add.

Notice that the size of the setR depends on the number of agents
involved. In our experiments we have chosen all the possible sub-
sets of R to build υ-examples. But it is not feasible when the num-
ber of agents is not small, and a sample of all possible υ-examples
must be chosen. A good sample Bi of the cases in the agent’s case
base also has to be chosen, in our experiments we use all the case
base, i.e. Bi = Ci.

The result of the process explained in this section is a collection
of υ-examples that will constitute the training set Υi from where to
learn the DC policy.

4.3 Induction of a decision tree
Once that an agent Ai has enough υ-examples, a good DC policy

can be learnt. The agents learn the DC policy using a decision tree
learning algorithm with a discretization technique for the numeric
attributes.

To build the decision tree Ti, each agent Ai use a standard ID3
algorithm ([12]), but with the following considerations:

• Discretization of numerical attributes: Each numeric attribute
a is discretized to have 2 classes. To do this, the best cutpoint
κ (in the sense of maximizing the information gain) that di-
vides Υi in two subsets is obtained. On one leaf of the deci-
sion tree we will have all the examples where value(a) < κ,
and in the other one all the examples wher value(a) ≥ κ.

• Pruning: If in some moment of creating the tree, the num-
ber of examples is very low (less than 20), that node is not
splitted any more, and is considered as a leaf. This is done to
avoid overfitting.

As we have very few attributes, it is likely that in each leaf of the
tree there is a mix of examples of several classes. This situation os
shown in Figure 1. The tree shown is the learned tree by an agent
called A1 in a system composed of 5 agents. Notice that the class
ocurring more times is the positive class +. This is as expected,
since the agents have an individual accuracy of about 75%. By
looking at the tree, we can see that the most discriminant attribute
is ρ. This is expected, since ρ represents the fraction of votes for
the candidate solution. Notice that when ρ is lower than 0.517 there
are very few positive examples and that the leaf where most of the
positive examples are is the leaf where ρ > 0.517, Vrest < 0.875
and Vmax > 1.875, i.e. when there is a big fraction of votes for the
candidate solution and few votes for the rest of solutions.

In order to use the decision tree, each agent transform the leaves
of the tree into leaves containing a single class. To do this trans-
formation in a leaf l, let pl be the number of positive examples be-
longing to that leaf and nl the number of examples not belonging

ρ > 0.517

Vmax > 1.875

Vmax > 2.375

Sc

Vrest > 0.875A1

A2

Sc A1

A3A1A5

A1

+ : 2
* : 2

A2 : 7
A3 : 4
A4 : 5

A5 : 12

+ : 3
* : 4

+ : 6
* : 2

A2 : 2
A3 : 4
A4 : 3

+ : 17
* : 12

+ : 227

+ : 24
* : 3

+ :59
A5 :1

+ : 72
* : 8

+ : 52
* : 3

+ : 39
* : 4

+ : 20

+ : 23
* : 8

+ : 10
* : 4

+ : 6
* : 2

A5 : 4

+ : 6+ : 41
* : 6

AX AS
HA

AX AS HA

1

0 1

1

1 1 1

1

0

0

0 0 0

0

Figure 1: Learned tree for an agent working in a 5 agent MAC. The labels AX, AS and HA in some branches mean that Sc equals
that solution class in that branch. The nodes labelled with Ai test it the agent Ai is a member of the current committee or not.

the the positive class (negative examples). Then, we can consider
Nl = nl

(nl+pl)
as the predicted probability of an example to be in

the positive class. This probability can be interpreted as the prob-
ability of the candidate solution derived from the voting situation
characterized by an example falling in the leaf l of being the right
one. In other words, if we characterize a voting situation, we clas-
sify it using the decision tree Ti, and it falls in a leaf l, the predicted
probability of obtaining the right solution class with the current
members of the committee is Nl. If we asusme that we want to ob-
tain dynamic committees that achieve high accuracies, we want to
maximize Nl. If Nl for a given voting situation is not above a fixed
threshold ν, the agent will consider that the current committee is
not good enough. Therefore, the leaves of the decision tree Ti are
transformed in the following way:

For each leaf l:

• If Nl > ν, the leaf is considered positive, and is labelled +.

• If Nl ≤ ν, the leaf is considered negative, and it is labelled
with the negative class with more examples on that leaf, eg.
if we have in one leaf 25 examples of the class +, 14 of the
class −, and 9 of the class A1, the leaf will be labelled as −,
because is the negative class with more examples (14 versus
the 9 examples of the class A1.

• If there are very few examples in one leaf (i.e. less than 10
in the experiments), we consider that the estimation Nl of
the probability of the candidate solution to be the right one
has not enough confidence, and thus we consider the leaf as
negative. If we look again at the Figure 1, this happens in the
third leaf starting from the right.

The Figure 2 shows the tree resulting from transforming that on
Figure 1. Notie, that all the positive leafs are under the conditions
ρ > 0.517 and Vrest < 0.875, i.e. when there is a big fraction
of votes for the candidate solution and few votes for the rest of
solutions. Notice also that the third leaf starting from the right has
been labelled as negative because it had less than 10 examples.

In Figure 2, the threshold ν has been fixed to 0.9, and this will
also be the value used in the experiments presented in the next sec-
tion. After this transformation, the decision tree is ready to be used.

In the following we explain how to integrate this learned tree into
the DC protocol to be used as the DC policy.

4.4 Using the Learned Policy
Once an agent Ai has learned its own tree Ti it can be used di-

rectly as the DC policy for be used inside the DC protocol. Each
time Ai has to decide whether to ask a new agent to join the com-
mittee or not, the current voting situation is characterized by the
corresponding attributes υt = 〈At

1...A
t
n, St

c, V t
max, V t

r , ρt〉. Then
this characterization υt is classified using the learned tree Ti. If
it is classified as belonging to de + class, no more agents will be
asked to join the committee, and the current candidate solution will
be considered as the final solution. If υt is classified in any of the
classes Ai, . . . , An, the agent with the same name will be asked to
join the committee. Finally, if the predicted class is ∗ one of the
remaining agents will be chosen randomly to be asked to join the
committee.

5. EXPERIMENTAL RESULTS
In this section we want to test if the learned Dynamic Commit-

tee policy is able to properly decide when to collaborate with other
agents and whether it is able to properly select which agents to in-
vite to join the committee. To assess the correctness of the learned
policy we have compared the behaviour of agents using Dynamic
Committee strategies with agents using Fixed Committee strategies
and agents that solve problems in isolation (without collaborating
with any other agent). We have made experiments with MAC sys-
tems composed of 3, 5, 7, 9 and up to 10 agents. The purpose of
varying the number of agents is to assess that the learning process
is general enough to be able to work under any configuration of a
MAC system.

We use the marine sponge classification problem as our test bed.
Sponge classification is interesting because the difficulties arise
from the morphological plasticity of the species, and from the in-
complete knowledge of many of their biological and cytological
features. Moreover, benthology specialists are distributed around
the world and they have experience in different benthos that spawn
species with different characteristics due to the local habitat condi-
tions.

We have designed an experimental suite with a case base of 280

ρ > 0.517

Vmax > 1.875

Vmax > 2.375

Sc

Vrest > 0.875A1

A2

Sc A1

A3A1A5

A1

A5

*A3 *+

*++

* +

*

*A5**

*

AX AS HA

AX AS HA

1

0 1

1

1 1 1

1

0

0

0 0 0

0

Figure 2: Learned tree for an agent working in a 5 agent MAC after being processed to have only one class per leaf.

7 0

7 2

7 4

7 6

7 8

8 0

8 2

8 4

8 6

8 8

9 0

3
Agents

5
Agents

7
Agents

9
Agents

1 0
Agents

Isolated

Committee

Dynamic Committee

Figure 3: Accuracy comparison of several MAC systems using
committee and dynamic committee collaboration policies.

marine sponges pertaining to three different orders of the Demo-
spongiae class (Astrophorida, Hadromerida and Axinellida). In an
experimental run, training cases are randomly distributed among
the agents without replication, i.e. there is no case shared by two
agents. In the testing stage unknown problems arrive randomly to
one of the agents. The goal of the agent receiving a problem is to
identify the correct biological order given the description of a new
sponge. The agents use a 3 nearest neighbour algorithm to solve
problems and the results presented here are the result of the aver-
age of 5 10-fold cross validation runs.

For each MAC system configuration tested, each agent receives
a different number of traning cases. For instance, in the 3 agent sce-
nario, the training set has only to be splitted into three parts (one
per agent), and therefore, each agent receives about 84 cases. But in
the 10 agent scenario, the training set is split into ten parts, and thus
the agents only receive 25.2 cases in average. Therefore, we must
have in mind that in out experiments, as more agents we have, each
agent have less information, and thus the individual classification
accuracy diminishes, and the incentives to collaborate increases ac-
cordingly.

Figure 3 shows the accuracy obtained by agents using the Dy-

0 % 2 0 % 4 0 % 6 0 % 8 0 % 1 0 0 %

3 Agents

5 Agents

7 Agents

9 Agents

10 Agents

Figure 4: Percent of times that the convener agent has convened
committees of different sizes.

namic Committee strategy. Accuracy of agents using the Fixed
Committee strategy and agents olving problems in isolation are also
shown for comparison purposes. The first thing we see is that by
using Dynamic Committees, the agents obtain much greater accu-
racy than solving problems in isolation, showing that the learned
Dynamic Committee policy is able to detect when there is a need
for convening a committee. Figure 3 also shows that the accuracy
obtained by agents using the Dynamnic Committee strategy and
agents using the Fixed Committee strategy is almost undistinguish-
able. This result shows that when the Dynamic Committee policy
decides not to invite any more agent to join the committee is be-
cause really there is no need to. Notice also that the difference
between the isolated agents scenario and the agents using Dynamic
Committees is greater in the experiments with a greater number
of agents. But, as explained before, this is because in the exper-
iments with a great number of agents, each agent has fewer ex-
amples, and thus individual accuracy drops. Dynamic Committee
strategy shows to be more robust under this conditions where the
data is very fragmented among the agents.

To show the effectiveness of the Dynamic Committee policy,
Figure 4 shows the how many times the convener agent builds a
committee of different sizes. For each configuration of the mul-

0

0 , 0 5

0 , 1

0 , 1 5

0 , 2

0 , 2 5

Isolated Fixed
Committee

Dynamic
Committee

Variance
Bias

Figure 5: Bias plus variance decomposition of the classification
error for a system with 5 agents.

tiagent system an horizontal bar is shown. This bar is divided in
several intervals: 3 intervals for a 3 agents system, 5 for a 5 agents
system, etc. Each interval means the percent of times that the con-
vener agent has build a committee of each size. The left most inter-
val represents the agent solving the problem in isolation, the second
interval represents a committee of size 2, etc. For instance, for the 9
agents system, we can see that in a 15.0% of the times the convener
agent has solved the problem in isolation, and that in the 48.3%
of the times, the commitee convened has been smaller or equal to
3 agents. However, we can see also that there is a 23.4% of the
times where the committee convened contains all the agents in the
system. Analyzing the results, we observed that those 23.4% of
problems were those where the agents had a great degree of dis-
agreement in the classification of the problem. That is to say, there
was never a big majority of votes for any solution class and the Dy-
namic Committee policy tried to invite more agents trying to solve
that situation. We have also observed that most of the errors of
the committee ocurred in that last case where the convener invited
all the agents to join the committee. Therefore, we can say that
the convener only invites all the agent to join the committee for re-
ally hard problems. In all the other configurations, the results are
very similar, and for instance in the 5 agents scenario the convener
agent works in isolation a 26.0% of the times, and only invites all
the agents to join the committee a 31.3% of the times.

All the experiments reported in this paper have been done with-
out replication of cases, i.e. there are no case shared by two agents.
Therefore, every agent in the system can report interesting infor-
mation to solve a problem. Clearly this is the best situation for the
standard committees and the worst for the dynamic committees,
since the ensemble effect gurantees us that we will obtain better
predictions by combining the predictions from all them. But even
that, we have shown that the dynamic committees can perform as
well as the standard committees in terms of accuracy, and that the
can do it at a much lower cost. As a future work, we plan to perform
experiments with replication of cases to confirm that the dynamic
committee policy will be able to deal with thr situation as well as
(or better) than the Fixed Committee.

Next section presents the bias plus variance analysis of the re-
sults.

5.1 Bias plus variance analysis
Bias plus Variance decomposition of the error [9] is a useful tool

to provide an insight of learning methods. Bias plus variance analy-
sis breaks the expected error as the sum of three non-negative quan-

tities:

• Intrinsic target noise: this is the expected error of the Bayes
optimal classifier (lower bound on the expected error of any
classifier).

• Squared bias: measures how closely the learning algorithm’s
prediction matches the target (averaged over all the possible
training sets of a given size).

• Variance: this is the variance of the algorithm’s prediction
for the different training sets of a given size.

Since the first quantity cannot be measured, the bias plus vari-
ance decomposition estimates the quantities of the squared bias
and variance. In order to estimate these quantities we are using
the model presented in [9]. Figure 5 shows the bias plus variance
decomposition of the error for a system composed of 5 agents.

Comparing the Fixed and Dynamic Committee strategies with
the individual solution of prolblems, we see that the error reduction
obtained is mainly due to a reduction in the variance component.
This result is expected since a general result of machine learning
tells that we can reduce the classification error of any classifier by
averaging the prediction of several classifiers when they make un-
correlated errors due to a reduction in the variance term [6].

However, comparing the Fixed Committee with the Dynamic
Committee results, we can see that with the Dynamic Committee
strategy the reduction of the error is not only in the variance term,
but there is a sensible reduction in the bias term of the error. This
can be explained by two facts: as the committees are smaller with
the Dynamic Committee strategy, the reduction of the variance term
is smaller, and the convener agent control over the outcome of the
voting process by using its capability to select which agents invite
to join the committee is the responsible of the reduction of the bias
term.

Therefore, we can conclude that the Dynamic Committee strat-
egy can reduce the error of an agent working in isolation not only
by the Committee effect of reducing the variance term but also by
a reduction of the bias term.

6. RELATED WORK
The “ensemble effect” is a general result on multiple model learn-

ing [8], that demonstrated that if uncorrelated classifiers with error
rate lower than 0.5 are combined then the resulting error rate must
be lower than the one made by the individual classifiers. The BEM
(Basic Ensemble Method) is presented in [11] as a basic way to
combine continuous estimators, and since then many other meth-
ods have been proposed: Stacking generalization [14], Cascade
generalization [7], Bagging [2] or Boosting [5] are some exam-
ples. However, all these methods do not deal with the issue of
“partitioned examples” among different classifiers as we do—they
rely on aggregating results from multiple classifiers that have ac-
cess to all data. Their goal is to use multiplicity of classifiers to
increase accuracy of existing classification methods. Our intention
is to combine the decisions of autonomous classifiers (each one
corresponding to one agent), and to see how can they cooperate to
achieve a better behavior than when they work alone. A more simi-
lar approach is the one proposed in [13], where a MAS is proposed
for pattern recognition. Each agent is a specialist recognizing only
a subset of all the patterns, and the predictions are combined dy-
namically.

The meta-learning approach in [3] is applied to partitioned data.
They experiment with a collection of classifiers which have only a
subset of the whole case base and they learn new meta-classifiers

whose training data are based on predictions of the collection of
(base) classifiers. They compare their meta-learning approach re-
sults with weighted voting techniques. The final result is an ar-
bitrator tree, a centralized and complex method whose goal is to
improve classification accuracy. We also work on “partitioned ex-
amples” but we assume no central method that aggregates results;
moreover we assume a multiagent approach where communication
and cooperation may have a cost that has to be taken into account.

A more similar approach is that taken in [10], where a distributed
CBR system is considered for personalized route planning. They
present collaborative case-based reasoning (CCBR) as a framework
where experience is distributed among multiple CBR agents. Their
individual agents, are only capable of solve problems that fall within
their area of expertise. When an agent cannot solve a problem, it
broadcasts the problem to the other agents, and if there is some
agent capable of solving it, if will return the relevant retrieved cases
to the initial agent. This approach differs from ours in the sense that
they only perform case retrieval in a distributed way. The initiating
agent receives all the relevant cases contained in all the case bases
of the other agents, and the it solves the problem locally. In our
approach, an agent con only work with its local case base.

Also relevant there is a work on learning to from groups or coali-
tions of agents. Sarathi and Sen [4] propose a framework for agents
that learn who are the best agents to collaborate with in the form of
stable coalitions. However, they focus on the assignment of tasks
to the agents that can perform them in a more efficiend way, and do
not deal with committees as we do.

7. CONCLUSIONS AND FUTURE WORK
We have presented a framework for cooperative multiagent CBR

systems called MACs. The framework is cooperative in the sense
that the agents cooperate with other agents if this can report some
improvement in performance. This article addresses two main is-
sues on collaboration: when to collaborate, and with who to col-
laborate. We have presented a strategy called the Dynamic Com-
mittee strategy, that unifies both questions. We have also presented
a learning technique that allows an agent to learn its own decision
procedure to deal with the “when” and the “who” issues.

In section 5 we have presented experimental results showing that
the learned Dynamic Committee policy can effectively decide when
to convene a committee and when not. Using this learned policy,
an agent can obtain much better results than working in isolation
by convening a committee when there is the need to. We have also
shown that using this technique, the results obtained match Fixed
Committee accuracy (where all the agents are convened to solve
every problem).

The effectiveness of the learned Dynamic Committee policy is
also endorsed by the fact that the for most of the misclasified prob-
lems the convener agent had invited all the agents in the system to
join the committee, showing that the Dynamic Committee policy is
able to notice that a problem is difficult and the agent will convene
all the agents in order to be able to solve it. Moreover, the fact
that the classification accuracy is not lower than the accuracy of the
Fixed Committee also tells us that the Dynamic Committee pol-
icy can effectively decide when there is no need for inviting more
agents to join the committee.

In the experiments section, all the results reported from MAC
systems where the data is uniformly distributed among the agents,
but we plan to study the behaviour of the Dynamic Committee strat-
egy in multagent systems where the the “ensemble effect” precon-
ditions do not hold. This can happen in two sitations: the first one
is where there are some agents making random guessing or giving
allways wrong answers (breaking the condition of having an error

rate lower than 0.5); and the second situation is where we have
groups of agents whose errors are correlated.

We also plan to perform incremental learning, i.e. the Dynamic
Committee policy could be updated with each new problem solved.
In this case, the learned policy can be more adatptive if more agents
enter of die in the MAC system.

Acknowledgements
The authors thank Josep-Lluı́s Arcos and Eva Armengol of the
IIIA-CSIC for their support and for the development of the Noos
agent platform and the LID CBR method respectively. Support
for this work came from CIRIT FI/FAP 2001 grant and projects
TIC2000-1414 “eInstitutor” and IST-1999-19005 “IBROW”.

8. REFERENCES
[1] S. J. Brams and P. C. Fishburn. Approval Voting. Birkhauser,

Boston, 1983.
[2] L. Breiman. Bagging predictors. Machine Learning,

24(2):123–140, 1996.
[3] P. K. Chan and S. J. Stolfo. A comparative evaluation of

voting and meta-learning on partitioned data. In Proc. 12th
International Conference on Machine Learning, pages
90–98. Morgan Kaufmann, 1995.

[4] P. S. Dutta and S. Sen. Emergence of stable coalitions via
task exchanges. In C. Castelfranchi and W. L. Johnson,
editors, Proceedings of the first international conference on
Automous Agents and Multiagent Systems, pages 312–313.
ACM press, 2002.

[5] Y. Freund and R. E. Schapire. Experiments with a new
boosting algorithm. In Proc. 13th ICML, pages 148–146.
Morgan Kaufmann, 1996.

[6] J. H. Friedman. On bias, variance, 0/1 - loss, and the
curse-of-dimensionality. Data Mining and Knowledge
Discovery, 1(1):55–77, 1997.

[7] J. Gama. Local cascade generalization. In Proc. 15th
International Conf. on Machine Learning, pages 206–214.
Morgan Kaufmann, San Francisco, CA, 1998.

[8] L. K. Hansen and P. Salamon. Neural networks ensembles.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, (12):993–1001, 1990.

[9] R. Kohavi and D. H. Wolpert. Bias plus variance
decomposition for zero-one loss functions. In L. Saitta,
editor, Machine Learning: Proceedings of the Thirteenth
International Conference, pages 275–283. Morgan
Kaufmann, 1996.

[10] L. McGinty and B. smyth. Collaborative case-based
reasoning: Applications in personalized route planning. In
ICCBR, pages 362–376, 2001.

[11] M. P. Perrone and L. N. Cooper. When networks disagree:
Ensemble methods for hydrid neural networks. In Artificial
Neural Networks for Speech and Vision. Chapman-Hall,
1993.

[12] J. R. Quinlan. Induction of decision trees. Machine Learning,
1(1):81–106, 1986.

[13] L. Vuurpijl and L. Schomaker. A framework for using
multiple classifiers in a multiple-agent architecture. In Third
International Workshop on Handwriting Analysis and
Recognition, 1998.

[14] D. H. Wolpert. Stacked generalization. Technical Report
LA-UR-90-3460, Los Alamos, NM, 1990.

