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ABSTRACT

Multiagent systems offer a new paradigm to organize Al
applications. Our goal is to develop techniques to inte-
grate CBR into applications that are developed as multia-
gent systems. CBR offers the multiagent systems paradigm
the capability of autonomously learning from experience. In
this paper we present a framework for collaboration among
agents that use CBR and some experiments illustrating the
framework. We focus on three collaboration policies for
CBR agents: Peer Counsel, Bounded Counsel and Commit-
tee policies. The experiments show that the CBR agents im-
prove their individual performance collaborating with other
agents without compromising the privacy of their own cases.
We analyze the three policies concerning accuracy, cost, and
robustness with respect to number of agents and case base
size.

Keywords
Cooperative CBR, Multiagent CBR, Collaboration Policies

1. INTRODUCTION

Multiagent systems offer a new paradigm to organize Al
applications. Our goal is to develop techniques to integrate
CBR into applications that are developed as multiagent sys-
tems. Learning is a capability that together with autonomy
is always defined as a feature needed for full-fledged agents.
CBR offers the multiagent systems paradigm the capability
of autonomously learning from experience. In this paper we
present a framework for collaboration among agents that use
CBR and some experiments illustrating the framework.

A distributed approach for CBR makes sense in different sce-
narios. Our purpose in this paper is to present a multiagent
system approach for distributed case bases that can sup-
port these different scenarios. A first scenario is one where
cases themselves are owned by different partners or organi-
zations. This organizations can consider their cases as assets
and they may not be willing to give them to a centralized

“case repository” where CBR can be used. In our approach
each organization keeps their private cases while providing a
CBR agent that works with them. Moreover, the agents can
collaborate with other agents if they keep the case privacy
intact and they can improve their performance by cooper-
ating. Another scenario involves scalability: it might be
impractical to have a centralized case base when the data is
too big.

Our research focuses on the scenario of separate case bases
that we want to use in a decentralized fashion by means
of a multiagent system, that is to say a collection of CBR
agents that manage individual case bases and can commu-
nicate (and collaborate) with other CBR agents. In this
paper we focus on three collaboration policies that improve
the individual performance of CBR agents without compro-
mising the agent’s autonomy and the privacy of the case
bases. These collaboration policies are a refinement of the
general multiagent scenario of Cooperative CBR proposed
in [8]. Particularly, CoopCBR established two cooperation
modes, namely DistCBR and ColCBR!. The collaboration
policies presented here are strategies that CBR agents can
follow to improve their individual performance in the frame-
work of the DistCBR cooperation mode.

The structure of the paper is as follows. Section 2 presents
three policies the CBR agents can follow to improve their
performance cooperating with other agents in a multiagent
system. Then, section 3 presents the CBR method that
the agents use in our current experiments. The experiments
themselves are explained in section 4. The paper closes with
related work and conclusion sections.

2. POLICIES FOR COOPERATIVE CBR

A multiagent CBR (MAC) system M = {(A;,Ci)}iz1..mn
is composed of n agents, where each agent A; has a case
base C;. In the experiments reported here we assume the
case bases are disjunct (VA;, A; € MAC : C; nC; = 0),
i.e. there is no case shared by two agent’s case bases. This
is just an experimental option and not a restriction on our
model. In this framework we restrict ourselves to analytical
tasks, i.e. tasks (like classification) where the solution is
achieved by selecting from an enumerated set of solutions

'Summarily, in the DistCBR mode each CBR agent uses
its own similarity assessment to retrieve cases while in the
ColCBR cooperation mode an agent sends to other agents
the method to assess the similarity in the process of case
retrieval.



K = {S1...Sx}. A case base C; = {(P},Sk)};=1..n is a

collection of pairs problem /solution.

When an agent A; asks another agent A; help to solve a
problem the interaction protocol is as follows. First, A;
sends a problem description P to A;. Second, after A;
has tried to solve P using its case base C, it sends back
a message that is either :sorry (if it cannot solve P) or a
solution endorsement record (SER). A SER has the form
({(Sk, E1)}, P, A;), where the collection of endorsing pairs
(Sk, E)) mean that the agent A; has found Ej cases in case
base C; endorsing solution Sy—i.e. there are a number Ei
of cases that are relevant (similar) for endorsing Si as a
solution for P. Each agent Aj; is free to send one or more
endorsing pairs in a SER.

Before presenting the three policies for cooperative CBR,
Committee, Peer Counsel and Bounded Counsel policies, we
will introduce the voting mechanism.

2.1 Voting Scheme

The voting scheme defines the mechanism by which an agent
reaches an aggregate solution from a collection of SERs com-
ing from other agents. The principle behind the voting
scheme is that the agents vote for solution classes depending
on the number of cases they found endorsing those classes.
However, we do not want that agents having more number
of endorsing cases may have an unbounded number of votes
regardless of the votes of the other agents. Thus, we will
define a normalization function so that each agent has one
vote that can be for a unique solution class or fractionally
assigned to a number of classes depending on the number of
endorsing cases.

Formally, let A" the set of agents that have submitted their
SERs to agent A; for problem P. We will consider that
A; € A" and the result of A; trying to solve P is also reified
as a SER. The vote of an agent A; € At for class Sy is

By

Vote(Sk, Aj) = ——————
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where ¢ is a constant that on our experiments is set to 1. Tt
is easy to see that an agent can cast a fractional vote that
is always less or equal than 1. Aggregating the votes from
different agents for a class Si we have ballot

Ballot'(Sk, A') = Y Vote(Sk, A;)
AjEA?

and therefore the winning solution class is
Sol*(P,A") = arg ,max_ Ballot(Sk, A")

i.e., the class with more votes in total. We will show now
three collaboration policies that use this voting scheme.

2.2 Committee Policy

In this policy the agents member of a MAC system M are
viewed as a committee. A CBR agent A; that has to solve
a problem P broadcast P to the other CBR agents in M.
Fach CBR agent A; sends a solution endorsement record
({(Sk, F{)}, P, A;) to A;. The initiating agent uses the vot-
ing scheme above upon all SERs, i.e. its own SER and the
SERs of all agents in the multiagent system. The final so-
lution is the class with maximum number of votes.

The next two policies, Peer Counsel and Bounded Counsel,
are based on the notion that an agent A; tries to solve a
problem P by himself and if A; “fails” to find a “good”
solution then A; asks counsel to other agents in the MAC
system M. Let Eb = {(Sk, E,@)} the endorsement pairs the
agent A; computes to solve problem P. For an agent A; to
decide when it “fails” we require that each agent in M has a
predicate Self-competent (P, Ejp) This predicate determines
whether or not the solutions endorsed in % allow the agent
to conclude that there is a good enough solution for P.

2.3 Peer Counsel Policy.

In this policy the agents member of a MAC system M try
first to solve the problems they receive by themselves. Thus,
if agent A; receives a problem P and finds a solution that is
satisfactory according to its own Self-competent predicate,
the solution found is the final solution. However, if an agent
A; assesses that it is not capable of finding a reliable solu-
tion, then it asks the other agents in M to also solve the
problem P.

The agents in M return to A; their solution(s) inside their
solution endorsement records and (as done in the committee
policy) the final solution is the class with maximum number
of votes.

2.4 Bounded Counsel Policy

In this policy the agents member of a MAC system M try
first to solve the problems they receive by themselves, as
in the previous Peer Counsel policy. However, when an
agent A; assesses that its own solution is not reliable, the
Bounded Counsel Policy tries to minimize the number of
questions asked to other agents in M. Specifically, agent
A; asks counsel only to one agent, say agent A;. When the
answer of A; arrives the agent A; implements a termination
check. If the termination check is true the result of the vot-
ing scheme is the global result, otherwise A; asks counsel
to another agent—if there is one left to ask, if not the pro-
cess terminates and the voting scheme determines the global
solution.

The termination check works, at any point in time ¢ of
the Bounded Counsel Policy process, upon the collection
of solution endorsement records (SER) received by the ini-
tiating agent A; at time ¢t. Using the same voting scheme
as before, Agent A; has at any point in time ¢ a plausi-
ble solution given by the winner class of the votes cast so
far. Tet V) ,. be the votes cast for the current plausible
solution, V,,,, = Ballot'(Sol*(P, A"), A"), the termination
check TC(V,:LM,.At) is a boolean function that determines
whether there is enough difference between the majority
votes and the rest to stop and obtain a final solution. In



the experiments reported here the termination check func-
tion is the following

Vi
— max >
Maz (1, Ballot(Sk, A*) — Viie) — 7

TCOWVhan, A"

i.e. it checks whether the majority vote V), is n times
bigger than the rest of the ballots. After termination the
global solution is the class with maximum number of votes
at that time.

24.1 Policy Varieties

There may be small variations on this policies that follow
the same overall schema. For instance, we are assuming
that the global solution implies selecting a single alternative
Sk € K. However, depending on the task at hand, a ranked
list of possible solutions might be a better option. We can
easily adapt the present policies for tasks with ranked solu-
tions: the final step in voting that takes the solution with
maximum number of votes can be substituted by yielding
k highest solutions ranked by their respective number of
votes. Nevertheless, for the experiments reported later, it is
more convenient for comparisons purposes to work with the
hypothesis that a single solution is required.

We call this framework FEnsemble CBR since a meaning of
ensemble (Oxford Dictionary) is this: “(Math) a group of
systems with the same constitution but possibly with dif-
ferent states”. From the point of view of the MAC frame-
work, a system M = {(A;, C;)}i=1..n performs Ensemble
CBR when the CBR agents A; ... A, work with the CBR
method but they have different experience (different case

bases C ...Ch).

The collaboration policies described here have been imple-
mented on the Noos Agent Platform [7]. NAP consists of
Noos, a representation language with support for case man-
agement and retrieval [1], and FIPA-compliant utilities for
agent interaction. A multiagent system in NAP consists of
the individual agents capabilities (like CBR) plus a speci-
fication of the agent roles and interaction protocols in the
framework of agent-mediated institutions [7]. Cases are rep-
resented as feature terms in Noos and the next section in-
troduces the CBR method used in our CBR agents. In the
Figure 1 we can see a snapshot of the agents interaction in

NAP.

3. CASE-BASED REASONING AGENTS

In the following section we will introduce the concepts needed
to explain LID [2], the CBR methods used by the agents.
First we will introduce feature terms, the representation
used for cases; then we will explain the heuristic measure

used by LID, and finally the LID algorithm will be described.

3.1 Representation of the cases

LID handles cases represented as feature terms. Feature
Terms (also called feature structures or ¢-terms) are a gen-
eralization of first order terms. The difference between fea-
ture terms and first order terms is the following: a first
order term, e.g. f(z,y,g(z,y)) can be formally described
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Figure 1: A snapshot of the interaction state among
four agents in the Noos agent platform.

as a tree and a fixed tree-traversal order. In other words,
parameters are identified by position. The intuition behind
a feature term is that it can be described as a labelled graph
i.e. parameters are identified by name. A formal definition
of feature terms is the following:

Given a signature © = (S, F, <) (where S is a set of sort
symbols that includes 1; F is a set of feature symbols; and
< is a decidable partial order on S such that L is the least
element) and a set ) of variables, we define feature terms as
an expression of the form:

Yu=X:s[fi= Uy ... fn =, (1)

where X is a variable in ¥ called the root of the feature term,
s is a sort in S, the function root(3 ) returns the sort of the
root, fi...fn are features in F, n > 0, and each ¥, is a set
of feature terms and variables. When n = 0 we are defining
a variable without features. The set of variables occurring
in ¢ is noted as 9.

Sorts have an informational order relation (<) among them,
where ¢ < )’ means that ¢ has less information than ¢’ or
equivalently that ¢ is more general than ¢’. The minimal
element (L) is called any and it represents the minimum
information. When a feature has an unknown value it is
represented as having the value any. All other sorts are
more specific that any.

A path p(X, fi) is defined as a sequence of features going
from the variable X to the feature f;.

There is a path equality when two paths point to the same
value. Path equality is equivalent to variable equality in first

order terms.

The depth of a feature f in a feature term ¢ with root X is



the number of features that compose the path from the root
X to f, including f, with no repeated nodes.

Given a particular maximum feature depth k, a leaf feature
of a feature term is a feature f; such that either 1) the depth
of fiis k or 2) the value of f; is a term without features.

3.2 Heuristic assessment of feature relevance
The heuristic used in LID is the minimization of the RLM
distance [5]. The RLM distance assesses how similar are
two partitions over a set of cases (in the sense that the
lesser the distance the more similar they are). On the one
hand, we have the correct partition given by the classi-
fied cases in the case base C; = {(Pj, Sk)};j=1..n, of agent
A;. Formally, the correct partition is the collection of sets
e (Ch) = {rs, }r=1..x where 5, = {P.|(P:, Sx) € C;}.
On the other hand, each feature f that has legal values
v1 ...v,s induces also a partition over the case base, namely
a partition whose sets are formed by those cases that have
the same value for feature f. Formally, the induced parti-
tion is the collection of sets TT;(C;) = {m’f]. }j=1..nt where a

set is 7§, = {Py|3Sk : (Pu, Sk) € Ci A Pu.f = v;}.

In the following, we introduce the RLLM distance over a vari-
able case base B and not over the whole case base C;— the
reason being that later we will be using a variable collec-
tion of cases. For a partition IT; induced by a feature f,LID
computes the RLLM distance to the correct partition T1.. For-
mally, given two partitions IT; and TI. of the case base B,
the RLM distance between them is computed as follows:

RLM(T,,TT,) = 2 — 1o + T(ITe)

I, N 1L,
where
s
2 |Bnxi |
I(Ty) = = pjlogops; py = ITIJ
g=1
X |B
() = —Zpkloggpk; PE = |T|k
k=1
n/ K BN nrl
Iy AT = =" pirlogapsi; psx = TJ
=1 k=1

where I(TT;) measures the information contained in the par-
tition IIg; n’ is the number of possible values of the feature
inducing IT¢; p; (px) is the probability of occurrence of 7r7ffj
(7x) i.e. the proportion of cases in B that belong to 7r7’fj
(7x); K is the number of solution classes; I(ITy NTI,) is the
mutual information of two partitions; and pj;i is the prob-

ability of the intersection 7y N 7r7’fj7 i.e. the proportion of

cases in B that belong to 75 and to 7rjf]..

Let TI. be the correct partition and Ily and II;/ the par-
titions induced by features f and f' respectively. We say

Function LID (Sp, P, D, K)
if stopping-condition(Sp)
then return SER(Sp, P)
else fq := Select-leaf (p,Sp, K )
D’ := Add-path(p(root(P), fa), D)
Spr := Discriminatory-set (D, Sp)
LID (Sps, P, D', C)
end-if
end-function

Figure 2: The LID algorithm. 7D is the similitude
term, Sp is the discriminatory set of D, K is the set
of solution classes, SER(Sp, P) constructs the Solu-
tion Endorsement Record of problem P.

that the feature f is more discriminatory than the feature
fHiff RDM (T, T1.) < RLM(T1;/,T1.). In other words, when
a feature f is more discriminatory than another feature f’
the partition that f induces in B is closer to the correct
partition TI. than the partition induced by f’. Intuitively,
the most discriminatory feature classifies the cases in B in
a more similar way to the correct classification of cases.

3.3 The LID method

The main steps of the LID algorithm are shown in Figure
2. Initially, LID of agent A; receives as parameter Sp the
whole case base C; and parameter D is empty.

The top down process of LID specializes the similitude term
D by adding features to it. In principle, any of the features
used to describe the cases could be a good candidate. Nev-
ertheless, LID uses two biases to obtain the set F) of features
candidate to specialize the current similitude term D. First,
of all possible features in the domain F, LID will consider
only those features present in the problem P to be classified.
As a consequence, any feature that is not present in P will
not be considered as candidate to specialize D. The second
bias is to consider as candidates for specializing D only those
features that are leaf features of P—i.e. a feature f; such
that either 1) the depth of f; is equal to a depth threshold
k or 2) the value of f; is a term without features.

The next step of LID is the selection of a leaf feature fq € F;
to specialize the similitude term D. Let F; be the set of
leaf features candidates to specialize D. Selecting the most
discriminatory leaf feature in the set Fj is heuristically done
using the RLM distance which is explained in section 3.2.
Let us call the most discriminatory feature fq.

The feature fq is the leaf feature of path p(root(P), f4) in
problem P. The specialization step of LID defines a new
similitude term D’ by adding to the current similitude term
D the sequence of features specified by p(root(P), fa). After
this addition D’ has a new path p(root(D'), fq) with all the
features in the path taking the same value that they take in
P. After adding the path p to D, the new similitude term
D' = D + p subsumes a subset of cases in Sp, namely the
discriminatory set Sps (the subset of cases subsumed by D').

Next, LID is recursively called with the discriminatory set



3 Agents 4 Agents 5 Agents 6 Agents 7 Agents

Policy 7 | o 7 | o 7 | o 7 | o 7 | o
Isolated Agents 83.21 | 6.71 | 82.50 | 6.44 | 79.43 | 844 | 77.93 | 7.55 | 75.78 | 6.82
Bounded Counsel || 87.29 | 6.1 | 86.71 | 6.47 | 85.07 | 6.29 | 85.00 | 7.25 | 84.14 | 7.04
Peer Counsel 87.28 | 5.72 | 86.79 | 6.67 | 85.85 | 6.68 | 85.50 | 5.86 | 84.71 | 6.75
Committee 88.36 | 5.98 | 88.29 | 5.72 | 88.36 | 5.41 | 88.14 | 6.04 | 87.93 | 5.86

Table 1: Average precision and standard deviation for a case base of 280 sponges pertaining to three classes.
All the results are obtained using a 10-fold cross validation.

Sps and the similitude term D’. The recursive call of LID
has Sp/ as first parameter (instead of SD) because the cases
that are not subsumed by D’ will not be subsumed by fur-
ther specialization. The process of specialization reduces the
discriminatory set 8§ C Sg_l C...C 8% at each step.

The result of LID solving a problem P is a Solution Endorse-
ment Record ({(Sk, E})}, P,A;). When the termination

condition is that all cases in the discriminatory set Sp be-

long to only one solution S, the SER is simply ((Sk, M), P, A;),

where My, = |Sp|. Otherwise, the SER is built in a similar
way for each solution class in Sp computing the number of
cases endorsing each class My = |{(P;, Sk) € Sp}|

4. EXPERIMENTS

We use the marine sponge identification (classification) prob-
lem as our testbed. Sponge classification is interesting be-
cause the difficulties arise from the morphological plasticity
of the species, and from the incomplete knowledge of many
of their biological and cytological features. Moreover, ben-
thological specialists are distributed around the world and
they have experienced different benthos that spawn species
with different characteristics due to the local habitat condi-
tions.

4.1 Experimental Results

In order to compare the performance of the three policies,
we have designed an experimental suite with a case base
of 280 marine sponges pertaining to three different orders
of the Demospongiae class (Astrophorida, Hadromerida and
Agzinellida). In an experimental run, training cases are ran-
domly distributed to the agents (without repetitions, i.e.
each case will belong to only one agent case base). In
the training phase, problems arrive randomly to one of the
agents. The goal of the agent receiving a problem is to iden-
tify the correct biological order given the description of a
new sponge.

We have experimented with 3, 4, 5, 6 and 7 agents using
LID as its CBR method. The results presented here are the
result of the average of 5 10-fold cross validation runs. The
results must be compared to the isolated agents scenario,
where each agent tries to solve the problem by itself without
asking any other agent given the same training phase.

We can see (Table 1) that in all the cases we obtain some
gain in accuracy compared to the isolated agents scenario.
The Committee policy is always better than the others; how-
ever this precision has a higher cost since a problem is always
solved by every agent. We evaluate costs later in this sec-
tion. If we look at the cheaper policies Bounded Counsel
and Peer Counsel, we can see that their accuracy are very

similar. They both are much better than the isolated agents,
and slightly worse than the Committee policy.

A small detriment of the system’s performance is observable
when we increase the number of agents. This is due to the
fact that the agents have a more reduced number of training
cases in their case bases. A smaller case base has the ef-
fect of obtaining less reliable individual solutions. However,
the global effect of reducing accuracy appears on Bounded
Counsel and Peer Counsel policies but not on the Committee
policy. Thus, the Committee policy is quite robust to the
effect of diminishing reliability individual solutions due to
smaller case bases. This result is reasonable since the Com-
mittee policy always uses the information available from all
agents.

A more realistic scenario in multiagent systems is to take
into account the cost of cooperation among agents. Assum-
ing that solving a problem has a cost, we have made some
experiments where the nominal price for an agent solving a
problem is 1 euro. Thus, an agent solving a problem by itself
will have a cost of 1 euro—but if it asks two other agents to
help the cost will be 3 euro. Having a cost on questions al-
lows us to see how the different policies minimize the global
cost and its tradeoff with accuracy. Figure 3 shows the av-
erage cost per problem in different policies and with a MAC
composed of 3 to 7 agents. The cost is calculated over the
same 5 10-fold cross validation runs. In the isolated agents
scenario the cost for solving a problem is always 1 euro be-
cause only one agent is involved per problem. On the other
side we have the Committee policy, where all the agents are
asked to solve each problem; in this policy the cost increases
linearly with the number of agents, i.e.: if we have 5 agents
the cost is 5 euros. With the Peer Counsel policy the cost
per problem is lower and increases much more slowly than
in the Committee policy— with only a small detriment of
the accuracy. Finally, the cost of Bounded Counsel policy
is lower than the Peer Counsel policy —and also increases
much slowly. This outcome is as expected since Bounded
Counsel tries to minimize questions asked to other agents.
Moreover, since the accuracy of Bounded Counsel and Peer
Counsel policies are similar we can see Bounded Counsel has
a better accuracy vs. cost tradeoff.

Related to the cost in euros we have the computational cost
of solving a problem. Figure 4 shows the cost in compu-
tation time, specifically it shows the average time spent to
solve a problem when all the agents are running in the same
machine. As before the cheapest policy is Bounded Counsel
(except for the isolated agents scenario) and the most ex-
pensive is the Committee policy. Now, observing Figure 4 it
is apparent that having more agents reduces the time needed
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Figure 3: Average cost (in euros) of solving a prob-
lem depending on the policy and number of agents.

to compute a solution. This occurs in all policies except for
the Committee policy where it’s constant. The computation
time has two components: the average retrieval time (in an
agent) and the number of retrieval processes performed to
solve a problem (the number of agents involved in solving
a problem). The general trend in the reduction of compu-
tational time is due to the first component: the bigger the
number of agents, the smaller the number of cases in a case
base and, thus, the faster the retrieval process implemented
by LID. On the other side, the number of retrieval processes
involved can vary with the policy and the number of agents
involved.

For instance, if we look with some detail the Figure 4 we
may notice that Peer Counsel first starts decreasing and in
the 6 and 7 agents columns it slightly increases again. If we
look at the policy with detail, we can see that it’s not so sur-
prising. The fact is that when an agent has very few cases in
the case base then more often its self-competence assessment
indicates that the individual results are not reliable enough
and has to ask counsel to the other peer agents. This effect
is particularly noticeable in the Peer Counsel policy since
it implies the agent will ask all the other agents. However,
the Bounded Counsel is more robust; even though an agent
with less cases tends to ask more often counsel we see in
Figure 4 that the computation time is decreasing. The fact
is that the first component (retrieval time) keeps decreas-
ing with smaller case bases and the increasing number of
counsels that are required are sufficiently restricted by the
Bounded Counsel policy to prevent a worsening of the cost
in computation time.

We have also tested the system with a subset of the whole
case base consisting in 120 sponges pertaining to the same
three biological orders. Given the reduced number of cases,
in these experiments we have only considered a 3 agents sys-
tem. As we can see in Table 2 the results are similar to those
obtained using 280 cases, including the cost reduction of the
Bounded Counsel and Peer Counsel compared to Commit-
tee. The gain in efficiency is also observable in this case,
and we can compare the time spent per problem using the
Committee policy (1.88 sec) with the lower one needed by
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Figure 4: Average time needed (in seconds) to solve
a problem in the reported experiments.

| Policy || 7} | o | Time | Cost |
Isolated Agents 82.00 | 12.84 | 0.64 sec | 1.00
Bounded Counsel || 87.99 | 10.29 | 0.93 sec | 1.48
Peer Counsel 88.83 | 9.40 | 1.09 sec | 1.75
Committee 88.99 | 8.40 1.88 sec | 3.00

Table 2: Average precision and standard deviation
for 3 agents and a case base of 120 sponges pertain-
ing to three classes. All the results are obtained
using a 10-fold cross validation.

the Bounded Counsel policy (0.93 sec), that is very close to
the time need in the isolated agents scenario.

Finally, as an extreme scenario of agents with very few cases
we tested the Committee policy (being the most robust)
with 16 agents. In this scenario, with 280 sponges using
10-fold cross-validation, an agent’s case base has only about
17 sponges—i.e. about 5.6 examples that randomly belong
to 3 solution classes. In this scenario the Committee policy
still has an accuracy of about 83% while the isolated agents
are only capable of about 64% accuracy. If we move towards
a scenario of 25 agents (with about 11 cases per case base)
the Committee policy still has an accuracy of about 82%
while the isolated agents are only capable of about 60% ac-
curacy. Clearly, in these extreme scenarios the other policies
(Bounded Counsel and Peer Counsel) are not appropriate.
In fact, they can only make sense if the agents always assess
their lack of self-competence and ask the other agents (that
also will have very low self-competence assessments)—i.e.
if not, both policies tend to work as the Committee policy
asking counsel for every case to every agent.

S. RELATED WORK

In Machine Learning two areas are related to our work: vot-
ing schemes (for multiple model learning) and metalearn-
ing. A general result on multiple model learning [4] demon-
strated that if uncorrelated classifiers with error rate lower
than 0.5 are combined then the resulting error rate must be
lower than the one made by the individual classifiers. The

BEM (Basic Ensemble Method) is presented in [6] as a basic



way to combine continuous estimators, and since then many
other methods have been proposed: Stacking generalization,
Cascade generalization, Bagging or Boosting are some exam-
ples. However, all these methods do not deal with the issue
of “partitioned examples” among different classifiers as we
do—they rely on aggregating results from multiple classifiers
that have access to all data. Their goal is to use multiplic-
ity of classifiers to increase accuracy of existing classification
methods. Our intention is to combine the decisions of au-
tonomous classifiers (each one corresponding to one agent),
and to see how can they cooperate to achieve a better be-
havior than when they work alone. A more similar approach
is the one proposed in [9], where a MAS is proposed for pat-
tern recognition. Fach autonomous agent being a specialist
recognizing only a subset of all the patterns, and where the
predictions were then combined dinamically.

When trying to combine decision through a voting scheme,

the simplest way is a non-weighted voting combination, where
all the agents have the same strength in the decision. The

Naive Bayesian Classifiers (NBC) committees [10] proposal

trains various NBC with the same training set but using

different subsets of attributes, and then combine their pre-

dictions using some strategy (majority, etc.). Again this

approach does not deal with “partitioned examples”. More-

over, the usual way in which a (non-weighted or weighted)

voting scheme is defined for committee learning follows the

rule “one (classifier) agent one vote”. The Committee CBR

Policy is innovative in that votes are cast by the number of
relevant precedent cases a (classifier) agent can find endors-

ing each of the solution classes. Thus the Committee CBR

Policy follows the rule “one (relevant) case one vote”.

The meta-learning approach in [3] is applied to partitioned
data. They experiment with a collection of classifiers which
have only a subset of the whole case base and they learn
new meta-classifiers whose training data are based on pre-
dictions of the collection of (base) classifiers. They compare
their meta-learning approach results with weighted voting
techniques. The final result is an arbitrator tree, a central-
ized and complex method whose goal is to improve classi-
fication accuracy. We also work on “partitioned examples”
but we assume no central method that aggregates results;
moreover we assume a multiagent approach where commu-
nication and cooperation may have a cost that has to be
taken into account.

6. CONCLUSIONS AND FUTURE WORK

We have presented a framework for cooperative CBR in mul-
tiagent systems. The framework is cooperative in that the
CBR agents help each other to improve their individual per-
formance. Since the agents improve with respect to their
performance as isolated individual, cooperating is also in
their individual interest—specially since the framework al-
lows them to keep confidential their own cases. A major
theme in multiagent systems is the autonomy of the agents.
In our framework the agent autonomy is mainly ensured
by two facts: i) the capability of each agent to determine
whether or not itself is competent to solve a problem, and
il) the capability of each agent to integrate into a global so-
lution for a problem the counsels given by other agents. In
the experiments we have presented all agents used the same
methods to implement these two capabilities. However, this

option is just an experiment design decision, and a partic-
ular application that requires different biases by different
agents is compatible with our framework.

Another issue is the generality of the cooperation policies
and their dependence upon the CBR agents using LID. The
cooperation policies depend only on the CBR agents being
able to provide SERs (Solution Endorsement Records), so
any CBR method that can provide that is compatible. For
instance, CBR agent using k-nearest neighbour as a retrieval
method could provide a SER from the k cases closest to the
problem. k-NN also provides a numeric value of similitude
that are not considered in our SERs. However, k-NN is
totally compatible since the rule “one (relevant) case one
vote” can be applied to the k cases every k-NN (classifier)
agent provides for a problem. It remains future work to
investigate if similarity degrees can be seen as weights and
the cooperation policies could be modified to implement a
weighted voting scheme.

A natural evolution of this experimental setting is moving
towards case-bases with higher volume in which learning
competence models [8] of the involved agents is necessary.
In higher volume case-bases the need for a distributed mul-
tiagent approach seems more practical than completely cen-
tralized schema. A major difference from our current exper-
imental setting is that the hypothesis that all agents have an
unbiased sample of the data no longer holds. That is to say,
with higher volume case-bases a CBR agent may be biased
towards solving accurately a subset of all possible problems.
For instance, a particular agent may solve often sponge iden-
tification problems inside the order of Astroforida—and very
seldom problems inside the order of the order of Axinellida.
In this setting future work will investigate how CBR agents
can learn competence models of other agents—e.g. which
agent is competent in identifying a sponge inside the or-
der of Astroforida. Competence models can guide an agent
into asking counsel only (or mainly) to competent and to
have this information into account when integrating solu-
tions proposed by several agents.

Finally, we plan to lift the restriction of the case bases of
the agents in a MAC system being disjunct. Basically, our
idea is that agents could incorporate in their case bases some
cases originally owned by other agents. The interesting ques-
tion here is this: what strategy of case sharing can improve
the overall MAC system performance —without every agent
having in their case base every case known to the MAC sys-
tem.
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