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Summary. Predictive toxicology Predictive toxicology is the task of building mod-
els capable of determining, with a certain degree of accuracy, the toxicity of chemical
compounds. We discuss several machine learning methods that have been applied to
build predictive toxicology models. In particular, we present two lazy learning lazy
learning techniques applied to the task of predictive toxicology. While most ML
techniques use structure relationship models to represent chemical compounds, we
introduce a new approach based on the chemical nomenclature to represent chemical
compounds. In our experiments we show that both models, SAR and ontology-based,
have comparable results for the predictive toxicology task.

1.1 Introduction

Thousands of new chemicals are introduced every year in the market for their
use in products such as drugs, foods, pesticides, cosmetics, etc. Although
these new chemicals are widely analyzed before commercialization, the ef-
fects of many of them on human health are not totally known. In 1973 the
European Commission started a long term program consisting on the design
and development of toxicology and ecotoxicology chemical databases. The
main idea of this program was to establish lists of chemicals and methods for
testing their risks to the people and the environment. Similarly, in 1978 the
American Department of Health and Human Services established the National
Toxicology Program (NTP) with the aim of coordinating toxicological testing
programs and developing standard methods to detect potentially carcinogenic
compounds (see more information in www.ntp-server.niehs.nih.gov).

When a chemical compound is suspected to be toxic, is included in the
NTP list in order to perform standardized experiments to determine its tox-
icity degree. Basically, there are two kinds of experiments: in wvitro and in
vivo. In vitro experiments are carried out on salmonella and the outcome are
quantitative results of several physical-chemical parameters. In vivo experi-
ments are performed on rodents (rats and mice), and there are, in turn, two
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kind of experiments: short-term (90 days) and long-term (2 years). Usually,
short-term experiments are performed as a means to obtain a first clue of the
toxicity of a compound. It should be emphasized that to determine the toxicity
of chemical compounds on rodents is an expensive process that, in addition,
offers results that are not conclusive concerning the toxicity in humans.

The use of computational methods applied to the toxicology field could
contribute to reduce the cost of experimental procedures. In particular, artifi-
cial intelligence techniques such as knowledge discovery and machine learning
(ML) can be used for building models of compound toxicity (see [18] for an
interesting survey). These models reflect rules about the structure-activity re-
lationships (SAR) of chemical compounds. Such rules are used to predict the
toxicity of a chemical compound on the basis of the compound’s chemical
structure and other known physical-chemical properties. The construction of
this model is called predictive toxicology.

The Predictive Toxicology Challenge (PTC) was a competition held in
1990 with the goal of determining the toxicity of 44 chemical compounds
based on both experiments in the lab and the predictive toxicology methods.
The results of this challenge [4, 10] showed that the best methods are those
taking into account the results of the short-term tests. A second challenge was
announced in 1994. This challenge was mainly focused on using ML techniques
and results can be found in [30]. The last challenge held in 2001 [19] was
also focused on ML techniques and most of them used SAR descriptors. In
this challenge most of authors proposed a relational representation of the
compounds and used inductive techniques for solving the task.

Currently there still are two open questions in predictive toxicology: 1) the
representation of the chemical compounds, and 2) which are the characteristics
of a chemical compound that allows its (manual or automatic) classification
as a potentially toxic. In this chapter we describe several approaches to both
questions: we propose a representation of the chemical compounds based on
the TUPAC (International Union of Pure and Applied Chemistry) chemical
nomenclature and a lazy learning technique for solving the classification task.

1.2 Representation of chemical compounds

One of the most important issues for developing computational models is
the representation of domain objects, in our case chemical compounds. In
the toxicology domain, there are several key features of the molecule to be
taken into account for predicting toxicity. First, there are some concerning to
the basic elements of the molecule, such as number of atoms, bonds between
atoms, positions, electrical charges, etc. Second, there are physical-chemical
properties of the molecule such as lipophilic properties, density, boiling point,
melting point, etc. Finally, there often exists prior information about the
toxicity of a molecule, which was obtained from studies on other species using
different experimental methods.
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atom(tr339,1,0,-1). atom(tr339,2,n,1). atom(tr339,3,0,0). atom(tr339,4,c,0).
atom(tr339,5,¢,0).  atom(tr339,6,c,0). atom(tr339,7,c,0). atom(tr339,8,0,0).
atom(tr339,9,¢,0). atom(tr339,10,n,0). atom(tr339,11,¢,0). atom(tr339,12,h,0).
atom(tr339,13,h,0). atom(tr339,14,h,0). atom(tr339,15,h,0). atom(tr339,16,h,0).
atom(tr339,17,h,0). bond(tr339,1,2,1). bond(tr339,2,3,2). bond(tr339,2,4,1).
bond(tr339,4,5,1).  bond(tr339,5,6,2). bond(tr339,5,12,1). bond(tr339,6,7,1).
bond(tr339,6,13,1). bond(tr339,7,8,1). bond(tr339,7,9,2). bond(tr339,8,14,1).
bond(tr339,9,10,1). bond(tr339,9,11,1). bond(tr339,10,15,1). bond(tr339,10,16,1).
bond(tr339,11,17,1).
atomcoord(tr339,1,3.0918,-0.8584,0.0066).  atomcoord(tr339,2,2.3373,0.0978,0.006).
atomcoord(tr339,3,2.7882,1.2292,0.0072). atomcoord(tr339,4,0.8727,-0.1152,-0.0023).
atomcoord(tr339,5,0.3628,-1.4003,-0.0094). atomcoord(tr339,6,-1.0047,-1.6055,-0.0172).
atomcoord(tr339,7,-1.868,-0.5224,-0.0174).  atomcoord(tr339,8,-3.2132,-0.7228,-0.0246).
atomcoord(tr339,9,-1.355,0.7729,-0.0098). atomcoord(tr339,10,-2.2226,1.8712,-0.0096).
atomcoord(tr339,11,0.018,0.971,0.0028). atomcoord(tr339,12,1.0343,-2.2462,-0.0092).
atomcoord(tr339,13,-1.3998,-2.6107,-0.0234). atomcoord(tr339,14,-3.4941,-0.7673,0.8996).
atomcoord(tr339,15,-3.1824,1.7311,-0.0147). atomcoord(tr339,16,-1.864,2.7725,-0.0043).
atomcoord(tr339,17,0.419,1.9738,0.0087).

Fig. 1.1. Representation of the chemical compound TR-339 using Horn clauses.

In the literature, there are two approaches to represent chemical com-
pounds: 1) those representing a compound as a vector of molecular properties
(propositional representation), and 2) those explicitly representing the molec-
ular structure of a compound (relational representation). In the follow sec-
tions we briefly explain these representations (details can be found at www.
informatik.uni-freiburg.de/” ml/ptc/) and then we will introduce our own rep-
resentation based on the chemical ontology used by the experts.

SAR and Qualitative SAR (QSAR) use equation sets that allow the pre-
diction of some properties of the molecules before the experimentation in
the laboratory. In analytical chemistry, these equations are widely used to
predict spectroscopic, chromatographic and some other properties of chemi-
cal compounds. There is a number of commercial tools allowing the genera-
tion of these descriptors: CODESSA [22], TSAR (Oxford molecular products,
www.accelrys.com/chem/), DRAGON (www.disat.inimib.it/chm/Dragon.htm),
etc. These tools represent a chemical compound as a set of attribute value
pairs. This kind of representation is called propositional in ML. For instance,
the description of a car using propositional description is the following: {(size,
medium), (builder, BMW), (model, 250), (color, white)}.

In addition to the knowledge about a particular compound, it is also useful
to handle general chemical knowledge, what is called background knowledge
in ML. Automatic methods that use background knowledge often consider
compounds as a structure composed of substructures. This kind of represen-
tation is called relational because an object is represented by the relationships
between their component elements. For instance, a car can be described com-
posed of subparts like the chassis and the engine. In turn, each one of these
parts can be described by their own subcomponents.

A form of relational representation is logic programming, that represents
the relations among elements by a set of predicates. Thus, a set of predicates
can be used to establish the relationship among the atoms of a molecule and
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also handle basic information about the compounds (such as molecular weight,
electrical charge, etc). Figure 1.1 shows the representation of the chemical
compound TR-339 (the 2-amino-4-nitrophenol) of the NTP data set. In this
representation, there are three predicates:

e atom(C, A, E, V) gives information about an atom. C' is the chemical
compound where the atom belongs; A is the number of the atom in the
chemical compound; E is the chemical element; and V is the electrical
charge of the atom. For instance, atom(tr339, 1, O, -1) is the atom 1 of
the compound tr339, It is an oxygen, and its charge is -1.

o bond(C, A1, A2, B) indicates the kind of bond between two atoms. C is
the chemical compound where the bond belongs; A1 and A2 are the atoms
of the compound connected by the bound; B is the kind of bond: simple,
double or triple. For instance, bond(tr339, 9, 10, 1) is a simple bound of
the chemical compound tr339 that connects the atoms 9 and 10.

e atomcoord(C, A, X, Y, Z). It gives the spatial coordinates of the compound
atoms. C' is the chemical compound, A is the atom and X,Y and Z are
the spatial coordinates. For instance, atomcoord(tr339, 1, 3.0918, -0.8584,
0.0066) indicates that the atom 1 of the compound tr339 has as coordinates
(3.0918, -0.8584, 0.0066).

Figure 1.1 represents the compound TR-339 with 17 atoms (3 oxygen, 2 ni-
trogen, 6 carbon and 6 hydrogen); there are double bonds between atoms 2
and 3; 5 and 6; 7 and 9; and 4 and 11 (see Fig. 1.1); and the rest of bonds are
simple.

The representation introduced in [8] has a different approach: the com-
pounds are organized according to their active centers (chemically identified
with weak bonds). Active centers are atoms or groups of atoms responsible
of the reactivity of the compound with biological receptors (for instance, tox-
icity). With this approach, each resulting part of the compound receives a
code, therefore the chemical substances are represented as a string of codes.
The Viniti’s group [8] proposed the fragmentary code of substructure super-
position (FCSS) language, allowing the description of chemical compounds
as a set of substructures containing the active centers. The elements of the
FCSS language are chains of carbon pairs that begin and end with the descrip-
tors of active centers. For instance, the chemical compound TR-339 described
in FCSS is the following code: 9 6,06 0700151 0700131 0700331 1100331
0200331 0764111 0263070 0262111.

1.2.1 Representation using the Chemical Ontology

The representation of chemical compounds we propose is the chemical ontol-
ogy based on the terminology used by chemists, i.e the IUPAC nomenclature
(www.chem.gmul.ac.uk/iupac/). Also we take into account the experience of
previous research (specially the works in [17, 15, 8]) since we represent a
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Fig. 1.2. Partial view of the Toxicology ontology

chemical compound as a structure with substructures. Our point is that there
is no need to describe in detail the properties of individual atom properties
in a molecule when the domain ontology has a characterization for the type
of that molecule. For instance, the benzene is an aromatic ring composed by
six carbon atoms with some well-known properties. While using SAR mod-
els would represent a given compound as having six carbon atoms related
together (forming an aromatic ring), in our approach we simply state that
the compound is a benzene (abstracting away the details and properties of
individual atoms).

Figure 1.2 shows a partial view of the chemical ontology we used for repre-
senting the compounds in the Toxicology data set. This ontology is based on
the chemical nomenclature which, in turn, is a systematic way of describing
molecules. In fact, the name of a molecule, when the standard nomenclature is
used, provides to the chemist with all the information needed to graphically
represent its structure. According to the chemical nomenclature rules, the
name of a compound is usually formed in the following way: radicals’ names
+ main group. Commonly, the main group is the part of the molecule that is
either the largest or that located in a central position; however, there is no
general rule to establish them. Radicals are groups of atoms usually smaller
than the main group. A main group can have several radicals and a radical
can, in turn, have a new set of radicals. Any group of atoms could be main
group or radical depending on their position or relevance on the molecule, i.e.
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compound | | position radical |

main-group = compound position = posztion
p-radicals = position radical radicals = compound

Fig. 1.3. Features corresponding to sorts compound and position-radical.

the benzene may be the main group in one compound and a radical in some
other compounds.

The implementation of this representation is done using the feature terms
formalism introduced in [1]. This formalism organizes concepts into a hierar-
chy of sorts (as that of Fig. 1.2), and represent descriptions and individuals
as collections of features (functional relations). Sorts have an informational
order relation (=) among them, where 1) < ¢’ means that 1) has less infor-
mation than v’ or, equivalently, that 1) is more general than v/’. The minimal
element (L) is called any and it represents the minimum information; when
a feature value is not known it is represented as having the value any. All
other sorts are more specific that any. The most general sort in Fig. 1.2 is
compound. This sort has three subsorts: alkane, cyclic and functional-group,
which in turn, have other subsorts. The sort methane is more specific than
the sort acyclic-alkane; while the sorts methane and ethane are not directly
comparable.

Each sort has a collection of features characterizing the relations for this
sort. For instance, Fig. 1.3 shows that the sort compound has two features:
main-group and p-radicals. The values of the feature main-group have to be
of the sort compound, while the feature p-radicals has values of sort position-
radical. The sort position-radical (Fig. 1.3) has, in turn, two features: radicals
and position. The feature radicals has values of sort compound (since radicals
themselves are compounds). The feature position indicates where the radical(s)
is bound to the main group.

Fig. 1.4 shows the representation of the chemical compound TR-339, 2-
amino-4-nitrophenol, using feature terms. TR-339 has a benzene as main
group and a set of three radicals: an alcohol in position one; an amine in
position two; and a nitro-deriv in position four. Notice that this information
has been directly extracted from the chemical name of the compound following
the nomenclature rules.

This kind of description has the advantage of being very close to the repre-
sentation that an expert has of a molecule from the chemical name. We have
translated, with the support of a chemist, the compounds of the NTP data
set to this representation based on the chemical ontology. A shortcoming of
the representation based on the chemical name of a compound is the existence
of synonymous names. Currently, we have selected one of the possible names
and we codified the compound with feature terms using this selected name.
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Fig. 1.4. Representation of TR-339, 2-amino-4-nitrophenol, with feature terms.

1.3 The predictive toxicology Task

The NTP data set contains reports of experiments on chemical compounds
in order to establish whether they are carcinogenic. Each experiment is per-
formed in two species: rats and mice. Moreover, because the carcinogenic
activity of the compounds has proved to be different in both species and also
among the sex of the same species, some computational approaches take sep-
arately the results of the experiments having, in fact, four data sets: male rats
(MR), female rats (FR), male mice (MM) and female mice (FR). The chem-
ical compounds can be classified in each data set into two solution classes:
positive (i.e., when the compound is carcinogenic) and negative (i.e., when
the compound is not carcinogenic).

The goal of predictive toxicology is to develop models able to predict
whether a chemical compound is toxic or not. The construction of these mod-
els by computer assisted techniques takes into account the toxicity observed in
some molecules to extract theories about the toxicity on families of molecules.
Early systems focused on predictive toxicology were DEREK [27] and CASE
[23]. DEREK is a knowledge-based system based on a set of rules describing re-
lations between structural features and their associated toxicity. To determine
the toxicity of a new compound, DEREK compares this new compound with
all the compounds of the knowledge base. CASE has a base of substructures
labeled as active or inactive according to their toxicity. Thus, to determine
the toxicity of a new compound, CASE extracts all its possible substructures
and labels each one as active or inactive using the base of substructures. Then
CASE uses statistical techniques to determine the global toxicity of the new
compound.

There are two families of methods currently used to solve the predictive
toxicology task: statistics and ML. A widely used statistical method is re-
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gression analysis of molecular descriptors. This technique finds equations that
correlate the toxicity of a compound with some physical-chemical properties
[21] or with the presence of some functional groups [7]. Probabilistic reasoning
such as Bayesian networks has also been widely used to build classifiers [32]
or in combination with other techniques like multi-way recursive partitioning
[25] and artificial neural networks [6, 5].

The focus of the second PTC [30] was to use ML to address the predictive
toxicology problem. From the ML point of view, the goal of the predictive tox-
icology is a classification task, i.e. toxic compounds are classified as belonging
to the positive class and non-toxic compounds are classified as belonging to
the negative class. Moreover, the classification task has to be solved separately
for each data set (MR, FR, MM and FM).

The majority of this work was concerned with using inductive techniques
to construct toxicity models. Given a solution class C, a set of examples P
belonging to C', and a set of examples N that do not belong to C, the goal
of inductive learning techniques is to build a general description d of C' such
that 1) d is satisfied by all the examples in P, and 2) d is not satisfied by the
examples in N.

Some inductive techniques build decision trees as predictive classifiers. The
representation of the compounds is propositional (in the form of attribute
value pairs) and the attributes are the values of molecular properties (molec-
ular weight, physical-chemical properties, etc) and results of toxicity of some
other tests. The main shortcoming of decision trees is the propositional rep-
resentation of the compounds due to two reasons: 1) the high number of
descriptors for a compound, and 2) the fact that not all them are equally rel-
evant in order to predict the toxicity. Most approaches use ML and statistical
methods to select feature subsets.

A widely used relational learning technique is Inductive Logic Program-
ming (ILP). The main idea of ILP is to induce general descriptions explaining
a set of examples represented using logical predicates. The first ILP program
used to induce SAR models was PROGOL [29]; it was applied to a set of
230 aromatic and heteroaromatic nitro compounds and the resulting model
was compared with models obtained by both linear regression and neural net-
works with backpropagation. PROGOL’s results were very encouraging since
the final rules were more understandable than those obtained using the other
methods.

Other relational representation approaches consider a compound as a
group of substructures instead of sets of atoms. These approaches consider
that if a substructure has known toxic activity, then a compound having this
substructure can also have toxic activity. Pfahringer and Gini proposed a
more abstract representation of the chemical compounds using the concept of
functional groups (similar to the chemical ontology we use, see Sect. 1.2.1).
This abstraction improves the search process since it represents substructures
rather than describing each atom and atom bonds.
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Several authors [14, 17, 11] represent the compounds as labeled graphs and
this allows the use of graph search algorithms for detecting frequent substruc-
tures of the molecules in the same class. Following this approach, SUBDUE
[20] discovers substructures beginning with substructures matching a single
vertex in the graph and extending them by selection of the best substructure
in each iteration. At the end of the process, SUBDUE has a hierarchical de-
scription of the data in terms of the discovered substructures. SMILES [31],
also following this approach, detects the set of molecular substructures (sub-
graphs) more frequently occurring in the chemical compounds.

There are also hybrid approaches, such as the one proposed by Gini et al
[16]. This approach combines the toxicity results given by a set of fragments of
structures with an artificial neural network that uses descriptors of the chemi-
cal compounds. Thus, first the authors defined a set of fragments that experts
recognize as structures responsible for carcinogenicity. Then they developed a
module that searches in the chemical compound structure for the presence of
one or more of these fragments. On the other hand, they also used an artifi-
cial neural network that assessed the carcinogenicity of a chemical compound
taking into account its molecular descriptors. Finally, an ILP module is used
to combine the toxicity assessment of the two modules.

A problem with inductive techniques is that the high variability of chemical
compounds poses great difficulties to find general rules describing the classes
appropriately. In the next section we will introduce our work on lazy learning
techniques for predictive toxicology.

1.3.1 Lazy Learning Techniques

Inductive learning techniques try to extract general rules describing the cases
in each class. This kind of techniques has some difficulties in dealing with
domains, like toxicology, where entities are subject to high variability. Lazy
learning techniques, on the other hand, are based on the retrieval of a set of
solved problems (cases) similar to a specific problem. A critical issue in lazy
learning is the evaluation of similarity between two cases, as this forms the
basis for identifying a suitable set of cases or ‘promising’ candidates. Several
authors use the concept of similarity between chemical compounds: Hazard-
Expert [12] is an expert system that evaluates the similarity of two molecules
based on the number of common substructures; Sello [28] also uses the concept
of similarity but the representation of the compounds is based on the energy
of the molecules.

Shaud

When the domain objects have a propositional representation, the similarity
between two objects is assessed by computing the similarity of attributes and
then aggregating their similarities to obtain a global measure of the similarity
of the objects. Shaud is a similarity measure able of assessing the similarity
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OH OH OH

. — CH;3 CH;— CHjy . NH, . compound
‘ e ‘

NH, ~o N-compound

a) b) )

Fig. 1.5. a) 2-methyl-4 aminophenol. b) 2-amino-4-nitro-6-ethanophenol. ¢) struc-
ture shared by the chemical compounds a) and b). compound and N-compound are
the most specific sort (lub) of the radicals in the respective positions, according to
the sort/subsort hierarchy in Fig. 1.2

between structured objects represented as feature terms. Given two objects
Shaud distinguishes two parts in their structure: one formed by the features
present in both objects, called the shared structure; and another formed by
those features that are only present in one of the objects (but not the other)
called the unshared structure. For instance, Fig. 1.5 shows that the molecules
a) and b) have in common the structure ¢). In this example, the unshared
structure is only the radical ethane in position six of the molecule b).

Shaud [2, 3] assesses the similarity of two feature terms by computing the
similarity of the shared structure and then normalizing this value taking into
account both the shared and the unshared structure. The comparison of the
shared structure is performed element by element comparing the position of
their sorts into the sort/subsort hierarchy in the following way:

{ 1 if sort(yt) = sort(y?)

S(sort(yh), sort(y%)) = 1 — Zrlevel(lub(sort(y?), sort(1?)) otherwise

The idea is that the similarity between two values depends on the level of
the hierarchy (see Fig. 1.2) where their least upper bound (lub) is situated in
the sort hierarchy: the more general lub(vi,vs) the smaller is the similarity
between v, and vy. M is the maximum depth of the sort hierarchy.

For instance, in order to assess the similarity of the molecules a) and b) in
Fig. 1.5, Shaud takes into account the structure shared by both molecules (c)
and compares the elements composing that structure (Fig. 1.6). The similarity
assessment of the shared structure is the following:

e the main group that is benzene in both molecules, therefore

S(benzene, benzene) = 1

e aradical in position 1 that is an alcohol in both molecules, therefore

S(alcohol, alcohol) = 1
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Fig. 1.6. Formal representation of molecule ¢) shown in Fig. 1.5

a radical in position 2 that is a methane in the molecule a) and an amine
in the molecule b), therefore

1
S(methane, amine) = 1 — Mlevel(lub(methane7 amine))

and since lub(methane, amine) = compound, M = 5, and level(compound)
=5 (see Fig. 1.2) then

1 1
S(methane, amine) = 1 — glevel(compound) =1- 55 =0

a radical in position 4 that is an amine in the molecule a) and a nitro-
derivate (nitro-deriv) in the molecule b), therefore

1
S(amine, nitro-deriv) = 1 — Mlevel(lub(amine, nitro-deriv))

and since lub(amine, nitro-deriv) = N-compound, M = 5 and level(N-
compound) = 3 (see Fig. 1.2) then

1 1
S(amine, nitro-deriv) = 1 — 5level(N—comp0und) =1- 33 =04

Because these are simple molecules where the radicals themselves have no
radicals, the similarity of the common part is

S(benzene, benzene) + S(methane, amine) + S(amine, nitro-deriv) = 2.4

Then, this value is normalized by the total number of nodes (those of the
shared structure plus those of the unshared structure), i.e., S(a,b) = 22 =
0.48.
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Table 1.1. Distribution of the examples in the four PTC data sets and the accuracy
results obtained by two of the authors presented at the PTC compared with the
accuracy of Shaud with k =5 and the MC and CSA criteria.

Composition PTC Acc (k = 5)
data set | + — total || Ohwada|Boulicaut || MC | CSA
MR |81 125 206 55.59 55.88 48.06(62.13
FR 66 140 206 65.43 68.66 49.03| 64.08
MM |63 139 202 64.11 63.49 60.40/64.85
FM |78 138 216 || 63.69 60.61 59.72| 62.50

We have performed several experiments using the k-nearest neighbor (k-
NN) algorithm [13]. Given a new problem p, the k-NN algorithm retrieves the
k most similar cases and classifies p into the class resulting of the aggregation
of the classes where the k cases belong. There are two key issues in the k-NN
algorithm: the similarity measure and the aggregation. In our experiments,
we took Shaud as similarity and the majority class (MC) for aggregation (i.e.
the new compound is classified as belonging to the class that most of the k
retrieved precedents belong to). However, our preliminary experiments using
the majority criterion with different values of k£ did not provide a satisfactory
accuracy. We proposed the Class Similarity Average (CSA) criterion [3], a
domain-independent criterion that takes into account the similarity of the k
most similar cases and also the solution class where they belong.

For each compound p to be classified, Shaud yields the similarity between
p and each one of the k most similar cases. CSA will compute the average of
the similarity of the cases in the same class; then the class with higher average
similarity is selected as solution for p. More formally, let p be the compound
to be classified and Ry the set of the k cases most similar to p according to
the Shaud results. Each case ¢; € Ry has the following data associated: 1) the
structural similarity s; between p and ¢;, i.e. s; = Shaud(p, ¢;); and 2) for each
data set (i.e. MR, FR, MM and FM) the compound ¢; is positive or negative.

For each data set, let A™ be the set containing cases ¢; € Ry, with positive
activity, and A~ be the set containing cases ¢; € Ry with negative activity.
From the sets AT and A~ we define sim™ and sim™ as the respective averages
of the similarities of positive and negative cases retrieved, i.e.

imt — 1 . im— = —1 )
sim™t = |A+‘Eci€A+sl and sim~ = |A—\Zci€A_ S

The carcinogenic activity of a compound c is obtained according to the fol-
lowing criterion (CSA): if sim-pos < sim-neg then ¢ has negative carcinogenic
activity else c has positive carcinogenic activity.

Table 1.1 shows the results of using k-NN with £ = 5 both MC and the CSA
criteria together with the accuracy of two methods presented by [26, 9] in the
PTC. Notice that the accuracy using the CSA criterion is higher than using
MC. Also, the accuracy taking separately positive and negative examples is



1 E. Armengol and E. Plaza 13

more balanced using the CSA criterion. In particular, for the MR data set, the
accuracies using MC are Acc™ = 35.80 and Ace™ = 56 whereas the accuracies
using CSA are Acct = 55.55 and Acc™ = 66.40.

Lazy Induction of Descriptions

Lazy Induction of Descriptions (LID) is a lazy concept learning technique for
classification tasks in case-based reasoning (CBR). LID determines which are
the more relevant features of a problem and searches in the case base for
cases sharing these relevant features. The problem is classified when LID finds
a set of relevant features shared by a subset of cases all them belonging to
the same solution class C;. Then LID classifies the problem as belonging to
C;. We call similitude term the structure formed by these relevant features
and discriminatory set the set of cases satisfying the similitude term. The
similitude term is a feature term composed of a set of features shared by a
subset of cases belonging to the same solution class.

Given two feature terms, there are several similitude terms, LID builds the
similitude term with the most relevant features. The relevance of a feature
is heuristically determined using the Ldpez de Mdntaras (LM) distance [24].
The LM distance assesses how similar two partitions are in the sense that the
lesser the distance the more similar they are (see Fig. 1.7). Each feature f; of
an example induces a partition P; over the case base according to the values
that f; can take in the cases. On the other hand, the LM considers the correct
partition P, that is the partition where all the cases contained into a partition
set belong to the same solution class.

Given two partitions P4 and Pp of a set S, the distance among them is
computed as follows:

I(Pa) + I(Pp)

LM(P4,Pg) =2 —
(Pa, Pp) I(P4 N Pp)

where I(P) is the information of a partition P and I(P4 N Pg) is the mutual
information of two partitions.

In our case, the distance measure is applied to compute the distance among
a partition generated by a feature and the correct partition. The correct par-
tition P, has two classes, one containing the positive examples (examples in
C%) and the other containing the negative examples (those not in C%). Thus,
for each feature f;, there is a partition P; of the case base B according to
the values of f;. Each partition P; is compared with the correct partition P,
using the Lépez de Mantaras distance. The most discriminatory feature fy is
that producing a partition P having the minimum distance LM (Py, P.) to
the correct partition P.,.

Let P. be the correct partition and P; and P; the partitions induced by
features f; and f; respectively. We say that the feature f; is more discrimina-
tory than the feature f; iff LM (P;, P.) < LM(P;, P;). In other words, when
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Cl C2 C3 C4

Pc

fl

LM(Pc, f1) < LM(Pc, f2)

Fig. 1.7. Intuitive idea of the LM distance. The case base B contains precedents
belonging to four solution classes. The partition induced by the feature f1 is more
similar to the correct partition Pc than the partition induced by f2.

[compound
Dl position-radical
" |p-radicals = . . |compound
radicals = |————— .
main-group =alcohol
OH a ) )
| I rcompound 7
CHZ_ CHZ —_— .
main-group =ethane
2-chloroethanol 2 — position-radical
p-radicals = radicals = con_@pound .
L main-group =alcohol

Fig. 1.8. Similitude terms build by LID to classify the 2-chloroethanol in the nega-
tive class for male rats.

a feature f; is more discriminatory than another feature f; the partition that
fi induces in B is closer to the correct partition P, than the partition induced
by f;. Intuitively, the most discriminatory feature classifies the cases in B in a
more similar way to the correct classification of cases. LID uses the most dis-
criminatory than relationship to estimate the features that are most relevant
for the purpose of classifying a new problem.

Now, we will illustrate the performance of LID (see algorithm in Fig. 1.9)
to assess toxicity of the 2-chloroethanol (the TR-275 in the PTC case base) for
male rats. LID inputs are Sp = B of chemical compounds, a similitude term D
initialized to the most general feature term (i.e. the most general description),
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Function LID (Ap, p, D, C)
if stopping-condition(Ap)
then return class(Ap)
else fq := Select-feature (p, Ap, C)
D' := Add-feature(fq, D)
Ap := Discriminatory-set (D', Ap)
LID (Apr, p, D', C)

end-if
end-function

Fig. 1.9. The LID algorithm. D is the similitude term, Ap is the discriminatory
set of D, C is the set of solution classes, class(Ap) is the class C; € C to which all
elements in Ap belong.

the description of the 2-chloroethanol, and the set Sp (the discriminatory set
associated to D) that contains all the cases that satisfy the structure described
by D. Initially Sp = B since D is satisfied by all the cases in B.

The first step of LID is to check whether all the cases in Ap belong to
the same solution class. Since this stopping condition is not satisfied at the
beginning, the second step is to specialize D. The specialization D' of D is
built by adding to D the path p-radicals.radicals.main-group with main-group
taking value alcohol, as in the 2-chloroethanol (see Fig. 1.8). The discrimina-
tory set Ap, contains now 42 cases subsumed by D!, i.e. those compounds
in Ap having a radical alcohol. Next, LID is recursively called with D! and
Ap,.

The cases in the discriminatory set Ap, do not satisfy the stopping con-
dition, i.e. some of them belong the positive class and some others belong
to the negative class, therefore D' has to be specialized by adding a new
discriminatory feature. Now most discriminatory feature is main-group. The
specialization D? is built by adding main-group to D! with value ethane (see
Fig. 1.8). LID is recursively called with the set Ap, and the similitude term
D2,

The set Ap, contains 6 cases all of them belonging to the negative class.
Therefore LID terminates classifying the chloroethanol as belonging to the
negative class and explaining it with the similitude term D? (shown in Fig.
1.8), i.e. because the compound is an ethane with a radical alcohol. This
classification is supported by the 6 cases in Ap,. The result of LID is the
solution class C; and a similitude term D™. The similitude term D™ can be
seen as an explanation of why the current problem p is in the solution class
C;. D™ is a partial description of C; because, in general, not all cases in C;
satisfy D™.

We conducted a series of experiments with the similitude terms to discover
patterns in the Toxicology data set. These experiment had two steps: 1) use
LID with the leave-one-out method in order to generate similitude terms for
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Table 1.2. Accuracy of LID and C-LID on the PTC data set.

data set|# cases| LID |C-LID
MR 297 |58.27|60.54
FR 296 (63.09/66.97
MM 296 |52.39|53.95
FM 319 |52.36|56.60

classifying the cases; and 2) select a subset of these similitude terms. The first
step yields a set of similitude terms that have been used for classifying some
cases. The second step selects only those similitude terms that are totally
discriminatory (we call them patterns). Some of the patterns detecting posi-
tive toxicity are also reported in the literature. For instance, LID founds that
compounds with a radical chlorine are carcinogenic and Brautbar describes
some experiments confirming the toxicity of chlorinated hydrocarbons.

As a second experiment, we defined Caching LID (C-LID), a lazy learning
approach that reuses the patterns used for solving past problems in order to
improve the classification of new problems in case based-reasoning (CBR). C-
LID is implemented on top of LID by defining two policies: the caching policy
and the reuse policy. The caching policy determines which similitude terms
(patterns) are to be retained. The reuse policy determines when and how
the cached patterns are used to solve new problems. In our experiments, the
caching policy of C-LID states that a similitude term D will be cached if it is
univocal, i.e. when all cases covered by a pattern belong to one class only. The
reuse policy of C-LID states that patterns will be used for solving a problem
p only when LID is unable to univocally classify p.

Thus, the experiment with C-LID has two phases: 1) a preprocessing of
the case base in order to obtain some patterns to be cached; and 2) the
problem solving phase that uses LID together with the cached patterns for
classifying new problems. The preprocessing phase is done using the leave-
one-out technique using the cases in the case base B. For each case ¢ € B,
C-LID uses LID to classify ¢ and generates a similitude term D.. When D, is
univocal C-LID caches it. Thus, at the end of the preprocessing phase C-LID
has obtained a set M = {D;...D,} of patterns. The reuse policy decides
when to use these patterns during the problem solving phase.

The evaluation of the predictive accuracy of the methods has been made
using 10-fold cross-validation. Table 1.2 shows the accuracy of LID and C-LID
for each one of the data sets. Notice that C-LID improves the accuracy of
LID in all the data sets showing that the caching policy is adequate. Notice
that the caching policy stores only the similitude terms that are univocal, i.e.
those subsuming cases belonging to only one solution class. With this policy
C-LID takes into account only those patterns with clear evidence of a good
discrimination among classes.
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1.4 Conclusions

We have seen that the task of predicting the possible activity of molecules
is a challenging one, from the chemist viewpoint and also the field of ML.
From the chemist viewpoint it is interesting that automated techniques may
be capable of predicting with some degree of accuracy the toxicity of chemical
compounds that have not been synthesized. Predicting toxicity is a complex
task for ML that requires thoughtful analysis of all dimensions involved.

We have summarily described several ML approaches to toxicity predic-
tion, and we have highlighted the dimension of example representation. ML
approaches that use a propositional representation (i.e., an example is rep-
resented by a vector of attribute value pairs) have problems for mapping
the chemical model of chemical compounds based on SAR into vectors of
attribute value pairs. Since this mapping ignores the structure itself, other
ML approaches use relational learning techniques; specifically ILP maps the
SAR models into a logic representation of examples and background knowl-
edge. Our approach proposes a new kind of relational representation based
on the chemical ontology that describes the compounds’ structure in a more
abstract way. The experiments have shown that the predictive performance
of our methods (SHAUD and C-LID using the chemical ontology based repre-
sentation) have comparable results to that of methods that use SAR models.

ML techniques are very dependent on the way examples are represented.
The fact that ML techniques — using propositional SAR, relational SAR,
and chemical ontology — achieve a similar performance in predicting toxicity
implies that they possess a comparable information content in terms of the
studied molecules. Nonetheless, toxicity prediction is a complex task for ML
techniques, since their performance is just relatively good [19] while they can
be very good for other tasks. Because there is no ML technique providing
excellent results, a likely explanation is that the current representation of
chemical compounds is not adequate. Notice that a compound can be toxic
in a data set (say male rats) and not in another (say female mouse): since
the representation of the examples is the same, and yet they have different
solutions, this seems to indicate that there are external factors involved that
are not represented in the examples themselves. An enriched characterization
of the compounds would very likely improve the predictive accuracy of the
ML techniques we have discussed here.
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