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Abstract. Reasoning and learning from cases are based on the concept
of similarity often estimated by a distance. This paper presents LAUD,
a distance measure that can be used to estimate similarity among rela-
tional cases. This measure is adequate for domains where cases are best
represented by relations among entities. An experimental evaluation of
the accuracy of LAUD is presented for the task of classifying marine
sponges.

1 Introduction

Reasoning and learning from cases is based on the concept of similarity. Often
similarity is estimated by a distance (a metric) or a pseudo-metric. This ap-
proach proceeds by a pairwise similarity comparison of a problem with every
precedent case available in a case base; then one case (or k cases) with greatest
(greater) similarity is (are) selected. This process is called the retrieval phase
in Case-based Reasoning (CBR), and also plays a pivotal role in lazy learning
techniques like Instance-based Learning (IBL) and k -nearest neighbor. In clas-
sification tasks, the solution class of the problem is inferred from the solution
class of the precedent case(s) selected.

However, distance-based approaches to case retrieval are mainly used for
propositional cases, i.e. cases represented as attribute-value vectors. We are in-
terested in this paper in learning tasks where cases are best represented in a
scheme that uses relations among entities. We will call this setting relational
case-based learning. One option to achieve case-based learning in a relational
setting is to adapt the process of pairwise similarity comparison by defining a
distance that works upon relational instances. An example of similarity to be
applied in relational cases is that used by RIBL ([7]) where the cases are repre-
sented as collections of Horn clauses (see related work on section 5).

We are interested in using cases represented in a relational way using feature
terms [1]. Feature terms are a generalization of first order terms. In this represen-
tation entities are typed by sorts and relations among entities are represented
by features. In this paper we introduce LAUD, a new distance measure that we
use to estimate the similarity of relational cases represented as feature terms.

The structure of this paper is the following. In section 2 we introduce the
feature term representation. In section 3 we introduce a new similarity for esti-



mating the similarity of cases represented as feature terms. In section 4 we pro-
vide some results of the application of the similarity to identify marine sponges.
Finally, we report some related work and the conclusions and future work.

2 Representation of the cases

Feature Terms (also called feature structures or ψ-terms) are a generalization of
first order terms. The difference between feature terms and first order terms is
the following: a first order term, e.g. f(x, y, g(x, y)) can be formally described as
a tree and a fixed tree-traversal order. In other words, parameters are identified
by position. The intuition behind a feature term is that it can be described as
a labelled graph i.e. parameters are identified by name. A formal definition of
feature terms is the following:

Given a signature Σ = 〈S,F ,�〉 (where S is a set of sort symbols that
includes ⊥; F is a set of feature symbols; and � is a decidable partial order on
S such that ⊥ is the least element) and a set ϑ of variables, we define feature
terms as an expression of the form:

ψ ::= X : s[f1
.
= Ψ1 . . . fn

.
= Ψn] (1)

where X is a variable in ϑ called the root of the feature term, s is a sort in S, the
function root(X) returns the sort of the root, f1 . . . fn are features in F , n ≥ 0,
and each Ψi is a set of feature terms and variables. When n = 0 we are defining
a variable without features. The set of variables occurring in ψ is noted as ϑψ.

Sorts have an informational order relation (�) among them, where ψ � ψ′

means that ψ has less information than ψ′ or equivalently that ψ is more general
than ψ′. The minimal element (⊥) is called any and it represents the minimum
information. When a feature has unknown value it is represented as having the
value any. All other sorts are more specific than any. We restrict ourselves to
use sort hierarchies with single inheritance (every sort has only one most specific
supersort).

Using the � relation, we can introduce the notion of least upper bound (lub)
commonly used in ILP [9]. The lub of two sorts is the most specific sort gen-
eralizing both. As we will explain in section 2.1 the notion of lub will be used
to define the anti-unification of two feature terms. A path π(X, fi) is defined as
a sequence of features going from the variable X to the feature fi. The depth
of a feature f in a feature term ψ with root X is the number of features that
compose the path from the root X to f , including f , with no repeated nodes.
Given a particular maximum feature depth k, a leaf feature of a feature term is
a feature fi such that either 1) the depth of fi is k or 2) the value of fi is a term
without features. We call leaves(ψ, k) the set of leaf features of a term ψ.

Let us illustrate the concepts introduced above with an example. The feature
term of Figure 1 represents the description of a marine sponge. The root of this
feature term is s364, the sorts are written in italic (for instance, sponge, external-
features, growing, . . . ), some features are external-features, ecological-features,
megascleres, separable, aspect, etc. Notice that the features ornamentation and
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Fig. 1. Representation of a sponge using feature terms.

vertical-tracts are set-valued. The feature leaves of s364 are the following {body-
size, touch, grow, form, peduncle, hollow, osc, fixation, substrate, location, chemical,
architecture, smooth-form, acanthose, ornamentation, microscleres, vertical-tracts,
transversal-tracts, distribution, separable, aspect, cortex}. An example of path is
π(s364, acanthose) that represents the path from the root to the leaf feature acan-
those, i.e. the sequence of features (spiculate-skeleton, megascleres, acanthose).

As we have explained above, there is an order relation between sorts. Figure
2 shows the sort/subsort hierarchy for the values of the feature megascleres. The
most general sort allowed for the values of the feature megascleres is megas-form



Megas-form

Oxea

Calthrop

Tornote

Tylote
Subtylote
Cladotylote

Triaena

Protriaena
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Plagiotriaena
Mesotriaena
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Style
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Tylostyle

Level                       4                                 3                     2                           1

Desma

Lophoalthropa

Rhabdostyle

Spherotylostyle

Depth                       1                                 2                     3                           4

Fig. 2. Part of the sort hierarchy corresponding to the values of the feature megascleres.
It is a hierarchy of depth 4. The levels of the hierarchy will be used to determine the
sort similarity.

and there are several subsorts (e.g. triaena, style, calthrop, etc). In turn, some
of these subsorts (e.g. triaena, style, tylote) have subsorts. Let us suppose that
v1 = protriaena, v2 = anatriaena and v3 = tylostyle. The least upper bound of
v1 and v2, lub(v1, v2), is triaena that is the most specific supersort of protriaena
and anatriaena whereas the lub(v1, v3) is megas-form since protriaena and
tylostyle only share the fact that both are kinds of megascleres.

There are two important concepts concerning the representation using fea-
ture terms that will be used later for assessing similarity. One of them is the
subsumption relation and the other one is the anti-unification operation. Both
concepts are explained in the next section.

2.1 Subsumption and Anti-unification of Feature Terms

The semantic interpretation of feature terms brings an ordering relation among
feature terms that we call subsumption. Intuitively, a feature term ψ subsumes
another feature term ψ′ (ψ v ψ′) when all information in ψ is also contained in
ψ′. More formally, a feature term ψ subsumes other feature term ψ′ when the
following conditions are satisfied:

1. the sort of root(ψ′) is either the same or a subsort of root(ψ),
2. if Fψ is the set of features of ψ and Fψ′ is the set of features of ψ′ then
Fψ ⊆ Fψ′ and

3. the values of the features in Fψ and Fψ′ satisfy the two conditions above.

Figure 3 shows the feature term s-encrusting representing sponges that have
an spiculate skeleton and that grow in encrusting form. The sponge s364 in
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Fig. 3. Description of marine sponges with spiculate skeleton that grow encrusting.

Figure 1 is subsumed by this description (s-encrusting v s364 ) since all the
information in s-encrusting is also contained in s364 – although s364 can have
more (or more refined) information.

In [1] can be found a more formal explanation about the feature terms and
the subsumption relation.

Feature terms form a partial ordering by means of the subsumption relation.
The anti-unification is defined over the subsumption lattice as an upper lower
bound with respect to the subsumption (v) ordering.

Intuitively, the anti-unification (AU) of two feature terms gives what is com-
mon to both (yielding the notion of generalization) and all that is common to
both (the most specific generalization). Therefore, the AU of two feature terms
F1 and F2 produces a feature term D that contains the features that are common
to both F1 and F2. The values of the features in D have to satisfy the following
conditions:

1. If a feature f has the same value v in both examples F1 and F2, the value
of f in D is also v.

2. In a feature f has value of sort s1 in F1 and value of sort s2 in F2, the value
of f in D is the most specific sort common to s1 and s2, i.e. the least upper
bound of s1 and s2 in the � sort order.

3. otherwise, the examples F1 and F2 cannot be anti-unified.

The features of feature terms can be set-valued. Let fk be a feature that
takes the set V1 as value in F1 and the set V2 as value in F2. Intuitively, the AU
of V1 and V2 has to produce as result a set W . The cardinality of the set W is
MinCard = min(Card(V1), Card(V2)) and each element in W is the AU of a
value of V1 and a value of V2 (obtaining the most specific combination).

The elements in W are obtained as follows. First the set C = {(xi, yj) |
xi ∈ V1 and yj ∈ V2} is obtained. Then the AU of each pair in C is computed.
Finally, the set W contains the MinCard most specific compatible combinations
of values.

Given the feature terms w1 = AU(x, y) and w2 = AU(x′, y′) we say that
w1 and w2 are compatible when x 6= x′ and y 6= y′. Otherwise w1 and w2

are incompatible. Intuitively, two anti-unification feature terms are compatible if
they have both been obtained from the AU of different values. This means that
the values of the sets to be anti-unified have been used only once.



Table 1. Example of the anti-unification of sets. V1 = {anatriaena, desma} and V2 =
{anatriaena, protriaena, calthrop}. Columns 1 and 2 form all the possible combinations
of the values of V1 and V2 . The third column shows the anti-unification of each possible
combination of the values of V1 and V2.

v ∈ V1 u ∈ V2 AU(v, u)

anatriaena anatriaena anatriaena

anatriaena protriaena triaena

anatriaena calthrop megas-form

desma anatriaena megas-form

desma protriaena megas-form

desma clathrop megas-form

For instance, let us suppose that we want to obtain the anti-unification of the
sets V1 = {anatriaena, desma} and V2 = {anatriaena, protriaena, calthrop}. The
first step is to build the set C of all the possible combinations of values. In this
example C = { (anatriaena, anatriaena), (anatriaena, protriaena), (anatriaena,
calthrop), (desma, anatriaena), (desma, protriaena), (desma, calthrop)}. The
table 1 shows the anti-unification of each combination using the sort hierarchy
in Figure 2. The anti-unification of V1 and V2 is a set of cardinality 2 (since
|V1| = 2) containing the two most specific compatible values obtained from the
anti-unification. In the example, the most specific sort is anatriaena obtained
from AU(anatriaena, anatriaena). This means that all the combinations using
anatriaena ∈ V1 and anatriaena ∈ V2 have to be eliminated because they are
incompatibles with AU(anatriaena, anatriaena). In this case all the remaining
values have the same anti-unification (i.e. megas-form), thus the result is the set
W = AU(V1, V2) = {anatriaena,megas-form}.

3 Similarity between cases

There are three aspects that we need to define in order to perform CBR on
relational cases: 1) to define a case from a constellation of relations, 2) to assess
the similarity of values, and 3) to define a way to assess similarity between cases.
These three aspects are explained in this section.

A case is a term defined (in feature terms) by two parameters: a root sort
and a depth. That is to say, assuming a “case base” expressed as a collection
of feature terms, a case is a feature term whose root node is subsumed by the
root sort and whose depth is at most depth. An example of case specification is
case[root-sort

.
= sponge, depth

.
= 4] in the marine sponges domain (see §4).

Section 3.1 explains how to estimate the similarity between the values of a
feature and section 3.2 how to estimate the similarity among cases.

3.1 Similarity between values

For the purpose of assessing the similarity of values we distinguish between
features having numerical values and features having symbolic values. For those



features with numerical values we use the usual measure. For the features having
simbolic values we estimate the similarity using a new distance measure called
LAUD.

The similarity between cases is estimated taking into account the similarity
of the features describing the cases. Let c1 and c2 be two cases represented as
feature terms. Given a feature f taking value v1 in c1 and value v2 in c2, the
similarity of the values is estimated depending of whether the values are either
symbolic or numeric.

When the value of f is numerical of a range [a, b] the similarity of v1 and v2
is computed, as usual, by means of the following expression:

sim(v1, v2) = 1 −
| v1 − v2 |

b− a
(2)

When the value of f is symbolic, the similarity of two feature values v1 and
v2 is computed using the hierarchy of the sorts S. The idea is that the similarity
between two values depends on the level of the hierarchy where their lub is
situated with respect to the whole hierarchy: the more general lub(v1, v2) the
greater is the distance between v1 and v2.

Formally, let Sf ∈ S be the most general sort that can take the values of a
feature f . We consider Sf as the root of a subsort hierarchy, therefore the depth
of Sf is 1. Given a subsort s of Sf (i.e. s � Sf ) we define the level of s as follows:
level(s) = M − depth(s), where M is the maximum depth of the hierarchy of
root Sf .

For instance, in the part of the sort hierarchy in Figure 2 the lub(anatriaena,
orthotriaena) = triaena is at level 3, whereas lub(anatriaena, desma) = megas-
form is at level 4. This means that orthotriaena is more similar to anatriaena
than desma.

Thus, the similarity of two symbolic values will be estimated using the fol-
lowing expression:

sim(v1, v2) =

{

1 if v1 = v2
1 − 1

M
level(lub(v1, v2)) otherwise

(3)

Proposition 1. Let x be a feature term of sort s1 and y a feature term of sort
s2. We consider a sort hierarchy of root Sf and maximum depth M such that
Sf � s1 and Sf � s2 (i.e. s1 and s2 are subsorts of Sf by the � relation). In
that situation the following measure is a distance

δ(x, y) =

{

0 if x = y
1
M
level(lub(x, y)) otherwise

(4)

Proof. A measure is a distance if the following three conditions are satisfied:

1. 0 ≤ dist(x, x)
2. dist(x, y) = dist(y, x)
3. dist(x, y) ≤ dist(x, z) + dist(z, y)



a)                                             b)                                        c)

x        y       z

       lub(x,z)=lub(y,z)

x        z       y

lub(x,z)

       lub(y,z)

y        z       x

lub(y,z)

      lub(x,z)

Fig. 4. Different relations that can occur between the sorts of three objects.

We will proof that the measure δ(x, y) satisfies the three conditions above.

1. δ(x, x) = 0 according to the definition

2. The symmetry of δ(x, y) is proved using the symmetry of lub’s
δ(x, y) = 1

M
level(lub(x, y)) = 1

M
level(lub(y, x)) = δ(y, x)

3. To proof the triangle inequality we need to distinguish three cases, cor-
responding to the situations illustrated in Figure 4 (remember that S is
restricted to single inheritance). Let z be a feature term of sort s3.

– a) lub(x, z) = lub(z, y)
we can assure (Figure 4a) that also lub(x, y) = lub(x, z), therefore

1
M

level(lub(x, y)) = 1
M

level (lub(x, z)), and thus

δ(x, y) = δ(x, z) ≤ δ(x, z) + δ(z, y)

– b) lub(x, z) � lub(z, y)
we can assure (Figure 4b) that lub(x, y) = lub(z, y) therefore

1
M

level(lub(x, y)) = 1
M

level (lub(z, y)), and thus

δ(x, y) = δ(z, y) ≤ δ(x, z) + δ(z, y)

– c) lub(x, z) � lub(z, y)
we can assure (Figure 4c) that lub(x, y) = lub (x, z) therefore

1
M

level(lub(x, y)) = 1
M

level (lub(x, z)), and thus

δ(x, y) = δ(x, z) ≤ δ(x, z) + δ(z, y)

Therefore δ(x, y) satisfies the three properties of distance. 2

Let us now consider how to estimate the feature similarity when two cases
have a set-valued feature f , i.e. when ci.f = Vi and cj .f = Vj for some sets Vi =
{x1 . . . xn} and Vj = {y1 . . . ym}. In this situation we compute n×m similarities
between the terms in Vi and the terms in Vj , i.e for all possible pairs Pij =
{(xh, yk)|xh ∈ Vi∧yk ∈ Vj} we compute the similarity score using the previously
defined feature similarity functions. Clearly, there will be min(n,m) mappings
that we can establish. Moreover, since we are interested in minimizing distance,



we want those pairs of Pij that have lesser distances and, taken together, they
have the smaller aggregate distance.

For the case when Vi and Vj are numeric we compute the similarities of all
pairs in Pij obtaining the set S(Pij) as follows:

S(Pij) = {〈(xh, yk), δ(xj , yk)〉|xh ∈ Vi ∧ yk ∈ Vj}

Let us call the set of possible pairs S0 = Pij . We take the pair p1 = (x, y) ∈ S0

with maximum similarity in S(Pij). Now, this pair and all the pairs incompatible
with it have to be removed from the set S0, i.e. we build the set S1 = S0 − P1

where P1 = {(x′, y′) ∈ S0|x
′ = x ∨ y′ = y}. Next, we take the pair p2 from the

remaining pairs in S1 with maximum similarity in S(Pij ). We proceed this way
until we find all pairs Pmin = {p1 . . . pmin(n,m)} that together have a maximum
value of similarity. Then the feature similarity is the following aggregate:

sim(V1, V2) =
1

min(n,m)

∑

(xh,yk)∈Pmin

sim(xh, yk)

For the case when sets Vi and Vj have symbolic values the idea is also the
same: finding those pairs whose similarity is higher. As we have seen, for a pair
(xj , yk) of symbolic values the more specific their lub(xj , yk) the higher is their
similarity. Therefore we want to find the collection of pairs {p1 . . . pmin(n,m)}
whose lubs are more specific. But this is precisely the definition of anti-unification
shown in §2.1. Therefore the anti-unification of the values Vi = {x1 . . . xn} and
Vj = {y1 . . . ym} provides the pairs that have the highest similarity.

Let W = {w1 . . . wmin(n,m)} be the anti-unification of Vi and Vj . Each wl ∈
W is the result of the anti-unification of a pair (xh, yk) such that xh ∈ V1 and
yk ∈ V2. Let us call PW the set of those pairs:

PW = {(xh, yk)|xh ∈ V1 ∧ yk ∈ V2 ∧ AU(xh, yk) ∈W}

Then the aggregate similarity for sets V1 and V2 is as follows:

sim(V1, V2) =
1

min(n,m)

∑

(xj ,yk)∈PW

sim(xj , yk) (5)

3.2 Aggregated similarity

The similarity among cases has to be computed as an aggregation of the simi-
larities of the feature values. In propositional cases global similarity S(c1, c2) is
usually a mean aggregation function Φ from feature-wise similarities over a fixed
collection of attributes F = (f1, . . . , fm), i.e.

S(c1, c2) = Φ(sim(c1.f1, c2.f1), . . . , sim(c1.fm, c2.fm))

where sim(c1.fj , c2.fj) is the feature similarity for the values of fj . However, in
practice cases can be incomplete, so pseudo-similaritys have to be included in



that global similarity assessment, e.g. enforcing sim(c1.fj , c2.fj) = 0 whenever
one of the two cases has a missing value in fj .

In our experiments with relational case-based learning we have focused on
exploiting the information present in the object-centered formalisms, namely
sorts and features. Sorts express domain knowledge that clusters domain objects
into meaningful classes; in fact, the estimation of the similarity of symbolic
values using the sort hierarchy (see equation 3) captures this domain information.
Information about features can be exploited because we do not (and can not)
assume, as in propositional cases, that a case should have all features F =
(f1, . . . , fm).

Using feature terms, the features with unknown value are represented by
the value any for that features. Because any is the minimal element on the �
relation, when a case has value any in a feature f we can think of this case as
not having the feature f . For instance, the sponge s364 in Figure 1 has two
skeletons: one spiculate skeleton and one skeleton with tracts (feature tracts-
skeleton) whereas the sponge s252 in Figure 5 has only one spiculate skeleton
and thus the feature tracts-skeleton does not occur in s252.

The similarity between two cases c1 and c2 is estimated taking into account
both the information that they share and the information that they do not
share. The shared features is the set of features occurring in both cases and it is
obtained using the anti-unification operation (section 2.1). The relevant features,
are those features that occurs at least in one of the two cases (notice that the
relevant information also includes the shared features). The global similarity of
two cases is computed by estimating the similarity of the shared features and
then normalizing this result by the cardinality of the set of relevant features.

A feature term ψ can be viewed as the set Π(ψ, k) = {π(ψ, fi) | fi ∈
leaves(ψ, k)}, i.e. the set of paths from the root to the leaves with depth k.
The anti-unification of two cases c = AU(c1, c2) captures the common structure
on these two cases. Moreover, since c is a feature term it can also be viewed as a
set of paths Π(c, k) that collects that which is common to c1 and c2. We assess
the similarity of two cases using the feature-wise similarity measure defined in
section 3.1 on the set of leaves of c = AU(c1, c2); let A(c1, c2) denote that set
of leaves. Assessing the similarity of the leaves of the paths in Π(c, k) we are
implicitly assessing the common structure of two cases represented by Π(c, k).

Moreover, we want to take into account those features not shared by two
cases. For this purpose we define the set of relevant leaves as follows L(c1, c2) =
{fj |fj ∈ leaves(c1, k) ∨ fj ∈ leaves(c2, k)}. The ratio | A(c1, c2) | / | L(c1, c2) |
estimates how great is the shared structure between two cases. Therefore we will
use L(c1, c2) to normalize the aggregation of feature-wise similarities, as follows:

S(c1, c2) =

∑

fj∈A(c1,c2)
sim(π(c1, fj), π(c2, fj))

| L(c1, c2) |
(6)

where sim(π(c1, fj), π(c2, fj)) is the feature-wise similarity measure applied to
the values of fj in the cases c1 and c2. Notice that the similarity is computed
over the values in c1 and c2 defined by the paths found in the anti-unification.
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Fig. 5. Representation of a sponge using feature terms.

3.3 Example

Let us suppose that the goal is to estimate the similarity of the sponges s364
and s252 (Figures 1 and 5 respectively). The first step is to determine the set of
leaf features of each sponge, and then the set A of leaf features that are common
to both sponges. In our examples the set A is the following:

A = {(external-features body-size) (external-features growing grow)
(external-features growing form) (external-features growing peduncle)
(external-features hollow) (external-features osc)
(ecological-features fixation) (ecological-features location)
(spiculate-skeleton chemical) (spiculate-skeleton architecture)
(anatomy ectosome) (spiculate-skeleton megascleres smooth-form)
(spiculate-skeleton megascleres acanthose)
(spiculate-skeleton megascleres ornamentation) }



The second step is to evaluate the similarity of the values that the features
in A take in the current sponges. This similarity is the following:

– (external-features body-size). Both sponges have the same symbolic value
(small) in this feature, therefore the similarity is 1. The following features
also have similarity 1: (external-features growing peduncle), (external-features
hollow), (external-features osc), (ecological-features fixation), (ecological-features
location), and (spiculate-skeleton chemical).

– (external-features growing grow). The sponge s252 has as value the set V1 =
{erect encrusting} and the sponge s364 has as value the set V2 = {encrusting}.
The similarity for this feature is estimated according to Equation 5. There-
fore the first step is to determine the elements of V1 and V2 providing the
anti-unification of both sets and then to estimate the similarity of the values
belonging to this anti-unification.

The anti-unification is AU(V1, V2) = {encrusting} that has been obtained
from the anti-unification of encrusting ∈ V1 and encrusting ∈ V2. Since
both values are the same sim(encrusting, encrusting) = 1, and since the
minimum cardinality is 1, the result following Equation 5 is 1.

– (external-features growing form). The sponge s252 has as value v1 = branching
and the sponge s364 has as value v2 = digitate. Both values are symbolic,
therefore according to Equation 3 lub(branching, digitate) = form. Since
form is the root of the sort hierarchy for the legal values of the feature
form, the similarity on this feature is zero. The features (spiculate-skeleton
architecture), and (anatomy ectosome) have also similarity zero.

– (spiculate-skeleton megascleres smooth-form). This feature takes as value the
set V1 = {style, subtylostyle, tylostyle} in the sponge s252 and the set
V2 = {spherotylostyle} in the sponge s364. Following the Equation 5 we
compute the anti-unification AU(V1, V2) = tylostyle. Since this value has
been obtained from subtylostyle ∈ V1 and from spherotylostyle ∈ V2 follow-
ing Equation 5 we have to compute

sim(subtylostyle, spherotylostyle) =
1 − 1

M
level(lub(subtylostyle, spherotylostyle)) = 2

4 = 0.5

where lub(subtylostyle, spherotylostyle) = tylostyle, level(tylostyle) = 2, and
M = 4 (see Figure 2).

Finally, the similarity of both cases is estimated as the sum of the similarities
computed above normalized by the cardinality of the set of features that are in
some of the both sponges.

S(s252, s364) =

∑

fj∈A
sim(π(s252, fj), π(s364, fj))

| L(s252, s364) |
=

11

24
= 0.458



order N correct incorrect %accuracy

astrophorida 95 88 7 92.63

hadromerida 117 108 9 92.30

poecilosclerida 95 86 9 90.53

TOTAL 307 282 25 91.86

Fig. 6. Results of the application of the similarity to classify marine sponges.

4 Experiments

In this section we describe some experiments that use the similarity to identify
the order of marine sponges. Marine sponges are relatively little studied and
most of the existing species are not yet fully described. Main problems in the
identification are due to the morphological plasticity of the species, to the in-
complete knowledge of many of their biological and cytological features and to
the frequent description of new taxa. Moreover, there is no agreement on the
species delimitation since characterization of taxa is unclear.

We used a case base containing 307 marine sponges belonging to three or-
ders of the demospongiae class: astrophorida, hadromerida or poecilosclerida.
The sponges are represented using feature terms as in Figures 1 and 5. Each
experiment has been performed using the leave-one-out method. Thus, in one
experiment we take out one sponge sp and then we compute the similarity of sp
with each one of the remaining 306 sponges. Finally, sp is classified as belonging
to the same order than the sponge estimated as more similar.

The Figure 6 shows the results of these experiments, detailing the accuracy,
and the number of correct and incorrect answers for each order. Thus, there are
95 sponges in the case-base belonging to the order astrophorida. For 88 of these
sponges the similarity finds that the most similar sponge is an astrophorida,
i.e. they are correctly classified. Similarly, 108 of the 117 sponges of the order
hadromerida and 86 of the 95 sponges of order poecilosclerida are correctly
classified. Summarizing, from the 307 sponges of the case-base, 282 of them
are correctly classified with respect the order where they belong. This represents
an accuracy of 91.86%.

5 Related Work

Most of work in similarity assessment has been done in propositional cases but
there is an active research field focusing in similarity between relational cases
[5, 6, 4, 11, 3]. These approaches use the notion of “structural similarity” and
use techniques of subtree-isomorphism or subgraph isomorphism to detect this
similarity [6].

Two proposals for similarity measure for object-based representations are
[4] and [3]. They both distinguish between inter-class and intra-class similarity.
This is because they separate similarity among instances of the same class from



similarity among classes for instances of different classes. However, feature terms
unify this distinction using the sort hierarchy. Inter-class similarity in [3] requires
the assignement of “similarity degrees” to the class hierarchy while LAUD de-
fines a distance over the sort hierarchy. Both LAUD and [4] support set-valued
attributes while [3] does not. LAUD defines precisely the idea of “shared struc-
ture” using anti-unification, while [3] requires that every instance to have all
defined attributes and [4] uses a similarity measure that is expressed as a system
of equations to be solved iteratively.

RIBL [7] is a first-order instance-based learner that applies IBL to an instance
space composed of first-order descriptions. The similarity measures used in RIBL
are applied to function-free cases. A recent improvement of RIBL [8] allows the
use of lists and terms in the representation of the cases, therefore new similarity
measures have to be defined in order to work with them. In particular, authors
propose the use of edit distances for computing the distances between terms
and lists. There are several differences between RIBL and LAUD due to the
differences between Horn clauses and feature terms. First, RIBL assumes the
cases and the problem are described by a fixed set of attributes, while feature
terms do not make this assumption. For this reason LAUD uses anti-unification
in order to determine the common features of two cases. Second, LAUD use the
sort hierarchy to compute the similarity between symbolic values while RIBL
just checks if two symbolic values are equal or not.

Related but different approaches are those in [11] and [2] where the cases
are represented using feature terms and the similarity is estimated using the
notion of “similarity term”. [11] proposes to build the similarity term using the
anti-unification (i.e. the most specific generalization of two cases) and then use
an entropy measure [10] to assess the similarity term that is better. In [2] we
consider that the “similarity term” is a feature term containing the more relevant
features allowing the classification of a new case. The relevant features of the
cases are determined using a heuristic.

6 Conclusions

In this paper we introduced LAUD, a new distance measure to estimate the sim-
ilarity of relational cases. In particular, LAUD uses cases represented as feature
terms. The representation using feature terms allows on one hand to represent
partial information, i.e. the features with unknown values do not appear in the
representation of the cases. This means that two cases may be described by
different features. On the other hand, the values of the features are sorted and
there is an informational order relation (�) between sorts. Using the � relation
we can define the notion of least upper bound and then the anti-unification of
two feature terms.

The measure we propose estimates the similarity of relational cases as an
aggregation of the similarities of the features that are common to both cases.
These common features are obtained using the anti-unification concept. The
similarity among features is estimated as usual when they take numerical values.



Nevertheless, when the value of a feature is symbolic the similarity is estimated
using the part of the sort hierarchy containing the legal values for that feature.

An interesting fact is that our extension of similarity assessment to rela-
tional cases is that LAUD is not much more computationally intensive than a
distance-based assessment for propositional cases. First, LAUD focuses on the
leaf features, which is a manageable number of elements. Second, when a leaf
feature has a single value (numerical or symbolic) the computation of the dis-
tance is straightforward. Only when a leaf feature is set-valued the computation
of similarity is somewhat more expensive: the anti-unification operator has to
consider the combinations of pairs of values. However, this computation is not
so expensive in practice and the cost is worthwhile the added power of relational
cases for those CBR applications that require them.
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