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Abstract. Predictive toxicology is the task of building models capable
of determining, with a certain degree of accuracy, the toxicity of chem-
ical compounds. Machine Learning (ML) in general, and lazy learning
techniques in particular, have been applied to the task of predictive tox-
icology. ML approaches differ in which kind of chemistry knowledge they
use but all rely on some specific representation of chemical compounds.
In this paper we deal with one specific issue of molecule representation,
the multiplicity of descriptions that can be ascribed to a particular com-
pound. We present a new approach to lazy learning, based on the notion
of multiple-instance, which is capable of seamlessly working with mul-
tiple descriptions. Experimental analysis of this approach is presented
using the Predictive Toxicology Challenge data set.

1 Introduction

There are thousands of new chemicals registered every year around the world.
Although these new chemicals are widely analyzed before their commercializa-
tion, the long-term effects of many of them on the human health are unknown.
The National Toxicology Program (NTP) started with the goal of establish stan-
dardized bioassays for identifying carcinogenic substances (see more information
at http://ntp-server.niehs.nih.gov). These bioassays are highly expensive in time
and money since they take several years and sometimes their results are not con-
clusive. The use of automatic tools could support the reduction of these costs.
In particular, artificial intelligence techniques such as knowledge discovery and
machine learning seem to be specially useful.

The goal of Predictive Toxicology is to build models that can be used to
determine the toxicity of chemical compounds. These models have to contain
rules able to predict the toxicity of a compound according to both the structure
and the physical-chemical properties. A Predictive Toxicology Challenge (PTC)
[15] was held in 2001 focusing on machine learning techniques for predicting the
toxicity of compounds. The toxicology data set provided by the NTP contains
descriptions of the bioassays done on around 500 chemical compounds and their
results on rodents (rats and mice) of both sexes.
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There are two open problems in predictive toxicology: 1) representing the
chemical compounds, and 2) determining which characteristics of chemical com-
pounds could be useful for classifying them as toxic or not toxic (i.e. the toxicity
model). A summary of both the different representations and the methods used
to build the toxicity model proposed in the PTC can be found in [4]. Basi-
cally, there are two families of representations: those based on structure-activity
relationship (SAR) and those based on the compound substructures. SAR are
equation sets that relate molecular features and that allow the prediction of
some molecular properties before the experimentation in the laboratory. Ap-
proaches based on compound substructures (relational representation) represent
a chemical compound as a set of predicates relating the atoms composing the
molecule. Most authors, independently of the kind of compound representation,
use inductive learning methods to build a toxicity model.

In [3] we introduced a new relational representation based on the chemical
nomenclature and also a lazy learning technique to assess the toxicity of com-
pounds. The main difference between our approach and those of the PTC is
that we do not try to build a toxicity model, but we assess specifically the tox-
icity of each new chemical compound. This is because lazy learning techniques
are problem-centered, i.e. they solve a new problem based on its similarity to
other problems previously solved. In the toxicology domain, lazy learning tech-
niques assess the toxicity of a chemical compound based on its similarity to other
chemical compounds with known toxicity.

In particular, in [3] we proposed to use the k-NN algorithm [10] for assessing
the toxicity of a chemical compound. Because chemical compounds are repre-
sented using feature terms [2] (i.e. they are structured objects) we defined a
new similarity measure called Shaud to be used in the k-NN algorithm. Results
obtained with the lazy learning approach using the feature terms representation
of the compounds are comparable to the results obtained using inductive ap-
proaches. Moreover, in our representation only the molecular structure is taken
into account whereas SAR approaches use a lot of information related with prop-
erties of the molecules and also results of some short-term assays.

Since our representation of molecules is based on chemical nomenclature, and
this has some ambiguity issues we propose to use the notion of multiple-instance
[11] in lazy learning techniques. Specifically, the ambiguities in chemistry nomen-
clature stem from the fact that often a single molecule can be described in several
ways, i.e. it may have synonymous names. The notion of multiple-instance pre-
cisely captures the idea that an example for a ML technique can have multiple
descriptions that, nonetheless, refer to the same physical object. Therefore, this
paper proposes two new techniques for integrating multiple-instances into k-NN
methods and performs their experimental evaluation in the toxicology domain.

This paper is organized as follows: first we describe the issues involved in
representing chemical compounds; then Section 2 presents Shaud, a similarity
measure for structured cases, and the new multiple-instance techniques for k-
NN; an empirical evaluation is reported in section 4, and finally a conclusions
section closes the paper.
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Fig. 1. Partial view of the chemical ontology

2 Representation of the Chemical Compounds

‘We propose using a representation of chemical compounds based on the chemical
ontology used by experts in chemistry. We represent compounds as a structure
with substructures using the chemical ontology that is implicit in the nomencla-
ture of the compounds. Fig. 1 shows part of the chemical ontology we have used
to represent the compounds in the Toxicology data set. This ontology is based
on the ITUPAC chemical nomenclature which, in turn, is a systematic way of de-
scribing molecules. In fact, the name of a molecule provides all the information
needed to graphically represent the structure of the molecule.

According to the chemical nomenclature rules, the name of a compound is
formed in the following manner: radicals’ names + main group. The main group
is often the part of the molecule that is either the largest or the part located in
a central position. However, there is no general rule for forming the compound
name. Radicals are groups that are usually smaller than the main group. A main
group can contain several radicals and a radical can, in turn, have a new set of
radicals. Both main group and radicals are the same kind of molecules, i.e. the
benzene may be the main group in one compound and a radical in some others.

In our representation (see Fig. 2) a chemical compound is represented by
a feature term of sort compound described by two features: main-group and p-
radicals. The values of the feature main-group belong to some of the sorts shown
in Fig. 1. The value of the feature p-radicals is a set whose elements are of sort
position-radical. The sort position-radical is described using two features: radicals
and position. The value of radicals is of sort compound, as the whole chemical
compound, since it has the same kind of structure (a main group with radicals).
The feature position indicates where the radical is bound to the main group.
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Fig. 2. Representation of TR-~339, 2-amino-4-nitrophenol, with feature terms

For example, the chemical compound TR-339, 2-amino-4-nitrophenol (Fig.
2), has a benzene! as main group and a set of three radicals: an alcohol in po-
sition one; an amine in position two; and a nitro-derivate in position four. Note
that this information has been directly extracted from the chemical name of the
compound following the nomenclature rules. Moreover, this kind of representa-
tion is very close to the representation that an expert has of a molecule from the
chemical name.

Nevertheless, the chemical nomenclature is ambiguous. For instance, from
the name 2-amino-4-nitrophenol, chemists assume that the main group of the
molecule is the benzene and that the radicals are in positions 1, 2 and 4. In
this molecule the name is clear because the benzene is the largest group and
chemists have a complete agreement in considering the main group. Neverthe-
less, the name of some other molecules is not so unambiguous. For instance, the
chemical compound TR-154 of the toxicology database is the azobenzene (Fig.
3) a compound with a benzene as main group. This compound is also known as
diphenyldiimide where the main group is an azo-derivate (structurally equiva-
lent to a diimide). Therefore, we say that azobenzene and diphenyldiimide are
synonyms.

Due to these ambiguities, we propose to take into account synonyms regard-
ing the structure of the molecule. Thus, the 2-amino-4-nitrophenol has several
possible synonyms taking into account different positions of the radicals (al-
though they are not strictly correct from the point of view of the chemical
nomenclature): we could consider that the amine is in position 1, the alcohol in
position 2 and the nitro-derivate in position 5. Notice that the difference between
the synonymous representations is the position of the radicals.

Dietterich et al. [11] introduced the notion of multiple-instance. This notion
appears when a domain object can be represented in several alternative ways.

! The phenol is a benzene with an alcohol as radical in position one.
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Fig. 3. Graphical represetation of the molecular structure of azobenzene and two syn-
onymous descriptions (AZB-1 and AZB-2) of azobenzene

This situation is very common in domains such as chemistry where a molecule
can be seen from several points of view. In particular, when addressing the prob-
lem of determining whether a molecule is active. Multiple instances are needed
because a molecule can have several conformations some of which can be active
and some others not. We propose to use the notion of multiple-instance to repre-
sent the compounds of the toxicology data set. We represented 360 compounds
of the PTC data set using feature terms. When a compound can have several
synonymous representations we defined a feature term for each alternative rep-
resentation, i.e. there are multiple instances for the compound. Fig. 3 shows the
synonymous representations using feature terms of the azobenzene: one of them
considers the benzene as the main group and the other considers the azo-derivate
as the main group.

Thus, for each one of the 360 chemical compounds of the data set we defined
as many instances as necessary to capture the different synonyms of a com-
pound according to its structure. For some compounds, the differences between
synonyms are the positions of the radicals since in all them we considered the
same main group. Instead, some other compounds have synonyms with differ-
ent main group. This is the case of the azobenzene in Fig. 3 where AZB-1 has
an azo-derivate as main group and AZB-2 has a benzene as main group. As it
will be explained later, although a compound to be classified is compared with
all the synonymous descriptions of each compound, the final classification takes
into account only the similarity with one of the synonyms. In other words, for
classification purposes the data set contains 360 chemical compounds even most
of them have several synonymous representations.

In the next section we explain how k-NN algorithm can be modified in order
to deal with the synonymous representations of the compounds.
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3 Similarity of Relational Cases

In order to assess the toxicity of a chemical compound we proposed the use of
lazy learning techniques. In particular, we use the k nearest neighbor (k-NN) [10]
algorithm. Given a new problem p and a case-base B containing solved problems,
the k-NN retrieves from B the k cases that are most similar to p. There are
several similarity assessments to be used in the k-NN algorithm [21] but all of
them work on objects represented as a set of feature value pairs. Nevertheless, we
represent the chemical compounds as feature terms, i.e. they have a structured
representation and we proposed Shaud [3] as a similarity measure for relational
cases represented as feature terms. The main idea of Shaud is to assess the
similarity between two feature terms taking into account their structure. When
comparing the structure of two feature terms 1! and 9?2 (see Fig. 4), there are
two parts that have to be taken into account: 1) the part of the structure that
is common to both ! and 2, called the shared structure (shown by shaded
nodes in Fig. 4); and 2) the part of the structure that is present in ¢! but not in
¥? and vice versa, called the unshared structure (shown by white nodes in Fig.
4). Shaud assesses the similarity of two feature terms ¢! and 12 by computing
the similarity of the shared structure and then normalizing this similarity value
taking into account both the shared and the unshared structure.

Let us suppose that the k& most similar cases to the new problem p belong
to several classes. In such a situation, a common criteria for assessing a solution
class to p is the majority criterion, i.e. p is classified as belonging to the solu-
tion class that most of the k of the retrieved cases belong to. We experimented
with Shaud using the majority criterion but results were not satisfactory enough
since the accuracy in classifying non-toxic compounds was clearly higher than
the accuracy in classifying toxic ones. For this reason, we proposed a new clas-
sification criterion for k-NN called Class Similarity Average (CSA). CSA is not
domain-dependent and in [3] we proved that it improves the accuracy on both
toxic and non-toxic compounds.
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Fig. 5. Two situations of 3-nearest neighbor with similarity values si,s2 and s3: a)
three different cases are retrieved, and on b) two of the cases, ¢1 and c3 are synonymous
(since they have the same shape)

For each compound p to be classified as toxic or non-toxic, Shaud yields the
similarity between p and each one of the £ most similar cases. Then CSA com-
putes the average of the similarity of the cases in the same class; then the class
with higher average similarity is selected as the solution for p. More formally, let
the positive class be the set of chemical compounds that are toxic (or carcino-
genic) and the negative class the set of chemical compounds that are non-toxic.
Let AT be the positive retrieval set, i.e. the set containing the retrieved cases
belonging to the positive class, and A~ be the negative retrieval set, i.e. the set
containing the retrieved cases belonging to the negative class. The carcinogenic
activity of a compound p is obtained according to the CSA criterion, where the
average similarity for both retrieval sets is computed as follows:

imtT — 1L ) im— — L .
stmT = \A*\ZCZEAJrSi and sim™ = ‘A,lzcieA— Si

and then the compound p is assigned to one of the classes according to the
decision rule:

if simt < sim™ then p belongs to the positive class
else p belongs to the negative class

3.1 Lazy Learning Techniques with Multiple-Instances

The CSA criterion assumes that the k most similar cases are different chemi-
cal compounds. Nevertheless, this assumption is not true when using multiple-
instances since some of the retrieved cases can be, in fact, different representa-
tions of the same compound. For instance, Fig. 5.a represents a situation where
P is the new problem to classify and k = 3. Cases ¢; and ¢2 and c3 are the three
cases most similar to P with similarities s1, so and s3 respectively. ¢; is the most
similar to P and c3 is the least similar. Let us assume that ¢; and cs belong to
the positive class and co belongs to the negative class. The classification of P
can be done using the CSA criterion and the decision rule as explained above.
Fig. 5.b shows a situation where ¢; and ¢3 are synonymous (they have the same
shape in the figure). Therefore, for k£ = 3 we have two cases (since two of them
are synonyms); clearly, we cannot treat this situation as identical to that of 5.a.
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Notice that, since ¢; and c3 are synonyms we have two similarity values (s; and
s3). How can we now decide whether P is positive or negative?

Let us now consider the synonymy relation (2) among the set of retrieved
cases A = AT U A™. Assume, for instance, that AT (or equivalently A™) has
a pair of synonymous cases ¢ = ¢/. We can build a reduced retrieval set At
without synonyms simply by selecting one of the synonymous and discarding
the other; i.e. we could take as the reduced retrieval set either AT = A+ \ {c}
or At = AT\ {¢'}. Now we introduce two techniques, Shaud-MI,,,,, and Shaud-
M1,,, to deal with multiple-instances using reduced retrieval sets A and A~.

The technique Shaud-M I, selects the synonymous case in the retrieval
set A1 (resp. A7) with greatest similarity value and discards the others. For
instance, if ¢ 2 ¢’ and they have similarity values s and s’ respectively, if s > &’
then c is selected and thus the reduced retrieval set is AT \ {¢'}. Let us call the
synonymous case ¢ with maximal similarity value the canonical representative of
a collection of synonyms ¢1 Zco = ... 2 ¢, and let § = max(s1, s2,...,8m) be
its similarity. Clearly, if a case ¢ has no synonyms in A" then ¢ = ¢ and 5 = s.
We will define the reduced retrieval set At as the collection of canonical cases of
AT . The same process is used for obtaining A~ from A~. Finally, the solution
class is computed by modifying the CSA criterion as follows:

simt = |7—1+‘ Z 3; and sim~ = 3; (1)
AT
and the same CSA decision rule (sim™ < sim™) is used as before.

For instance, in the situation shown in Fig. 5.b if the synonyms ¢; and c3
belong to the positive class, then A+ = {¢;}, |A*| =1, and §; = maz(s1,s3) =
s1. Analogously, if ¢ belongs to the negative class we will have that s3 = s5 and,
following the CSA decision rule, P will be classified as positive since s; > so and
thus sim™ > sim™.

The technique Shaud-M 1, is similar to the previous one except that it uses
an average criterion instead of the maximum criterion. Thus, for any collection
of synonyms ¢; = ¢ = ... = ¢, in a retrieval set their average similarity
5= %(51 + S2+ ...+ 8y) is computed. Let the canonical synonymous case ¢
be a randomly chosen case from a set of synonymous cases ¢; = ¢y = ... X ¢p,.
As before, if ¢ has no synonyms on At then ¢ = ¢ and 5 = s. Let At be the
reduced retrieval set with the canonical cases of AT, and for each ¢; € A let
5; be the average synonymous similarity computed as indicated above, then the
CSA average similarity is again computed as in expression (1) with the same
decision rule as before.

For instance, in the situation show in Fig. 5.b if the synonymous ¢; and c3
belong to the positive class, then A* = {c1} (i.e. [A*| = 1), and s = £,
Following the CSA decision rule, P will be classified as positive when sim™ >
stm~ and negative otherwise.



214 Eva Armengol and Enric Plaza

Table 1. Distribution of the NTP compounds on the four data sets

data set|Positive|Negative|Equivocal|Inadequate|Unknown
MR 127 176 39 6 12
FR 101 205 35 7 12
MM 102 195 37 13 13
FM 124 198 19 7 12

Table 2. Accuracy results in the four toxicology data sets for Shaud similarity with
three aggregation criteria C'SA, M Lnaz, and Mg,

MR FR MM FM
Shaud |k| Acc |TP|FP || Acc |TP|FP| Acc |TP|FP| Acc |TP |FP
CSA (3|54.43 |.522].431||61.77 |.463|.319|| 58.47 |.428|.329|| 56.16 |.438|.368
5| 54.66 |.560|.466|| 58.63 |.520(.373|| 58.83 |.491|.353||57.97|.512|.377
M1 pa.|3]58.37].517|.362||164.86(.461|.257(/59.42|.403|.315|| 57.21 |.445|.346
5|59.28|.515|.343|| 64.54 [.498|.285|| 57.62 |.443|.352|| 56.34 |.496(.394
M1, (3]157.39(.505(.363|| 64.73 |.458|.256]| 59.26 |.439(.302(| 57.25 |.474|.362
5| 58.15 |.549|.355|| 63.85 [.466|.274|| 56.05 |.423|.372|| 56.47 |.483.383

4 Experiments

In our experiments we used the toxicology data set provided by the NTP. This
data set contains around 500 chemical compounds that may be carcinogenic for
both sexes of two rodents species: rats and mice. The carcinogenic activity of the
compounds has proved to be different for both species and also for both sexes.
Therefore, there are in fact four data sets.

We solve the predictive toxicology problem as a classification problem, i.e.
for each data set we try to classify the compounds as belonging to either the pos-
itive class (carcinogenic compounds) or to the negative class (non-carcinogenic
compounds). We used 360 compounds of the data set (those organic compounds
whose structure is available in the NTP reports) distributed in the classes as
shown in Table 1.

The experiments have been performed with the k-NN algorithm using Shaud
as distance and taking Shaud-M I, and Shaud-M I,,,,, explained in the previous
section. Results have been obtained by the mean of seven 10-fold cross-validation
trials. Table 2 shows these results in terms of accuracy and true positives (TP)
and false positives (FP) for both options and also we compare them with the
version of CSA without multiple-instances. Concerning the accuracy, the versions
with multi-instances taking k£ = 3 improve the version without multi-instances,
especially in MR and FR data sets. Nevetheless, taking k = 5, the versions
with multi-instances are better on rats (i.e. MR and FR) but the accuracy does
not improves on mice (i.e MM and FM). We are currently analyzing why the
prediction task on mice is more difficult than in rats.

Currently machine learning methods are evaluated using ROC curves [13]. A
ROC curve is a plot of points (FP, TP) where TP is the ratio between positive
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cases correctly classified and the total number of positive cases; and FP is the
ratio between negative cases incorrectly classified and the total number of nega-
tive cases. The line x = y represents the strategy of randomly guessing the class
and the point (0,1) represents perfect classification. Points above the diagonal
are preferred since they represent a higher number of TP than FP. Thus, a point
is better than another if TP is higher and FP is lower. Moreover, given two
points (FP;,TP) and (FP,,TPs) such that FP, < FP, and TP, < TP; the
performance of the two methods is incomparable and the cost of false positives
has to be taken into account in order to choose between them. The convex hull
of a set of points is the smallest convex set that includes the points. Provost
and Fawcett [18] introduced the notion of convex hull in the ROC curves as a
way to compare machine learning methods. They prove that (FP, TP) points on
the convex hull correspond to optimal methods whereas those points under the
convex hull can be omitted since they never reach an optimal performance.

We will use the ROC convex hull to compare Shaud-CSA, Shaud-M I, and
Shaud-M I, to the best methods of the PTC. According to the final conclusions
of the PTC ([20]) best methods for each data set are the following;:

— MR. Gonzalez [14]

— FR. Kwansei [17], Viniti [6]

— MM. Baurin [5], Viniti, Leuven [7]
— FM. Viniti, Smuc (from [20])

Figures 6 and 7 show the ROC points of the methods above for all the data sets.
We included in these figures the points corresponding to the Shaud versions.

4.1 Discussion

Concerning the MR data set, the methods of Kwansei (3), Gonzalez (2) and
Viniti (6) are in the convex hull of the PTC, so they are the best methods for
this data set (if we do not take into account the cost). Shaud-C'SA (7 and 8),
Shaud-M I,,4, (9 and 10) and Shaud-MI,, (11 and 12) are above the convex
hull (for both ¥ = 3 and k = 5). Taking the points separately we see that
Shaud-M I, (10) and Shaud-M1I,, (12) both with k& = 5 clearly improve the
performance of Viniti and Smuc (5) method in the central zone. From our point of
view, Shaud-M I, is incomparable with Gonzalez and Kwansei methods since
it increases the number of TP but also increases the number of FP. Therefore,
choosing between these methods will depend on the cost assigned to the FP.

The best methods of the PTC for the FR data set are Viniti (6) and Kwansei
(3). With respect to the convex hull, our methods do not perform very well
but looking separately at the points we consider that Viniti and Kwansei are
incomparable since Viniti produces few FP but also few TP. Instead, Kwansei
clearly produces more TP. Choosing between these two methods depends on the
cost of the FP and also on the necessity to detect as many TP as possible. In
this sense, our methods are close to Kwansei. In particular Shaud-MI,, with
both £ = 3 and k = 5 is the best approach.
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Fig. 7. ROC curves of 12 methods for MM and FM data sets

Concerning the MM data set, the best methods of the PTC are Viniti (6)
and Leuven (4). The Viniti method is really excellent because the number of FP
is low and the number of TP is high enough. Nevertheless, the Leuven method
produces more TP although the number of FP is also very high. Our methods
are in an intermediate position, near to the Baurin (1) method. In particular,
any of the multiple-instances versions with any k£ has a number of TP near to
that of Baurin but with fewer FP. All versions with k¥ = 3 improve the Baurin
method whereas CSA without multi-instances (8) and Shaud-M 1,4, (10) with
k = 5 have higher TP but also higher FP. Shaud-MI,, has approximately the
same number of TP but the higher number of FP.
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Finally, concerning the FM data set, Viniti (6) and Leuven (4) methods are
on the convex hull. Nevertheless we consider that the Leuven method is not so
good since it is near to the (1,1) point. Our methods are near to Baurin (1),
Kwansei (3) and Smuc (5). Smuc method is better than Kwansei since both
have aproximately the same number of TP but Kwansei produces more FP. We
consider that all our methods improve the Baurin method since the (FP, TP)
points are on the left-hand side of Baurin (i.e the number of FP is lower) and
all the versions with k& = 5 produce more TP. The choice between any of our
methods and Viniti or Smuc clearly depends on the cost of the FP.

Summarizing, establishing a cost measure is necessary in order to mean-
ingfully choose the adequate methods for each data set. Nevertheless, our lazy
approach using multiple-instances has proved to be competitive enough. A fi-
nal remark is that most of the best methods use many information about the
domain. Moreover methods based on the SAR representaton produce toxicity
models in terms of molecular features that sometimes are not easy to determine.
The Viniti method uses a domain representation that takes benefit ot the molec-
ular structure, nevertheless this representation and also the toxicity model are
difficult to understand. Instead, we used a representation close to the chemical
nomenclature. In this representation we only taken into account the molecular
structure without any additional feature. Our conclusion is that having only
structural information is enough to obtain a comparable performance and it is
not necessary to handle features that are neither intuitive nor easy to compute.

5 Related Work

The notion of multiple-instances is useful when domain objects can be viewed
in several ways. Specifically, Dietterich et al. [11] used multiple-instances for
determining the activity of a molecule, taking into account that a molecule
has different isomers with different activity. As explained in section 2, chemical
nomenclature allows synonym names for one compound. We intend to use the
notion of multiple-instances to manage synonymous descriptions of compounds.

The basic idea of multiple-instances is that a domain object can be repre-
sented in several alternative ways. Chemistry is an application domain where
multiple-instances can be applied in a natural way since the molecular struc-
ture of a compound has several possible configurations with different properties
(e.g. a configuration may be active whereas another is inactive). Most of authors
working on multiple-instances use chemical domains such mutagenesis [19] and
musk (from the UCI repository). Dietterich et al. [11] introduced the notion of
multiple-instance and they extended the axis-parallel rectangle method to deal
with it. Other authors then proposed extensions of some known algorithms in
order to deal with multiple-instances.

Chevaleyre and Zucker [8] proposed an extension of propositional rule learn-
ing. Specifically, they proposed two extensions of the RIPPER method [9]:
NAIVE-RIPPERMI, that is a direct extension, and RIPPERMI which performs
relational learning. Maron and Lozano-Perez [16] introduced a probabilistic mea-
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sure, called diverse density, that computes the intersection of the bags (sets of
synonymous objects) minus the union of the negative bags. Maximizing this mea-
sure they reach the goal concept. Zucker [22] introduced the multi-part problem
meaning that an object can be represented by means of a set of descriptions of
its parts. They propose extensions of the classical concept learning algorithm by
defining a multiple entropy function and a multiple coverage function.

There are also some approaches using multiple-instances with a lazy learning
approach. Wang and Zucker use the k-NN algorithm with the Hausdorf distance
[12] defined to assess the distance between two bags. They introduce two ver-
sions of k-NN: Bayessian k-NN, which uses a Bayesian model to vote the final
classification; and citation k-NN where the different bags are related in the same
way as the references on information science.

6 Conclusions

In previous work we have shown that using both a chemical ontology based rep-
resentation of the compounds and a lazy learning approach is a feasible approach
for the predictive toxicology problem. However, our approach was limited by the
fact that the ontology we were using (namely the chemical nomenclature) allows
multiple descriptions of single compounds. Since the PTC data set we were using
only used one description for each compound the selection of that description
over the other ones introduced an unwanted and unknown bias. In fact, using
Shaud similarity compared two compound descriptions but not the alternative
descriptions that were not included in the data set; therefore results could be
different if the selected descriptions were different.

Therefore, our purpose as explained in this paper was to use multiple de-
scriptions when meaningful, but it was not enough to expand the PTC data set
to allow every example to have several compound descriptions: we needed to
define how multiple compound descriptions would be interpreted by lazy learn-
ing methods. In this paper we have introduced the notion of reduced retrieval
sets to integrate Dietterich’s notion of multiple-instances into k-NN techniques.
Specifically, we consider that k-NN retrive k cases similar to a problem P and,
for each class to whch P can be assigned, a retrieval set can be built from the
retrieved cases of that class.

We presented two methods for dealing with multiple-instances, Shaud-M I,,4.
and Shaud-M1,,, that specify how reduced retrieval sets are built from classi-
cal k-NN retrieval sets. This building process is, in fact, a specification of how
to interpret the fact that more than one description of a specific compound
are in the k-NN retrieval sets. Since Shaud-M I, uses the maximal similarity
among synonyms, the interpretation is that we only take into account the synony-
mous description that is the most similar disregarding the others. Nevertheless,
multiple-instances are useful since they allow to find more similar matches in
the k-NN retrieval process.

On the other hand, Shaud-MI,, uses the average similarity among retrieved
synonyms, thus in some way penalizing multiple-instances that have a second
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most similar compound description with a lower similarity value. Recall that
both techniques normalize the aggregate similarities of the retrieval sets with
the number of retrieved examples (i.e. not counting synonyms), and therefore a
k-NN retrieval set contains k cases that represent different chemical compounds
(as it would be without multiple-instances, which is exactly what Shaud-C'SA
does).

The experiments have shown that introducing multiple-instances improves
the performance of lazy learning in general terms. Specifically, using multiple-
instances improves results in the rats (both male and female) data sets, while in
the mouse data sets using multiple-instances or not gives incomparable results
(a cost measure would be needed to decide the best among them). Notice also
that our lazy learning techniques are more competitive, when compared with
other ML methods, in the rats data sets, while they are not distinguishable from
other methods in the mouse data sets. Although the reasons for the differences
in performance for lazy learning (and for the other ML methods) on the PTC is
not well understood (see [15]) it seems that multiple-instances can be useful for
the situations where a lazy learning method is adequate, as in the data set for
male and female rats.

The representation of the chemical compounds in our experiments use only
structural information. Instead, representations based on SAR use features for
which computation is imprecise and which are not totally comprehensible by
the expert. In the future, we plan to extend our representation to introduce
information about short-term experiments. In particular, the Ames test [1] that
has proved to be very important result and is easy to obtain.
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