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Abstract Similarity assessment is a key operation in several areas of artificial intelligence.
This paper focuses on measuring similarity in the context of Description Logics (DL), and
specifically on similarity between individuals. The main contribution of this paper is a novel
approach based on measuring similarity in the space of Conjunctive Queries, rather than
in the space of concepts. The advantage of this approach is two fold. On the one hand,
it is independent of the underlying DL and therefore there is no need to design similarity
measures for different DL, and, on the other hand, the approach is computationally more
efficient than searching in the space of concepts.
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1 Introduction

Description Logics (DL) (Baader et al. 2003) are one of the most widespread standards
for knowledge representation in many application areas. Gaining momentum through the
Semantic Web initiative, DL popularity is also related to a number of tools for knowledge
acquisition and representation, as well as inference engines, that have been made publicly
available.

In this paper, we focus on the problem of similarity assessment when the domain knowl-
edge is represented using an ontology and formalized using DL. Specifically, we focus on
the problem of measuring similarity between domain entities represented as individuals. An
important aspect of the similarity measure presented in this paper is that, in addition to a
numerical similarity value, it also provides an explicit description of the information that
both individuals share as well as the information that only appears in one of them but not
in the other. Therefore, our approach provides some explanation capabilities that may result
useful in a number of different applications such as, for example, recommender systems.

The technique presented in this paper was initially developed as part of our research
on knowledge-intensive case-based reasoning (CBR) systems (Aamodt and Plaza 1994) in
which DL has also become the technology of choice for representing knowledge (Sánchez-
Ruiz-Granados et al. 2009; Cojan and Lieber 2010; González-Calero et al. 1999). CBR
is a problem solving paradigm that do not rely solely on general knowledge of a prob-
lem domain, or making associations along generalized relationships between problem
descriptors and conclusions, CBR is able to utilize the specific knowledge of previously
experienced, concrete problem situations (cases). A new problem is solved by finding
a similar past case, and reusing it in the new problem situation. Therefore, similar-
ity assessment plays a key role in these type of systems. The technique presented in
this paper, however, is not only interesting to CBR systems, it is of general applica-
tion to anyone interested in measure the similarity of individuals in an expressive DL
ontology.

Our similarity measure SQ, works as follows: 1) given two individuals, we convert them
into DL Conjunctive Queries, 2) the similarity between the two queries is measured using
a refinement-operator-based similarity measure (Ontanón and Plaza 2012; Sánchez-Ruiz-
Granados et al. 2011). There are four main advantages in the SQ similarity approach with
respect to previous approaches to the problem of similarity assessment in DL defined in
the space of DL concepts (d’Amato et al. 2008; Sánchez-Ruiz-Granados et al. 2011): 1) the
conversion process from individuals to queries does not lose information (the conversion
to concepts usually causes some loss of information), 2) the language used to represent
conjunctive queries is independent of the particular DL being used (and thus our approach
can be applied to any DL), 3) assessing similarity in the space of queries is computationally
more efficient than assessing similarity in the space of concepts, and 4) the aforementioned
capability of providing explanations about the similarity both in terms of shared and specific
information of the individuals being compared.

The rest of this paper is organized as follows. Sections 2 and 3 introduce the neces-
sary concepts of Description Logics, Conjunctive Queries and Refinement Operators. Then,
in Section 4, we introduce a new refinement operator for Conjunctive Queries. Section 5
presents the SQ similarity measure between individuals, which is illustrated with an exam-
ple in Section 5.3. In Section 6 we describe the implementation techniques that support the
efficient implementation of the proposed approach. Section 7 presents an experimental eval-
uation of our approach. The paper closes with related work, conclusions and directions for
future research.
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Table 1 EL concepts and semantics

Concept Syntax Semantics

Top concept � �I

Atomic concept A AI

Conjunction C � D CI ∩ DI

Existential restriction ∃R.C {x ∈ �I | ∃y : (x, y) ∈ RI ∧ y ∈ CI}

2 Background

Description Logics (Baader et al. 2003) (DL) are a family of knowledge representation
formalisms, which can be used to represent the conceptual knowledge of an application
domain in a structured and formally well-understood way.

DL represent knowledge using three types of basic entities: concepts, roles and individ-
uals. Concepts provide the domain vocabulary required to describe sets of individuals with
common features, roles describe relationships between individuals, and individuals repre-
sent concrete domain entities. DL expressions are built inductively starting from finite and
disjoint sets of atomic concepts (NC), roles (NR) and individual names (NI ).

The expressivity and the reasoning complexity of a particular DL depends on the avail-
able constructors in the language. Although the similarity measure proposed in this work is
independent of the description logic being used (the only effect being computation time),
in this paper we will focus on the EL logic, a light-weight DL with good computational
properties that serves as a basis for the OWL 2 EL profile.1 EL is expressive enough to
describe large biomedical ontologies, like SNOMED CT (Bodenreider et al. 2007) or the
Gene Ontology (Ashburner 2000), while maintaining interesting computational properties
such as concept subsumption being polynomial. The EL concept syntax and semantics is
shown in Table 1. EL includes a top concept (the most general concept), intersections and
existential restrictions.

A DL knowledge base (KB), K = (T ,A), consists of two different types of information:
T , the TBox or terminological component, which contains concept and role axioms and
describes the domain vocabulary; and A, the ABox or assertional component, which uses
the domain vocabulary to assert facts about individuals. For the purposes of this paper, a
TBox is a finite set of concept and role axioms of the type given in Table 2, and an ABox is
a finite set of axioms about individuals of the type shown in Table 3.

Regarding semantics, an interpretation is a pair I = (�I , ·I), where �I is a non-empty
set called the interpretation domain, and ·I is the interpretation function. The interpretation
function relates each atomic concept A ∈ NC with a subset of �I , each atomic role R ∈ NR

with a subset of �I × �I and each individual a ∈ NI with a single element of �I . The
interpretation function is extended to general concepts as shown in Table 1.

An interpretation I is a model of a knowledge base K iff the conditions described
in Tables 2 and 3 are fulfilled for every axiom in K. A concept C is satisfiable w.r.t. a
knowledge base K iff there is a model I of K such that CI �= ∅.

The basic reasoning operation in DL is subsumption, that induces a subconcept-
superconcept hierarchy. We say that the concept C is subsumed by the concept D (C is more
specific than D) if all the instances of C are also instances of D. Formally, C is subsumed

1http://www.w3.org/TR/owl2-profiles/

http://www.w3.org/TR/owl2-profiles/
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Table 2 TBox axioms

Axiom Syntax Semantics

Concept inclusion C 
 D CI ⊆ DI

Disjointness C � D ≡ ⊥ CI ∩ DI = ∅
Role domain domain(R) = A (x, y) ∈ RI → x ∈ AI

Role range range(R) = A (x, y) ∈ RI → y ∈ AI

by D w.r.t. the knowledge base K (C 
K D) iff CI ⊆ DI for every model I of K. When
the knowledge base K is known we can simplify the notation and write C 
 D. Finally, an
equivalence axiom C ≡ D is just an abbreviation for when both C 
 D and D 
 C hold,
and a strict subsumption axiom C � D simply means that C 
 D and C �≡ D.

Figure 1 shows an example knowledge base that we use in this paper for exempli-
fication purposes. The TBox contains axioms to define some vocabulary about pizzas
and ingredients: Mozzarella is a type of Cheese; Margherita is a type of P izza with
T omato and Mozzarella; a CheesyP izza is any P izza with Cheese, etc. On the right
side of the figure, there is a graphical representation of the concept hierarchy induced
by the subsumption relation among those concepts. The ABox, in turn, contains axioms
to describe two individuals: a margherita pizza and a pizza with chicken and vegetable
toppings.

2.1 DL conjunctive queries

DL knowledge bases can be queried in order to retrieve individuals that meet certain con-
ditions – in a way similar to the way queries are used to retrieve data from databases. In
order to define queries, along with the set of atomic concepts (NC), atomic roles (NR)
and individual names (NI ) from knowledge bases, we also need a disjoint set of variable
names (NV ).

Definition 1 (Conjunctive Query)
A DL conjunctive query Q(�x, �y) is a logic formula ∃�y.ψ(�x, �y) where ψ is conjunction of
terms of the form A(x), R(x, y), x = y and x �= y, in which A ∈ NC is an atomic concept,
R ∈ NR is a role, and x and y are either individual names from NI or variable names taken
from the disjoint sets �x, �y ⊂ NV .

The sets �x and �y contain, respectively, all the answer variables and quantified variables
of the query. A boolean conjunctive query Q(∅, �y), or just Q(�y), is a query in which all the
variables are quantified.

Table 3 ABox axioms

Axiom Syntax Semantics

Concept instance C(a) aI ∈ CI

Role assertion R(a, b) (aI , bI) ∈ RI

Same individual a = b aI = bI

Different individual a �= b aI �= bI
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Fig. 1 Example of knowledge base describing different types of pizzas and toppings

For example, next we show two possible conjunctive queries related to the pizza
knowledge base:

Q1({x1}, {}) = P izza(x1)

Q2({x1}, {y1}) = P izza(x1) ∧ hasT opping(x1, y1) ∧ T omato(y1)

To define the semantics of general DL queries, let us begin considering only boolean
queries. Let V I (Q) be the set of variables and individuals in the query Q. An interpretation
I is a model of a boolean query Q(�y), noted as I |= ∃�y : Q(�y) or shortly as I |= Q, if
there is a variable substitution θ : V I (Q) → �I such that θ(a) = aI for each individual
a ∈ V I (Q), and I |= αθ for each term α in the query. The notation αθ denotes the query
atom α where the variables of α are substituted according to θ . A knowledge base K entails
a boolean query Q, noted as K |= Q, if every model of K satisfies Q.

Now let us consider queries with answer variables.

Definition 2 (Query Answer) An answer to a query Q(�x, �y) w.r.t. a knowledge base K is
a variable substitution θ that maps the answer variables in �x to individuals in K such that
the boolean query Q(�xθ, �y) is entailed by K as defined above.

The notation Q(xθ, y) represents the query where all the distinguished variables have
been replaced according to θ . Note that, for interpreting boolean queries, we use a sub-
stitution that maps quantified variables to arbitrary elements of the domain �I , whereas
for a query answer we require the answer variables to be mapped to named individuals in
the ABox. In other words, while answer variables have to be mapped to individuals from
the knowledge base signature, quantified variables can also be mapped to anonymous indi-
viduals that do not appear in the knowledge base signature but whose existence can be
inferred.

Definition 3 (Query Answer Set) The answer set of a query Q(�x, �y) w.r.t. K, noted as
Q(K), is the set containing all the answers to the query Q(�x, �y) w.r.t. K.
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For example, given the knowledge base in Fig. 1, the previous query Q1 will retrieve
all the existing pizzas (Q1(K) = {{p1/x1}, {p2/x1}}), while the query Q2 will retrieve
only those pizzas with tomato (Q2(K) = {{p1/x1}}). Notice that the reasoner infers that
p1 has tomato because it is a margherita pizza and, therefore, the quantified variable
y1 in the query is mapped to an anonymous individual that does not exist in the ABox
signature.

2.2 Query subsumption

We can define a subsumption relation between queries similar to the subsumption relation
between concepts. In this way, queries can be organized into a hierarchy where the most
general queries are above the most specific ones.

Definition 4 (Query Subsumption)
A query Q(x, y) is subsumed by another query Q′(x, y′) w.r.t. K = (T ,A) (noted as
K |= Q 
 Q′) if, for every possible ABox A′ and the knowledge base K′ = (T ,A′), it
holds that Q(K′) ⊆ Q′(K′) (i.e. that the answer set of Q is contained in the answer set of
Q′).

Query containment is very closely related to query answering. The standard technique of
query freezing (Ullman 2000) can be used to reduce query containment to query answering
in DL (Motik 2006). To decide query subsumption, we build a canonical ABox AQ from
the query Q(x, y) by replacing each of the variables in x and y with fresh individual names
not appearing in the KB. Let θ be the substitution denoting the mapping of variables x to
the fresh individuals. Then, for K = (T ,A), K |= Q 
 Q′ iff θ is in the answer set of Q′
w.r.t. to KQ = (T ,AQ).

For example, considering the knowledge base about pizzas, query Q3 below subsumes
Q4 because any margherita pizza is also a pizza with tomato and thus any answer to Q4 is
also an answer to Q3.

Q3({x1}, {y1}) = P izza(x1) ∧ hasT opping(x1, y1) ∧ T omato(y1)

Q4({x1}) = Margherita(x1)

Note that Definition 4 assumes that both Q and Q′ share the same set of answering
variables. In the general case, we say that the query Q(x, y) is subsumed by query Q′(x′, y′)
if there is a containment mapping θ : x′ → x ∪ NI such that Q(x, y) is subsumed by
Q′(x′θ, y′).

3 Refinement operators

This section briefly summarizes the notion of refinement operator and the concepts relevant
for this paper (see van der Laag and Nienhuys-Cheng 1998 for a more in-depth analysis of
refinement operators). Refinement operators are defined over quasi-ordered sets.

Definition 5 A quasi-ordered set is a pair (S, ≤), where S is a set, and ≤ is a binary relation
among elements of S that is reflexive (a ≤ a) and transitive (if a ≤ b and b ≤ c then a ≤ c).

If a ≤ b and b ≤ a, we say that a ≈ b, or that they are equivalent. Refinement operators
are defined as follows:
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Definition 6 A downward refinement operator ρ over a quasi-ordered set (S,≤) is a
function such that ∀a ∈ S : ρ(a) ⊆ {b ∈ S|b ≤ a}.

Definition 7 An upward refinement operator γ over a quasi-ordered set (S,≤) is a function
such that ∀a ∈ S : γ (a) ⊆ {b ∈ S|a ≤ b}.

In other words, upward refinement operators generate elements of S which are “bigger”
(which in this paper will mean “more general”), whereas downward refinement operators
generate elements of S which are “smaller” (which in this paper will mean “more specific”).
Typically, the symbol γ is used to symbolize upward refinement operators, and ρ to symbol-
ize either a downward refinement operator, or a refinement operator in general. A common
use of refinement operators is for navigating sets in an orderly way, given a starting element.
Typically, the following properties of operators are considered desirable:

– A refinement operator ρ is locally finite if ∀a ∈ S : ρ(a) is finite.
– A downward refinement operator ρ is complete if ∀a, b ∈ S|a ≤ b : a ∈ ρ∗(b).
– An upward refinement operator γ is complete if ∀a, b ∈ S|a ≤ b : b ∈ γ ∗(a).
– A refinement operator ρ is proper if ∀a, b ∈ S b ∈ ρ(a) ⇒ a �≈ b.

where ρ∗ means the transitive closure of a refinement operator. Intuitively, local finiteness
means that the refinement operator is computable, completeness means we can generate,
by refinement of a, any element of S related to a given element a by the order relation ≤
(except maybe those which are equivalent to a), and properness means that a refinement
operator does not generate elements which are equivalent to a given element a.

Regarding DL queries, the set of DL conjunctive queries and the subsumption relation
between queries (Definition 4) form a quasi-ordered set based upon their subsumption rela-
tion. Next, we describe a downward refinement operator for DL conjunctive queries, which
will allow us to define the similarity measure presented in this paper.

4 A downward refinement operator for DL conjunctive queries

The following rewriting rules define an downward refinement operator for DL Conjunctive
Queries. A rewriting rule is composed of three parts: the applicability conditions of the
rewriting rule (shown between square brackets), the original DL query (above the line), and
the refined DL query (below the line).

(R1) Concept Specialization
[
x1 ∈ V I (Q) ∧ A2(x1) �∈ Q ∧ A2 � A1∧ � ∃A′ ∈ NC : A2 � A′ � A1

]

Q(�x, �y) = A1(x1) ∧ α1 ∧ . . . ∧ αn

Q′(�x, �y) = A1(x1) ∧ A2(x1) ∧ α1 ∧ . . . ∧ αn

(R2) Concept Introduction
[
x1 ∈ V I (Q) ∧ A1 ∈ max{A ∈ NC | ∀A′(x1) ∈ Q : A �
 A′ ∧ A′ �
 A}]

Q(�x, �y) = α1 ∧ . . . ∧ αn

Q′(�x, �y) = A1(x1) ∧ α1 ∧ . . . ∧ αn

(R3) Role Introduction
[
x1, x2 ∈ V I (Q) ∧ R ∈ NR ∧ R′(x1, x2) �∈ Q

]
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Q(�x, �y) = α1 ∧ . . . ∧ αn

Q′(�x, �y) = R1(x1, x2) ∧ α1 ∧ . . . ∧ αn

(R4) Variable Instantiation

[θ : V (Q) → NI ]

Q(�x, �y) = α1 ∧ . . . ∧ αn

Q′(�xθ, �yθ) = α1θ ∧ . . . ∧ αnθ

(R5) Quantified Variable Introduction

[x2 ∈ NV \ V (Q)]

Q(�x, �y) = α1 ∧ . . . ∧ αn

Q′(�x, �y ∪ {x2}) = α1 ∧ . . . ∧ αn ∧ �(x2)

(R6) Equality introduction

[x1, x2 ∈ V I (Q) ∧ x1 = x2 �∈ Q]

Q(�x, �y) = α1 ∧ . . . ∧ αn

Q′(�x, �y) = α1 ∧ . . . ∧ αn ∧ x1 = x2

(R7) Inequality introduction

[x1, x2 ∈ V I (Q) ∧ x1 �= x2 �∈ Q]

Q(�x, �y) = α1 ∧ . . . ∧ αn

Q′(�x, �y) = α1 ∧ . . . ∧ αn ∧ x1 �= x2

Rules R1 and R2 refine a query either specializing an existing atomic concept or intro-
ducing a new atomic concept that is neither more general nor more specific than the existing
ones (for example a sibling in the concept hierarchy). Rule R3 introduces new role asser-
tions between pairs of variables or individuals in the query. Note that we do not provide a
rule to specialize role assertions since the EL logic does not allow role hierarchies. Rule R4
replaces variables in the query by named individuals in the knowledge base. Rule R5 intro-
duces a new quantified variable to the query. And finally, rules R6 and R7 add equality and
inequality axioms between variables or individuals in the query.

For the sake of space we do not provide proofs, but it is easy to verify that given a finite
TBox and a finite ABox, the previous refinement operator is locally finite, not proper and
complete.

For the purposes of similarity assessment however, we will restrict ourselves to a sim-
pler refinement operator, only using rules R1, R2, R3, R4 and R5, and we will assume
that all the variables and individuals in the query are different from each other. Under
these assumptions, the restricted refinement operator is still locally finite, not proper and
complete.

These simplifications greatly reduce the computational complexity of the similarity mea-
sure presented in this paper. For example, these simplifications prevent infinite refinement
chains where all the queries are equivalent, such as:

A(x1) → A(x1) ∧ �(y1) → A(x1) ∧ �(y1) ∧ �(y2) → . . .

Dealing with these infinite chains using other approaches and exploring different refinement
operators that offer a different trade-off of completeness and efficiency is part of our future
work.
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5 Similarity based on query refinements

This section presents a new similarity measure, SQ, between individuals in the ABox. SQ

consists of two main steps (described in the following two subsections): First, individual
names a and b are transformed into conjunctive DL queries, Qa and Qb. Second, the sim-
ilarity value between Qa and Qb is determined using the refinement operator presented
above.

5.1 From individuals to queries

Given an individual name a and an ABox A, we define the individual graph of a as follows.

Definition 8 (Individual graph) An individual graph Ga ⊆ A is a set of ABox axioms
with one distinguished individual a ∈ NI such that:

– ∀C ∈ NC , if C(a) ∈ A then C(a) ∈ Ga

– ∀C ∈ NC , if C(b) ∈ Ga then ∀R ∈ NR , if R(b, c) ∈ A then R(b, c) ∈ Ga

– ∀R ∈ NR , if R(b, c) ∈ Ga then ∀D ∈ NC if D(c) ∈ A then D(c) ∈ Ga

In other words, if we represent the ABox as a graph, where each individual is a node,
and each role axiom is a directed edge, the individual graph of an individual name a would
be the connected graph resulting from all the nodes and edges reachable from a.

We can transform an individual graph to an equivalent conjunctive query applying a
substitution that replaces the distinguished individual by a new answer variable, and the
remaining individuals by new quantified variables. Note that the conversion is straightfor-
ward since ABox axioms and DL query terms are alike and no information is lost in the
translation.

The following example shows the individual graph related to individual p2 from the
knowledge base in Fig. 1 and its equivalent conjunctive query. Notice that, for clarity, we
take the liberty of representing the set of axioms of the individual graph as the conjunction
of its elements.

Gp2 = P izza(p2) ∧ hasT opping(p2, t1) ∧ Chicken(t1) ∧
hasT opping(p2, t2) ∧ V egetable(t2)

Qp2({x1}, {y1, y2}) = P izza(x1) ∧ hasT opping(x1, y1) ∧ Chicken(y1) ∧
hasT opping(x1, y2) ∧ V egetable(y2)

5.2 Similarity between queries

Our proposed similarity measure for conjunctive DL queries is based on the following
intuitions (see Fig. 2):

First, given two queries Q1 and Q2 such that Q2 
 Q1, it is possible to reach Q2 from
Q1 by applying a complete downward refinement operator ρ to Q1 a finite number of times,
i.e. Q2 ∈ ρ∗(Q1).

Second, the number of times a refinement operator needs to be applied to reach Q2 from
Q1 is an indication of how much more specific Q2 is than Q1. The length of the chain of

refinements to reach Q2 from Q1, which will be noted as λ(Q1
ρ−→ Q2), is an indicator of

how much information Q2 contains that was not contained in Q1. It is also an indication of
their similarity: the smaller the length, the higher their similarity.



456 J Intell Inf Syst (2016) 47:447–467

Fig. 2 Query distance based on refinements

Given the unfeasibility of computing the exact minimum length (due to combinatorial
explosion), in our experiments we used a greedy search approach using the rewriting rules
R1, R2, R3, R4 and R5 that were introduced in Section 4. This greedy approach does not
ensure obtaining the shortest chain between to queries, but is computationally efficient.

Third, given any two queries, their least common subsumer (LCS) is the most specific
query which subsumes both. Given two queries Q1 and Q2, the LCS can be computed by
starting with the most general query Q� and refining it with the refinement operator until
no more refinements can be applied that result in a query that still subsumes Q1 and Q2.

The LCS of two queries contains all that is shared between two queries, and the more

they share the more similar they are. λ(Q�
ρ−→ LCS) measures the distance from the most

general query, Q�, to the LCS, and it is a measure of the amount of information shared by
Q1 and Q2.

Finally, the similarity between two queries Q1 and Q2 can be measured as the ratio
between the amount of information contained in their LCS and the total amount of
information contained in Q1 and Q2. These ideas are collected in the following formula:

Sρ(Q1,Q2) = λ1

λ1 + λ2 + λ3

where:

λ1 = λ(Q�
ρ−→ LCS(Q1, Q2))

λ2 = λ(LCS(Q1, Q2)
ρ−→ Q1)

λ3 = λ(LCS(Q1, Q2)
ρ−→ Q2)

Thus, the similarity between two individuals a and b, is defined as:

SQ(a, b) = Sρ(Qa,Qb)

where Qa and Qb are the queries corresponding to the individual graphs of a and b,
respectively.
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Notice that the proposed similarity measure is conceptually related to the well known
Jaccard index (Jaccard 1901) for sets. The Jaccard index is a well-known similarity measure
between sets consisting on dividing the size of their intersection by the size of their union
(when the sets are identical, this is 1, and when they are disjoint, this is 0). Notice that λ1,
in a way, measures the size of what is shared between two queries (the intersection), and
λ1 + λ2 + λ3 measures the total amount of information in the two queries (their union).
Thus, one could see our proposed similarity measure as an adaptation of the Jaccard index
to refinement graphs.

Additionally, notice that the length of the refinement paths highly depend on how fine-
grained is the set of concepts in the ontology. For example, if the ontology contains a large
set of intermediate concepts between a concept A1 and another concept A2, then the distance
between an individual of type A1 and A2 will be high. However, this will be reversed if the
ontology does not have that many intermediate concepts. This problem has been studied in
the past in the context of conceptual hierarchies (Resnik 1995), and can be addressed by
computing a weight for each refinement that is based on how much additional information a
given refinement introduces. The amount of information can be estimated if a large enough
collection of individuals is known by measuring how many individuals are not covered
any more after each refinement. This approach can also be used to customize similarity
assessment for specific domains, and we will explore it as part of our future work.

5.3 Example

Figure 3 shows the chain of refinements used to compute the similarity between a margherita
pizza and a pizza with some vegetable topping and chicken. We begin with the most general
query with one answer variable and we refine it until we reach the LCS, that describes the
common part of those pizzas: both have at least two toppings and one of them is a vegetable.
Next we refine the LCS until we reach each one of the original queries.

Their similarity is computed using the length of the refinement paths:

SQ(p1, p2) = Sρ(Qp1, Qp2) = 8

8 + 3 + 5
= 0.5

It is important to note that, besides the similarity value, we also obtain an explicit descrip-
tion of the information that both pizzas share (the LCS) and the information that is specific
of each one of them. This information can be very valuable, for example, in systems that
explain to the users the computed similarity value.

6 Implementation details

6.1 Using answer variables instead of quantified variables

One of the assumptions we make in order to simplify the search space is that all the vari-
ables in the queries represent different individuals. However, current DL reasoners do not
support terms of the form ?y1 �=?y2 in conjunctive queries when ?y1 and ?y2 are quantified
variables. Note that this is a problem, since we can not simply replace all the quantified vari-
ables with answer variables because the first ones can be mapped to anonymous individuals
while the second ones can only be mapped to named individuals in the ontology signature.

The workaround we used to this problem consists of two steps: (1) we pre-process the
knowledge base and add new individuals to explicitly represent the anonymous individuals
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Fig. 3 Refinement paths to compute Sρ(Qp1,Qp2)

that do not exist in the knowledge base signature but whose existence can be inferred from
the knowledge base axioms, and (2) we only use answer variables in the queries, which are
now equivalent to quantified variables, since the knowledge base has been populated with all
the possible anonymous individuals to which quantified variables can be assigned to. This
process is analogous to the process known as saturation in Inductive Logic Programming
(Rouveirol 1994).

In the EL logic, the only axioms that can be used to infer the existence of a new individual
have the form (∃R.C)(a) meaning that individual a is related by role R to another individual
with type C. If there is not another individual b in the KB signature such that R(a, b) and
C(b) then we create a new individual sk and add the axioms R(a, sk) and C(sk) to the
knowledge base. Figure 4 presents our algorithm.

Fig. 4 Algorithm to explicitly represent anonymous individuals in the knowledge base
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For example, given the following KB:

Margherita 
 P izza � ∃hasT opping.T omato �
∃hasT opping.Mozzarella

Margherita(p1)

we can infer the existence of two anonymous individuals that our algorithm will replace
with new named individuals sk1 and sk2:

Margherita(p1), hasT opping(p1, sk1), T omato(sk1),

hasT opping(p2, sk2),Mozzarella(sk2)

6.2 Performance and redundant refinements

The similarity measure described so far relies on answering several queries using a knowl-
edge base that remains unchanged during the entire process. Due to the static nature of the
knowledge base, we can speed up the time required to answer the queries if we pre-compute
all the relations between the individuals as well as the concepts they belong to.2 In fact, if
we only use answer variables in the queries, the search of the refinement paths can be per-
formed without the need of a reasoner since all the inferences can be cached beforehand. In
the presence of dynamic knowledge bases, however, we will have to rely on the reasoner to
dynamically answer all the DL queries generated during the search in the space of refine-
ments and the process will be slower. Anyway, the progress made in recent years regarding
incremental reasoning in DL (Grau et al. 2010; Parsia et al. 2006; Kazakov and Klinov
2013) lead us to think that these times will improve in the near future.

When we look carefully at the refinement paths obtained with our refinement operator
we can see that some of refinements do not add new information to the previous one. For
example, the following 2 refinements are part of the similarity assessment shown in Fig. 3.

4 : P izza(x3) ∧ hasT opping(x3, y3) ∧ �(y3)

5 : P izza(x3) ∧ hasT opping(x3, y3) ∧ T opping(y3)

Refinement 5 does not add new information that was not already in refinement 4 since
the range of the role hasT opping is the concept T opping. In other words, both queries are
semantically equivalent. Since the refinement operator is not proper, we can not guarantee
each refinement to be strictly more specific than the previous one, so the length of the
refinement path is in fact an approximation to the semantic distance.

From a conceptual point of view, these redundant refinements should not be taken into
account to compute the distance. In order to remove them, we have to traverse the sequence
of refinements checking if each query subsumes, and thus is equivalent to, the previous one
(Qi+1 
 Qi).

Q1
ρ−→ Q2

ρ−→ Q3
ρ−→ Q4

ρ−→ . . .

Unfortunately, the standard technique to decide query subsumption adds new axioms to
the knowledge base (see paragraph about query freezing in Section 2.2) and, as we have
already explained, the time required to answer queries increases significantly when we deal
with dynamic knowledge bases.

2Notice that this approach require large amounts of memory and might no be practical for large knowledge
bases.
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Fig. 5 Trains data set as introduced by Larson and Michalski (1977)

In our experiments, we did not observe significant differences in the results obtained
removing the redundant refinements. Therefore, the extra computation time required to filter
these refinements did not pay off. However, in some other domains, this might not be the
case, and it might be worth spending additional computation time to remove redundant
refinements.

7 Experiments

In order to evaluate the SQ similarity measure, we used six relational machine learning data
sets:

– Trains: shown in Fig. 5 as presented by Larson and Michalski (1977). Like in our pre-
vious work on similarity assessment (Sánchez-Ruiz-Granados et al. 2011), we selected
this dataset since it is available in many representation formalisms (Horn clauses, fea-
ture terms and description logic), and therefore, we can compare our similarity measure
with existing similarity measures in the literature. The dataset consists of 10 trains, 5 of
them labelled as “West”, and 5 of them labelled as “East.”

– Pairs: this is a subset of the poker hands dataset from the UCI machine learning repos-
itory. It contains 50 poker hands, 20 of which have a “pair”, and 30 of which do not.
Each instance is just a set of five cards. The OWL version of this dataset was obtained
from the DL-Learner project by Lehmann and Hitzler (2007).

– Straight: this is another subset of the poker hands dataset from the UCI machine learn-
ing repository. It contains 55 poker hands, four of which have a “straight” and 51 of
which do not. Both the Pairs and Straight datasets contains rather simple example rep-
resentation, but a complex target concept (any machine learning algorithm attempting
to solve this task needs to learn the concept of a “pair” or a “straight” in Poker, which
is not trivial). Each card in the hand is described by its rank and suit. Also, relations
such as which rank is the successor of which other rank is stored (for example the
“Queen” of “Spades” is related to the “King” of “Spades” with a “successor” relation,
since the “King” is the next card after the “Queen”). The OWL version of this dataset
was obtained from the DL-Learner project by Lehmann and Hitzler (2007).

– Lymphography: from the UCI machine learning repository. This dataset is proposi-
tional. The OWL version of this dataset was obtained from the DL-Learner project by
Lehmann and Hitzler (2007).
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– Pizzas: this dataset uses a simplified EL version of the ontology presented in Horridge
(2009) and has been populated with 22 pizzas belonging to two different classes. We
created this dataset specifically for evaluating one of the main advantages of our simi-
larity measure with respect to other measures: some of the key aspects that need to be
taken into account to correctly classify pizzas are not present explicitly in the instances,
but need to be inferred. For example, a pizza might be just labeled as Margherita, from
which we can infer that it has tomato and cheese. Examples used earlier in this paper
are taken from this data set.

We compared our similarity measure against several others: SDLρ (Sánchez-Ruiz-
Granados et al. 2011), a similarity measure for the EL description logic based on
refinements in the space of concepts; González-Calero et al. (1999), a similarity measure
for acyclic concepts in description logic; RIBL (Emde and Wettschereck 1996), which is a
Horn clause similarity measure; SHAUD (Armengol and Plaza 2003), which is a similarity
measure for feature terms; and Sλ and Sπ (Ontañón and Plaza 2009), which are similarity
measures for feature terms but also based on the idea of refinement operators. For RIBL, we
used we used the original version of the trains dataset, and automatically translated versions
of the other datasets. For SHAUD, Sλ, and Sπ , we used the feature term version of the trains
dataset used in Ontanón and Plaza (2012), which is a direct conversion from the original
Horn clause dataset without loss; the pairs, straight and pizza datasets were automatically
translated to feature terms; the lymphography data set was translated to feature terms using
the original propositional dataset as the starting point. For the DL similarity measures, we
used the versions of these datasets created by Lehmann and Hitzler (2007).

We compared the similarity measures in different ways:

– Classification accuracy of a nearest-neighbor algorithm.
– Average best rank of the first correct example: if we take one of the instances, and sort

the rest of the trains according to their similarity with the selected instance, which is
the position in this list (rank) of the first instance with the same solution as the selected
instance (e.g. West or East in the case of the trains dataset).

– Average time taken to compute similarity between two individuals.

Table 4 shows the results obtained when we compared the similarity measures in a
nearest-neighbor algorithm. Not all similarity measures could be applied to all data sets.
For example, SDLρ has scalability issues, and would only complete execution in the trains
dataset. González et al. cannot handle circular definitions, and thus could not be applied to
Pairs and Straight.

Concerning classification accuracy, we can see that our new similarity measure, SQ,
achieves comparable results to other similarity measures in the literature. Specifically, it
obtains the second highest accuracy for the trains data set, very close to the highest for the
Lymphography data set, and the highest in the Pizzas data set. We would like to highlight
the performance of SQ in the pizzas data set. In fact, SQ is the only similarity measure that
takes into account the information that can be inferred from the ontology, which explains
the results. RIBL, SHAUD, Sλ and Sπ are at a great disadvantage in this dataset since some
of the information that SQ can infer form the ontology cannot be inferred in the same way in
feature terms or Horn clauses (and those similarity measures do not have any mechanisms
for inference anyway). Concerning average best rank, we see similar results as for accuracy.
SQ obtains results similar to other similarity measures, except in a few datasets. It obtains
the best results in the pizzas dataset, and does not perform well in the Straight data set
(where classification accuracy, however, was quite high).
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Table 4 Comparison of several similarity metrics (times do not take into account data preprocessing,
required for some of the similarity measures). The best results for each dataset are highlighted in bold

SQ SDLρ G. et al. RIBL SHAUD Sλ Sπ

Classification Accuracy using 1-NN

Trains 60.00 70.00 50.00 60.00 50.00 40.00 50.00

Pairs 79.59 – – 63.27 71.43 83.67 91.84

Straight 87.27 – – 92.73 80.00 89.09 83.64

Lymph. 89.19 – 89.86 78.38 50.00 79.05 79.05

Pizzas 86.36 – 27.27 70.24 70.24 70.24 70.24

Average Best Rank

Trains 2.30 2.60 1.50 1.90 1.90 2.30 2.10

Pairs 1.53 – – 1.63 1.98 1.18 1.10

Straight 1.96 – – 1.29 1.36 1.73 1.27

Lymph. 2.47 – 2.36 1.45 2.16 1.49 1.44

Pizzas 1.23 – 1.77 2.04 2.04 2.04 2.04

Average Time (in milliseconds)

Trains 15.69 4422.36 0.47 6.63 75.47 45.44 0.12

Pairs 189.42 – – 1.09 33.67 22.97 0.24

Straight 207.14 – – 0.86 23.70 19.81 0.16

Lymph. 1.20 – 0.01 0.18 0.99 1.77 0.04

Pizzas 271.98 – 0.03 0.24 0.83 1.28 0.11

It is important to note that SQ does not only compute a similarity value between the two
individuals being compared. As a result of the search process, it also produces an explicit
description of the structure shared by the two individuals (the LCS) and the part that is spe-
cific of each one of them. We think that this information might be very useful in interactive
systems to explain the similarity assessment to the user, and we plan to develop this idea as
part of our future work.

Concerning only the three similarity measures we considered for DL, SDLρ is much
slower than SQ, and González et al. is faster, but at the cost of not handling circular struc-
tures, nor fully exploiting information that can be inferred form the ontology (as can be
see for the results in the pizzas dataset), and not providing an explanation of the similarity
value. SDLρ does provide an explanation of the similarity since it performs a search in the
space of concepts, but it is much slower than SQ. The space of queries is narrower than the
space of concepts since queries can only contain atomic concepts and roles while general
DL concepts can combine any of the constructors in the language. However, this limitation
does not necessarily affect the quality of the similarity, since atomic concepts represent the
vocabulary chosen by domain experts to describe domain entities, and therefore atomic con-
cepts represent the most important conceptualizations in the domain. Also, many practical
optimizations can be performed, such as sorting the query term in such a way that the most
restrictive axioms ones are evaluated first.

In summary, SQ is a new practical approach to assess similarity for expressive DL,
with a similar classification accuracy than existing similarity measures for other represen-
tation formalisms, but more general than González et al.’s, and more efficient than our
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previous measure SDLρ . In addition, SQ computes an explicit representation of the infor-
mation shared between the two entities that can be used for explanation, and it is able
to deal with anonymous individuals whose existence can be inferred from the ontology
axioms.

8 Related work

The work presented in this paper extends our previous work on similarity on Description
Logics (Sánchez-Ruiz-Granados et al. 2011), where we studied how to assess similarity
between individuals by transforming them to concepts, and then assessing the similarity of
these concepts. The approach presented in this paper is more general (since the language
DL queries is common to all DL), more efficient, and more accurate (since in our previous
work, we might lose information when converting individuals to concepts).

Other approaches to similarity assessment for Description Logics exist. For example,
d’Amato et al. (2008) propose to measure concept similarity as a function of the intersection
of their interpretations, which is, in fact, an approximation to the semantic similarity of
concepts. The approximation is better or worse depending on how good is the sample of
individuals used for assessing similarity. Thus, a good sample of individuals is required.
Other approaches that do not require the use of a good sample of individuals also have been
proposed. González-Calero et al. (1999) present a similarity measure for description logic
designed for case-based reasoning systems. This similarity measure is based on the idea of
hierarchical aggregation, in which the similarity between two instances is computed as an
aggregation of the similarity of the values in their roles.

There has been a significant amount of work on defining similarity measures for Horn
Clauses, in the Inductive Logic Programming (ILP) community. Hutchinson (1997) pre-
sented a distance based on the least general generalization (lgg) of two clauses. The lgg of
two clauses is a clause that subsumes both (i.e. that is more general than both), and such that
there is no other, more specific, clause that also subsumes both. The Hutchinson distance
is computed as the addition of the sizes of the variable substitutions required to transform
the lgg into each of the two clauses. As has been pointed out in the literature (Ramon 2002;
Ontanón and Plaza 2012), this is a very rough measure, which fails to take into account a
significant amount of information. Also, notice that this measure is analogous to the Jaccard
index (with the lgg playing the role of the intersection, and using the size of the variable sub-
stitutions as a measure of the difference in size between the intersection and the union), and
is also related to the refinement-based approaches in Sánchez-Ruiz-Granados et al. (2011)
and Ontañón and Plaza (2009), but is more coarse grained.

One of the most influential similarity measures for Horn Clauses is that in RIBL (Rela-
tional Instance-Based Learning) (Emde and Wettschereck 1996). RIBL’s similarity measure
follows a “hierarchical aggregation” approach: the similarity of two objects is a function
of the similarity of their attributes (calling this function recursively if the values are them-
selves structured objects). However, RIBL presents a number of problems: first, it implicitly
assumes that values that are “further away” from the root of an object will play a lesser
role in similarity (assumption that doesn’t hold in many problems); second, its hierarchical
procedure makes it better suited for objects whose representation does not contain cycles.
Finally, similarity measures have to be defined for different types of data inside of RIBL
(e.g. for numerical values, categorical values, etc.). This last point is clearly illustrated in
the work of Horváth et al. (2001), where the present an extension of RIBL able to deal
with lists by incorporating an edit-distance whenever a list data type is reached. An earlier
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similarity measure related to RIBL was that of Bisson (1992). Other similarity measures
specifically defined for Horn Clauses include the work of Nienhuys-Cheng (1997), and of
Ramon (2002).

Another related area is that of similarity in Feature Logics (Carpenter 1992), a.k.a. Fea-
ture Terms, a representation formalism that like Horn-Clauses and Description Logics is a
subset of First-Order Logic. SHAUD, presented by Armengol and Plaza (2003), is a simi-
larity measure also following the “hierarchical aggregation” approach but designed for the
feature logic representation formalism. SHAUD also assumes that the terms do not have
cycles, and in the same way as RIBL it can handle numerical values by using specialized
similarity measures for different data types. Our previous work (Ontanón and Plaza 2012)
addresses these problems, and presented a collection of general similarity measures for
feature terms based on refinement operators.

Bergmann and Stahl (1998) present a similarity measure specific for object-oriented rep-
resentations based on the concepts of intra-class similarity (measuring similarity among all
the common features of two objects) and inter-class similarity (providing a maximum sim-
ilarity given to object classes). This similarity is defined in a recursive way, thus following
the same “hierarchical aggregation” idea as RIBL and SHAUD, limiting the approach to tree
representations. These similarity measures are basically an attempt to generalize standard
Euclidean or Manhattan distances to structured data.

Another related area is that of kernels for structured representations, which allow the
application of machine learning techniques such as Support Vector Machines to complex
data represented as graphs (such as chemical molecules). Typically, kernels for graphs are
based on the idea of finding common substructures between two graphs (the idea is that
if substructures are similar, then graphs are similar), which is akin to the similarity mea-
sures between sets, such as Jaccard’s, which try to find common elements (the intersection)
between two sets. For example, Kashima et al. (2003) present a kernel for graphs based on
random-walks. Fanizzi et al. (2008) also studied how to encapsulate their similarity measure
for Description Logics into a Kernel.

Similarity measures for complex molecular structures in domains of biology or chem-
istry have also been widely studied (Willett et al. 1998), and they are typically grouped into
three classes (Raymond et al. 2003): sequence similarities, fingerprint-based and graph-
based. Sequence similarities can be directly applied to molecules such DNA fragments, that
can be directly represented as sequences (although they lose any of their structural proper-
ties, such as their 3D configuration). Fingerprint similarities transform each molecule in a
sequence of binary features where each feature determines whether a particular molecule
exhibits some particular property or contains a certain substructure. Graph-based simi-
larity measures for molecules are typically based on computing the maximum common
subgraph of two graphs, which is related to the idea of computing the least common sub-
sumer in DLs. This is a computationally expensive process, and thus there are a number
of strategies to simplify the computations. For instance, Raymond et al. (2002) propose a
two-stage process using upper bounds to filter out the molecules for which we require exact
computations.

Additionally, there are several ideas that are relevant for similarity assessment. For
example, the idea of propositionalization (transforming a structured instance into a propo-
sitional instance) (Kramer et al. 2001) is very relevant for similarity assessment. Another
related area is that of Formal Concept Analysis (FCA), where work on similarity assessment
between concepts is starting to be studied (Formica 2006; Alqadah and Bhatnagar 2011).
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9 Conclusions and future work

This paper has presented a new approach to assess similarity between individuals in
Description Logics. Although developed as part of our research on knowledge-intensive
CBR, the technique presented here is of general application to any problem that requires
assessment of similarity between individuals expressed in DL, such as automated cluster-
ing, or information retrieval. In addition, this technique also provides an explicit description
of the information that both individuals being compared share and the information that is
specific of each one of them, thus providing an explanation capability that can be useful in
a number of different applications.

The main advantage of our proposed similarity approach with respect to previous
approaches is that the search is performed in the space of conjunctive queries instead of
the space of concepts and, therefore, it is independent of the particular DL being used and
computationally more efficient, as our experimental results show (see Table 4).

Concerning future work, we are interested in the idea of using the explanation capabilities
of this similarity measure in systems that interact with humans and have to explain the
computed solutions. There is a major challenge in representing intuitively the knowledge
contained in a conjunctive query so that domain experts can understand the similarity values
without having to be experts in logic.

Another interesting line of research is to formally study the computational complexity
of the similarity measure for different refinement operators. For example, we want to study
the trade-offs between relaxing the requirement of having a complete refinement operator
(reducing the search space, and thus the computational complexity), the resulting compu-
tational complexity and the performance of the resulting similarity measure. Additionally,
in the experiments we have only considered entities represented using individuals, but our
work could be extended to consider another type of attributes such as numeric attributes, or
dates.

Regarding CBR systems specifically, the refinement paths contain valuable informa-
tion about case adaptation. Note that we can transform one individual into another simply
traversing the refinement paths from one individual to the least-common subsumer and then
down again until the other individual. If we use individuals to represent cases, we do not
only know when two cases are similar, we also know what their differences are.

Finally, the notion of similarity is highly context-dependent: two pizzas can be consid-
ered similar or not depending on the problem at hand or the purpose of comparison. There
are different ways to customize the similarity measure presented in this paper for a given
domain. For example, we could populate the ontology with more concepts to increase the
granularity of the refinements. Another approach would be to annotate the ontology with
distances between concepts so that not all the refinements contribute the same. Alterna-
tively, we could adapt the disintegration approach presented in Ontanón and Plaza (2012),
where refinements were used to generate a collection of relational-patterns, and weights for
each pattern could be calculated in a domain-specific way for similarity purposes. Finally,
if we consider the query as a graph (similarly to the individual graph introduced in Sec-
tion 5.1) we could weight the refinements according to the distances between the variables
involved in the refinement and a distinguished variable in the query representing the main
entity. Although all these approaches are feasible, determining specific weights and dis-
tances required to customize the proposed similarity measure using any of the approaches
described above is not trivial, and will be subject of our future work.
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