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Abstract

This paper introduces a logical model of inductive generalization, and specif-
ically of the machine learning task of inductive concept learning (ICL). We
argue that some inductive processes, like ICL, can be seen as a form of
defeasible reasoning. We define a consequence relation characterizing which
hypotheses can be induced from given sets of examples, and study its proper-
ties, showing they correspond to a rather well-behaved non-monotonic logic.
We will also show that with the addition of a preference relation on induc-
tive theories we can characterize the inductive bias of ICL algorithms. The
second part of the paper shows how this logical characterization of inductive
generalization can be integrated with another form of non-monotonic reason-
ing (argumentation), to define a model of multiagent ICL. This integration
allows two or more agents to learn, in a consistent way, both from induction
and from arguments used in the communication between them. We show
that the inductive theories achieved by multiagent induction plus argumen-
tation are sound, i.e. they are precisely the same as the inductive theories
built by a single agent with all data.
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1. Introduction

Inductive generalization is the basis for machine learning methods which
learn general hypotheses from examples. However, with the exception of a
few isolated proposals [1, 2, 3, 4], there has been little effort towards specific
logical models of inductive generalization. The lack of a formal logical model
of induction may have hindered the development of approaches that combine
induction with other forms of logical reasoning.

In this paper we do not tackle induction in its more general definition,
but limit ourselves to inductive generalization, and specifically, to the com-
mon task of inductive concept learning (ICL), which is the most well studied
induction problem in machine learning. We will argue that inductive general-
ization is a form of defeasible reasoning, and define an inductive consequence
relation (denoted by |∼) characterizing which hypotheses can be induced from
given sets of examples, and show its logical properties.

Relationships between inductive reasoning and non-monotonic reasoning
have already been established by Flach in [1, 5], where he presents a logical
analysis of induction and considers several postulates for a general inductive
consequence relation along with representation theorems in terms of prefer-
ential models, in the tradition of non-monotonic reasoning1 [7]. However,
while the work of Flach aims at defining general rationality postulates for
induction in general, our focus is on characterizing a particular form of in-
duction (ICL), which allows us to develop a more concrete model (see B
for an in-depth comparison of our proposal with Flach’s). Moreover, Flach
presents a logical characterization of induction focusing on hypothesis gen-
eration rather than hypothesis selection, i.e. intending to model which are
the valid hypotheses one can induce from a set of examples, but not which
of those hypotheses is the best one. In this paper, within the framework of
ICL, we go one step further and propose that hypothesis selection can also be
logically characterized by means of a preference relation on inductive theories
(suitable sets of hypotheses), and propose some preference relations which
capture the typical biases used in ICL algorithms (like parsimony or margin
maximization).

There are two main implications of defining a logical model of inductive
generalization. First, it allows for a better understanding of ICL algorithms,
and second, it facilitates the integration of inductive reasoning with other

1A similar work for abductive reasoning is that of Pino-Pérez and Uzcátegui [6].
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forms of logical reasoning, as we will show by integrating ICL with com-
putational argumentation to define a model of multiagent ICL. This paper
extends the preliminary work in [8], modeling inductive generalization as a
non-monotonic logic, extending the properties satisfied, and using preference
relations to model bias in ICL.

The second part of this paper presents an integration of two non-
monotonic forms of reasoning: induction and argumentation. This integra-
tion shows the advantage of having a logical model of induction. For instance,
a multiagent induction system such as [9] already introduced the idea of in-
tegrating inductive learning and argumentation in an implemented systems,
but lacked any formal grounding for such an integration. In particular, in this
paper we present a model of multiagent ICL obtained by directly integrating
our inductive consequence relation with computational argumentation. In
this approach, argumentation is used to model the communication between
agents, and ICL models their internal learning processes.

The remainder of this paper is organized as follows. Section 2 introduces
the problem of inductive concept learning as typically framed in the machine
learning literature. Then, Section 3 introduces a logical model of induction
and proposes an inductive consequence relation, while Section 4 deals with
preferences over inductive theories. In Section 5 we recall basic notions of
computational argumentation and we introduce the notion of argumentation-
consistent induction. Next, Sections 6 and 7 define a model of multiagent ICL
by integrating our logical model of ICL with computational argumentation.
The paper closes discussing some related work and with the conclusions. We
have also included two appendices: Appendix A contains a generalization
of Theorem 1 to n agents, and Appendix B provides more details on the
comparison of our inductive consequence relation with Flach’s previous work.

2. Background

Inductive concept learning (ICL) [10] using inductive techniques is not
defined formally in the literature of machine learning; rather it is usually
defined as a task, as follows:

Given:

1. A space X of instances

2. A space of hypotheses or generalizations H, modeled as a set of
mappings h : X → {0, 1}
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3. A target concept c, modeled as a partially known mapping c :
X → {0, 1}

4. A set D of training examples (for which c is known), where a
training example is a pair 〈xi, c(xi)〉

Find a hypothesis h ∈ H such that h(x) = c(x) for each instance x in the
set of training examples D

This strictly Boolean definition is usually weakened to allow the equality
h(x) = c(x) not being true for all examples in D but just for a percentage,
and the difference is called the error of the learnt hypothesis.

Another definition of inductive concept learning is that used in Inductive
Logic Programing (ILP) [11], where the background knowledge, in addition
to the examples, has to be taken into account. Nevertheless, ILP also defines
ICL as a task to be achieved by an algorithm, as follows:

Given:

1. A set of positive E+ and negative E− examples of a predicate p
2. A set of Horn rules (background knowledge) B
3. A space of hypotheses H (a sublanguage of Horn logic language)

Find A hypothesis h ∈ H such that

• ∀e ∈ E+ : B ∧ h |= e (h is complete)

• ∀e ∈ E− : B ∧ h 6|= e (h is consistent)

These definitions, although widespread, are unsatisfactory and leave sev-
eral issues without a precise characterization. For example, the space of
hypotheses H is usually expressed only by conjunctive formulas. However,
most concepts need more than one conjunctive formula (more than one gen-
eralization) but this is “left outside” of the definition and is explained as
part of the strategy of an inductive algorithm. For instance, the set-covering
strategy [12] consists of finding one definition that covers only part of the
positive examples in D, proceeding then to eliminate the covered examples
to obtain a new D′ that will be used in the next step. Another example is
that, typically, smaller hypotheses are preferred to longer hypotheses; but
again, that is left out of the definition.

In this paper our goal is not to provide a definition of the task of inductive
concept learning, but to provide a logical characterization of the inductive
inference processes required for performing such task.
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3. Inductive Generalization for Concept Learning

Inductive generalization can be seen as having two main components:
hypothesis generation and hypothesis selection [1]. We will model the former
using an inductive consequence relation, that defines which statements are
valid inductive consequences of given a set of examples, and the later using a
preference relation, which determines which of those statements are “better”
than others. This section formally defines our inductive consequence relation.

3.1. An Inductive Consequence Relation

In order to present our model of inductive concept learning, let us start
by describing our language. There are three basic elements in our language:
examples, hypotheses (or generalizations) and background knowledge. We
will use fragments of first-order logic as the representation language for these
elements. Given that we focus on inductive concept learning, hypotheses will
basically be classification rules (i.e. rules which classify an example as either
belonging to the target concept or not). Therefore, in the rest of this paper,
the hypotheses induced from examples will be called rules.

We will use a distinguished unary predicate C to denote the target con-
cept. Thus, we will write C(a) when the example identified by the constant
a belongs to the target concept, and ¬C(a) otherwise. Our formulas will be
of two kinds: examples, and rules.

• Examples will be conjunctions of the form ϕ(a) ∧ C(a), where a is
a constant, ϕ(x) is an arbitrary formula with x being its only free
variable. A positive example of C will be of the form ϕ(a) ∧ C(a); a
negative example of C will be of the form ϕ(a) ∧ ¬C(a).

• Rules will be universally quantified formulas of the form (∀x)(ϕ(x) →
C(x)), where ϕ(x) is an arbitrary formula with x being its only free
variable.

The set of examples will be noted by Le and the set of rules by Lr, and the
set of all formulas of our language will be L = Le ∪ Lr. In what follows, we
will use the symbol ` to denote derivation in classical first order logic. By
background knowledge we will refer to a finite set of formulas K ⊂ Lr.

Let us assume that the similarity type of our first-order language is fi-
nite (that is, we have a finite number of constants, predicates and function
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symbols). We fix a finite number of variables and we assume that all the vari-
ables contained in the formulas (either in examples or in rules) are among
these. Without loss of generality we can also assume that in each formula
(either in examples or in rules) there are not different quantifier blocks with
the same variable. Moreover, we can assume also that, the variable x does
not occur quantified in φ(x). For instance, we will not allow formulas like
φ(x) := (∀y)Ryx ∧ (∃y)(∀x)Txy. Under these assumptions, using the fact
that every first-order formula is logically equivalent to a prenex formula with
the same free variables, it is not difficult to check that there are only a finite
number of (example and rule) formulas modulo logical equivalence (see for
instance [13, Chap. 2]). Therefore, we will assume that both Le and Lr are
finite.

The previously defined notation allows us to define an inductive conse-
quence relation between examples and rules. For simplicity we will write
α→ β as a shorthand for the formula (∀x)(α(x)→ β(x)).

Definition 1. (Covering) Given background knowledge K, we say that a
rule α→ C covers an example ϕ(a)∧C(a) (or ϕ(a)∧¬C(a)) when ϕ(a)∧K `
α(a).

Definition 2. (Inductive Consequence) Given background knowledge K,
a set of examples ∆ ⊆ Le and a rule r = α→ C, the inductive consequence
∆ |∼K α→ C holds iff:
1) (Explanation) r covers at least one positive example of C in ∆,
2) (Consistency) r does not cover any negative example of C in ∆

Notice that if we have two conflicting examples in ∆ of the form ϕ(a) ∧
C(a) and ψ(b)∧¬C(b), and ϕ(a) is a less specific description than ψ(a) (i.e.
K ` ψ(a) → ϕ(a)) then no rule α → C covering the example ϕ(a) ∧ C(a)
can be inductively derived from ∆. The next definition identifies when a set
of examples is free of these kind of conflicts.

Definition 3. (Consistent Set of Examples) A set of examples ∆ is said
to be consistent with respect to a concept C and background knowledge K
when: if ϕ(a) ∧ C(a) and ψ(b) ∧ ¬C(b) belong to ∆, then both K 6` ϕ → ψ
and K 6` ψ → ϕ.

Definition 4. (Inducible Rules) Given a consistent set of examples ∆ and
background knowledge K, the set of all rules that can be induced from ∆ and
K is IRK(∆) = {(ϕ→ C) ∈ Lr | ∆ |∼K ϕ→ C}.
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Notice that if ∆ contains examples for a given concept C and also exam-
ples of ¬C, the set IRK(∆) will contain both rules that conclude C and rules
that conclude ¬C. In general, IRK(∆) contains rules that conclude every
concept for which there are examples in ∆. Also, notice that since Lr is
finite, IRK(∆) must also be finite. Next we show some interesting properties
of the inductive consequence |∼K .

Some formalizations of defeasible reasoning as non-monotonic logics, such
as [14] and [7], consider Reflexivity, Left Logical Equivalence and Right Weak-
ening the basic properties without which a system should not be considered
a logical system, while others, such as [15], consider Reflexivity and Cut to
be the basic properties of a logical system. Since our consequence relation
is defined between two different sets of formulas (examples and rules), most
of these properties do not directly apply to our setting. Nevertheless, it is
interesting to check whether the principles underlying these properties hold
for our consequence relation.

Intuitively speaking, the Left Logical Equivalence property expresses the
requirement that logically equivalent formulas have exactly the same conse-
quences. In our framework, in order to evaluate this principle, we need to
define first the notion of equivalent sets of examples.

Definition 5. (Equivalent Sets of Examples) Given background knowl-
edge K, and two sets of examples ∆ = ∆+ ∪∆− and Γ = Γ+ ∪ Γ−, where

∆+ = {ϕ0(a0) ∧ C(a0), . . . , ϕk(ak) ∧ C(ak)}
∆− = {ϕk+1(ak+1) ∧ ¬C(ak+1), . . . , ϕn(an) ∧ ¬C(an)}
Γ+ = {φ0(b0) ∧ C(b0), . . . , φl(bl) ∧ C(bl)}
Γ− = {φl+1(bl+1) ∧ ¬C(bl+1), . . . , φm(bm) ∧ ¬C(bm)},

we say that ∆ is equivalent to Γ modulo K, (∆ ≡K Γ), iff

1. For every i ≤ k, there is j ≤ l such that K ` ϕi → φj
2. For every j ≤ l, there is i ≤ k such that K ` φi → ϕj
3. For every i > k, there is j > l such that K ` ϕi → φj
4. For every j > l, there is i > k such that K ` φi → ϕj

Now we can show that, after suitable reformulations, Left Logical Equiv-
alence and the rest of above mentioned properties are satisfied.

Proposition 1. The inductive consequence relation |∼K satisfies the follow-
ing properties:
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1. Reflexivity: Assume that ∆ is consistent w.r.t. C and K. If ϕ(a) ∧
C(a) ∈ ∆, then ∆ |∼K ϕ→ C.

2. Left Logical Equivalence: If ∆ |∼K α → C and ∆ ≡K ∆′, then ∆′ |∼K
α→ C.

3. Right Logical Equivalence: If K ` β ↔ α and ∆ |∼K α → C, then
∆ |∼K β → C.

4. Cut: If ∆ ∪ {ϕ(a) ∧ C(a), φ(b) ∧ C(b)} |∼K α → C and K ` ϕ → φ
then ∆ ∪ {ϕ(a) ∧ C(a)} |∼K α→ C.

5. Cautious Monotonicity: If ∆ |∼K α→ C and ∆ |∼K β → C, for every
new constant b, ∆ ∪ {α(b) ∧ C(b)} |∼K β → C.

6. Cautious Right Weakening: If K ` α → β and ∆ |∼K β → C, and
α→ C covers some positive example in ∆, then ∆ |∼K α→ C.

Proof.

1. Since ϕ(a) ∧ C(a) ∈ ∆ and we obviously have ϕ(a) ∧K ` ϕ(a), expla-
nation trivially holds. Now assume ψ(a) ∧ ¬C(a) ∈ ∆. Then, since ∆
is consistent w.r.t. C and K, ψ(a) ∧K 6` ϕ(a), hence consistency also
holds.

2. By definition of covering, if a rule α → C covers a positive example
of ∆, say ϕ(a) ∧ C(a), it covers any other example φ(b) ∧ C(b) ∈ ∆′

such that K ` ϕ → φ. By definition of equivalent sets of examples
(modulo K), at least one of such examples belongs to ∆′. An analogous
argument holds for the negative examples.

3. By definition of covering, two logically equivalent rules (modulo K)
cover exactly the same positive and negative examples.

4. The reason is that, if the rule α → C covers the positive example
φ(b) ∧ C(b), since K ` ϕ → φ, then α → C also covers the positive
example ϕ(a) ∧ C(a).

5. By Definition 2 adding a positive example for an induced rule maintains
the validity of that rule.

6. By Definition 2 the rule α → C clearly satisfies the explanation prop-
erty. Moreover, α → C satisfies also the consistency property: other-
wise, since K ` ϕ→ φ, the rule β → C will cover a negative example,
contrary to our assumption.
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The first property, Reflexivity, transforms (or lifts) every example e ∈ ∆
into a rule re where constants have been substituted by variables. This lifting
is usually called in ICL literature the “single representation trick,” by which
an example in the language of instances (here Le) is transformed into an
expression in the language of hypotheses (here Lr).

The Right Logical Equivalence property expresses that one may replace
logically equivalent formulas by one another on the right of the |∼K . The
Cut property expresses the fact that one may, in his way towards a plausible
conclusion, first add a hypothesis to the facts he knows to be true and prove
the plausibility of his conclusion from this enlarged set of facts and then infer
inductively this added hypothesis from the facts. Notice that the validity of
Cut does not imply monotonicity. Nevertheless, we have seen that a form of
Cautious Monotonicity holds for our relation.

Observe also that the inductive consequence relation |∼K does not satisfy
Right Weakening : If K ` α → β and ∆ |∼K β → C, then ∆ |∼K α → C.
The reason is that, since α is more specific than β, the rule α→ C may cover
no positive example. Right Weakening expresses the fact that one must be
ready to accept as plausible consequences all that is logically implied by what
one thinks are plausible consequences. We have proposed instead a Cautious
Right Weakening property as the one that is relevant in our model.

Let us now analyze some additional properties, which are specially rele-
vant for inductive concept learning.

Proposition 2. The inductive consequence relation |∼K satisfies the follow-
ing properties:

1. If ∆ |∼K α→ C and K ` α→ ϕ then ∆ 6|∼K ϕ→ ¬C.
2. If ∆ |∼K α→ C and K ` ϕ→ α then ∆ 6|∼K ϕ→ ¬C.
3. Falsity Preserving: let r = α → C be such that it covers a negative

example from ∆, hence r 6∈ IRK(∆); then r 6∈ IRK(∆ ∪ ∆′) for any
further set of examples ∆′.

4. Positive Monotonicity: ∆ |∼K α → C implies ∆ ∪ {ϕ(a) ∧ C(a)} |∼K
α→ C.

5. Negative Monotonicity: if ϕ(a) ∧ ¬C(a) ∈ ∆, ∆ |∼K α → C implies
∆ \ {ϕ(a) ∧ ¬C(a)} |∼K α→ C.

6. Positive Non-monotonicity: if ϕ(a) ∧ C(a) ∈ ∆, ∆ |∼K α → C does
not imply ∆ \ {ϕ(a) ∧ C(a)} |∼K α→ C.

7. Negative Non-monotonicity: ∆ |∼K α→ C does not imply ∆∪{ϕ(a)∧
¬C(a)} |∼K α→ C, but it implies ∆ ∪ {ϕ(a) ∧ ¬C(a)} 6|∼K α→ ¬C.
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8. Generalization: if ∆ = {ϕ(a) ∧ C(a)} and ∆ |∼K α → C then K `
ϕ→ α.

9. If ∆1 ∪∆2 |∼K α → C then either ∆1 |∼K α → C or ∆2 |∼K α → C,
that is, IRK(∆1 ∪∆2) ⊆ IRK(∆1) ∪ IRK(∆2).

Proof.

1. Let us assume that K ` α → ϕ and ∆ |∼K ϕ → ¬C. Then, by
Consistency, for all ψ(a) ∧ C(a) ∈ ∆ we have ψ(a) ∧ K 6` ϕ(a), and
hence ψ(a) ∧K 6` α(a) as well. Then, clearly ∆ 6|∼K α→ C.

2. Let us assume now that K ` ϕ → α and ∆ |∼K ϕ → ¬C. Then, by
Explanation, there exists ψ(a)∧¬C(a) ∈ ∆ such that ψ(a)∧K ` ϕ(a).
But then we have ψ(a) ∧K ` α(a) as well, so again ∆ 6|∼K α→ C.

3. Notice that if r covers a negative example of ∆, that particular example
will remain in ∆ ∪∆′.

4. This property is stronger than Cautious Monotonicity, and follows by
the same argument.

5. It is direct consequence that if α→ C follows from ∆, it cannot cover
any negative example.

6. Removing a positive example invalidates an inductive inference when
that example is the only one covered the rule.

7. ∆ |∼K α→ C does not imply ∆∪ {ϕ(a)∧¬C(a)} |∼K α→ C because
nothing prevents ϕ(a) ∧K ` α(a) to hold. The fact that ∆ ∪ {ϕ(a) ∧
¬C(a)} 6|∼K α→ ¬C is there a consequence of Properties 3 and 1.

8. If ∆ consists of only one positive example ϕ(a) ∧ C(a), the only way
for α to cover ϕ(a) is that α (classically) follows from ϕ.

9. Let r ∈ IRK(∆1∪∆2) (see Definition 4). It means that r at least covers
a positive example e+ ∈ ∆1 ∪ ∆2 and covers no negative example of
∆1 ∪ ∆2, so it covers no negative example of both ∆1 and ∆2. Now,
if e+ ∈ ∆1 then clearly r ∈ IRK(∆1); otherwise, if e+ ∈ ∆2, then
r ∈ IRK(∆2), hence in any case r ∈ IRK(∆1) ∪ IRK(∆2).

Let us now examine the intuitive interpretation of the properties in Propo-
sition 2 from the point of view of ICL; for this purpose we will reformulate
some notions into the vocabulary commonly used in ICL.

Properties 1 and 2 state that by generalizing (resp. specializing) an in-
duced rule will never conclude the negation of the target concept. Property

10



3 states the well known fact that induction is falsity preserving, i.e. once we
know some induced rule is not valid, it will never be valid again by adding
more examples to ∆. Property 4 states that adding a positive example e+

does not invalidate any existing induced rule, i.e. IRK(∆) does not decrease;
notice that it can increase since IRK(∆ ∪ {e+}) might have induced rules
that explain e+ that were not in IRK(∆). Property 5 states that no negative
example can be covered if α → C follows from ∆. Property 6 states that
when we remove the only positive example covered by the rule, we invalidate
the inductive inference.

Property 7 states that adding a negative example e− might invalidate
existing induced rules in IRK(∆), i.e. IRK(∆ ∪ {e−}) ⊆ IRK(∆). This
is related to Property 3, since once a negative example defeats an induced
rule r, we know r will never be valid regardless of how many examples are
added to ∆. Property 8 states a generalization property, in the case where ∆
consists of only one positive example. Property 9 states that the rules that
can be induced from the union of two sets of examples are a subset of the
union of the rules that can be induced from each of the sets.

Actually, a few of the mentioned properties in Propositions 1 and 2 suffice
to fully characterize the inductive consequence relation |∼K , as we will show
presently. For the sake of simplicity, we will assume that we don’t have any
background knowledge K.

Proposition 3. (Characterization) Let |≈ be a relation between con-
sistent sets of examples for a concept C and rules satisfying the following
properties:

(P1) Reflexivity: if ϕ(a) ∧ C(a) ∈ ∆ then ∆ |≈ ϕ→ C

(P2) Generalization: if ∆ = {ϕ(a) ∧ C(a)} and ∆ |≈ α→ C then ` ϕ→ α

(P3) Negative Monotonicity: if ∆ |≈ α → C and ϕ(a) ∧ ¬C(a) ∈ ∆, then
∆ \ {ϕ(a) ∧ ¬C(a)} |≈ α→ C

(P4) If ∆1 ∪∆2 |≈ α→ C then either ∆1 |≈ α→ C or ∆2 |≈ α→ C

(P5) If ∆ |≈ α→ C and ` α→ ϕ then ∆ |6≈ ϕ→ ¬C.

Then, it holds that ∆ |≈ α → C iff α → C covers at least one positive
example of C and does not cover any negative example of C in ∆, as required
by Definition 2.
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Proof. In what follows, given a consistent set of examples ∆ and a concept
C, we will denote by ∆+ its subset of positive examples for C in ∆, and by
∆− its set of negative examples. Assume ∆ |≈ α→ C, we have to prove that
(i) α→ C covers some positive example in ∆ and (ii) α→ C does not cover
any negative example.

(i) Using (P3) one can remove all negative examples from ∆ but still
preserving the consequence, i.e. we have ∆+ |≈ α→ C. Now, using (P4), we
conclude that there must exist at least one positive example ϕ(a)∧C(a) ∈ ∆+

such that {ϕ(a) ∧ C(a)} |≈ α→ C. Finally, by (P2), one has that ` ϕ→ α.
(ii) By contraposition. Assume α→ C covers a negative example ψ(b) ∧

¬C(b) ∈ ∆−, and hence ` ψ → α. By (P1), we have ∆ |≈ ψ → ¬C, and
since ` ψ → α, by (P5) we also have ∆ |6≈ α→ C, contradiction.

3.2. Inductive Theories

The notions of inductive consequence and inducible rules allow us to
define the idea of an inductive theory for a given concept as a set of inducible
rules which, together with the background knowledge, explain all the positive
examples.

Definition 6. (Inductive Theory) An inductive theory T for a concept
C, w.r.t. ∆ and K, is a subset T ⊆ IRK(∆) such that all the rules in T
conclude C, and for all ϕ(a)∧C(a) ∈ ∆, it holds that T ∪K∪{ϕ(a)} ` C(a).
T is minimal if there is no T ′ ⊂ T that T ′ is an inductive theory for C.

Since rules concluding C in IRK(∆) do not cover any negative example of
C, if T is an inductive theory for C w.r.t. ∆ and K, and ψ(a) ∧ ¬C(a) ∈ ∆
for some constant a, then it holds that T ∪K∪{ψ(a)} 6` C(a). Observe that,
in the case that ∆ is a consistent set of examples, the existence of inductive
theories is guaranteed due to the reflexivity property: the set of all rules
obtained lifting examples is an inductive theory. Notice also that the notion
of inductive theory is relevant for ICL because an inductive machine learning
algorithm has as output a specific inductive theory.

3.3. Exemplification

The Zoology data set is a standard machine learning dataset containing
101 instances of animals associated with an animal family (fish, insect, mam-
mal, etc.). The goal is to learn general descriptions of each of the families by
induction. For exemplification purposes, we will use mammal as our target
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concept, represented by m. The Zoology dataset, as available from the UCI
machine learning repository, has no background knowledge so K = ∅. Let us
now consider three animals in Zoology (an aardvark, an antelope and a bass):

e1 := hair(a1) ∧milk(a1) ∧ predator(a1) ∧ toothed(a1)
∧ backbone(a1) ∧ breathes(a1) ∧ fourlegged(a1)
∧ catsize(a1) ∧m(a1)
= ϕ1(a1) ∧m(a1)

e2 := hair(a2) ∧milk(a2) ∧ toothed(a2) ∧ backbone(a2)
∧ breathes(a2) ∧ fourlegged(a2) ∧ tail(a2)
∧ catsize(a2) ∧m(a2)
= ϕ2(a2) ∧m(a2)

e3 := eggs(a3) ∧ aquatic(a3) ∧ predator(a3) ∧ fins(a3)
∧ backbone(a3) ∧ toothed(a3) ∧ tail(a3) ∧ ¬m(a3)
= ϕ3(a3) ∧ ¬m(a3)

Given ∆ = {ϕ1(a1) ∧ m(a1), ϕ2(a2) ∧ m(a2), ϕ3(a3) ∧ ¬m(a3)}, to
illustrate |∼K , we consider several hypotheses:

r1 := (∀x)(hair(x) ∧milk(x)→ m(x))
r2 := (∀x)(toothed(x) ∧ backbone(x)→ m(x))
r3 := (∀x)(tail(x) ∧ domestic(x)→ m(x))
r4 := (∀x)(fourlegged(x)→ m(x))

• ∆ |∼K r1, because both ϕ1(a1) ` hair(a1) ∧ milk(a1) and ϕ2(a2) `
hair(a2) ∧ milk(a2) (thus satisfying the explanation condition) and
ϕ3(a3) 6` hair(a3)∧milk(a3) (thus satisfying the consistency condition).

• ∆ 6|∼K r2, because ϕ1(a1) ` toothed(a1)∧backbone(a1), hence it satisfies
explanation, but ϕ3(a3) ` toothed(a3)∧ backbone(a3), and thus it’s not
consistent.

• ∆ 6|∼K r3, because ϕ1(a1) 6` tail(a1) ∧ domestic(a1) and ϕ2(a2) 6`
tail(a2) ∧ domestic(a2), i.e. it does not satisfy the explanation con-
dition. So, even if r3 satisfies the consistency condition, it does not
explain any example.

• ∆ |∼K r4, because both ϕ1(a1) ` fourlegged(a1) and ϕ2(a2) `
fourlegged(a2) (thus satisfying the explanation condition) and
ϕ3(a3) 6` fourlegged(a3) (thus satisfying the consistency condition).
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In this example, the sets T1 = {r1} ⊆ IRK(∆), T2 = {r4} ⊆ IRK(∆) and
T3 = {r1, r4} ⊆ IRK(∆) are inductive theories of m w.r.t. ∆. Clearly, only
T3 is not minimal.

4. Preference over Inductive Consequences

Although many rules can be inductive consequences of a given set of
examples, ICL algorithms have a set of preferences and inductive biases that
make them prefer some rules over the rest, or some inductive theories over the
rest. For example, rules that cover more positive examples are preferred over
rules that cover less examples, shorter rules are preferred over longer rules,
and hypotheses with larger margins are preferred over those with smaller
margins [16]. In our model of inductive generalization we incorporate these
criteria by means of a preference relation.

Depending on the bias we want to model, the preference relation might be
defined over rules or over inductive theories. In either case, since preference
might depend on both the set of examples ∆ and background knowledge K,
we will note our preference relation by ≥∆,K .

When the preference is expressed over rules, we write r1 ≥∆,K r2 when r1

is at least as preferred as r2 (r1 >∆,K r2 when r1 is strictly preferred to r2).
In general, this preference relation is only assumed to be a partial preorder
in the set IRK(∆).

Definition 7. (Preferred Rules) The set of preferred rules IR≥K(∆) =
{r ∈ IRK(∆) | @r′ ∈ IRK(∆) : r′ >∆,K r} is the subset of inducible rules that
are maximally preferred.

When the preference is expressed over inductive theories, we write
T1 ≥∆,K T2 when T1 is at least as preferred as T2. Again, in general, this
preference relation is assumed to be only a partial preorder on the set of
possible inductive theories.

Given that ICL algorithms ultimately return inductive theories, if the
preference is expressed over rules, we are interested in having a preference
over inductive theories, which can be defined as follows.

Definition 8. (Preference over Inductive Theories) Given a preference
≥∆,K over rules, an inductive theory T is preferred over another theory T ′,
denoted T ≥∆,K T ′, if there exist r ∈ T, r′ ∈ T ′ such that r ≥∆,K r′, and for
each r ∈ T there is no r′ ∈ T ′ such that r′ >∆,K r.
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Having a preference relation≥∆,K on inductive theories allows us to define
the following concepts of preferred and ideal inductive theories.

Definition 9. (Preferred Inductive Theory) We say that an inductive
theory T is (maximally) preferred with respect to ≥∆,K if there is no other
inductive theory T ′ ⊆ IRK(∆) such that T ′ >∆,K T .

Definition 10. (Ideal Inductive Theory) We say that an inductive theory
T is ideal with respect to ≥∆,K if it is both maximally preferred w.r.t. ≥∆,K

and minimal.

We remark that in the previous definition the term “ideal theory” neither
carries any implicit meaning of being a “best” theory according to some
unspecified criterion nor any other mathematical or algebraic meaning, it is
just a shorthand to denote an inductive theory that is minimal and maximally
preferred (according to a given preference relation).

Next, we present two examples of how some typical biases of ICL tech-
niques can be expressed using our framework.

4.1. Parsimony

Most ICL algorithms have a bias towards finding shorter hypotheses (i.e.
Parsimony or Occam’s Razor), which typically translates to more general
hypotheses. We can formalize both notions using two preference relations.

Given a function size(T ), which returns the number of symbols required
to express the inductive theory T in a given logical language, we can define
the preference T1 ≥∆,K T2 ⇔ size(T1) ≤ size(T2), which effectively captures
the bias towards shorter hypotheses.

A bias towards more general hypotheses is easier to express as a preference
relation between rules. We can define the preference relation α → C ≥∆,K

β → C iff β ∧K ` α, i.e. the rule α→ C is preferred to β → C if it is more
general. Then, using Definition 8, a preference over inductive theories can
be established, as well as preferred (Definition 9) and ideal (Definition 10)
inductive theories.

4.2. Margin Maximization

In machine learning, margin is commonly defined as the distance from
the examples to the decision boundary [16]. A classifier which maximizes the
margin has the decision boundary far away from every example; this ensures
that small variations in the training set do not result in misclassifications.
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Margin maximization is usually employed in machine learning and pattern
recognition techniques where instances are represented in metric spaces. We
will show now that an analogous principle can be applied for logic-based
instance representation.

First, in order to use the notion of margin, we need to define some measure
of distance, or similarity, between examples. To formalize this notion, we
assume for simplicity that all predicates in the language are unary and that
examples ϕ(a)∧C(a) are such that ϕ(a) is a conjunction of literals, i.e. ϕ(a)
is of the form p1(a) ∧ . . . ∧ pk(a) ∧ ¬pk+1(a) ∧ . . . ∧ ¬pn(a). In that case, the
only variable in a predicate stands for an example identifier, and hence for
our purposes here we can actually consider these unary predicates as atomic
propositions. Simplifying, we will denote by ϕ the propositionalized version
of ϕ(a), i.e. ϕ = p1 ∧ . . . ∧ pk ∧ ¬pk+1 ∧ . . . ∧ ¬pn. This is indeed the case
in the example described in Section 5. We will further assume the set P of
unary predicates (now propositional variables) we work with is finite.

Let Ω = {w : P → {0, 1}} be the space of possible worlds. Given a propo-
sitional formula ϕ, we will denote by [ϕ] the set of possible worlds satisfying
the formula ϕ (according to classical propositional logic). We assume there
is a distance function δ : Ω× Ω→ R+. The intuition is that δ(w,w′) evalu-
ates how far or different two worlds w and w′ are: δ(w,w′) = 0 means that
w = w′, 0 < δ(w,w′) < 1 means that w resembles to w′ to some degree. A
usual choice for δ, among others (see e.g. [17, 18]), is the Hamming distance,
that counts the number of elements of P over which two worlds differ.

Given such a distance function δ on the set of possible worlds Ω, the
distance between two propositional formulas built form P can be measured
by the distance between the corresponding sets of possible worlds, using
the well-known Hausdorff distance derived from δ: δH(ϕ, ψ) = max(Iδ(ϕ |
ψ), Iδ(ψ | ϕ)), where

Iδ(ϕ | ψ) = max
w∈[ψ]

min
w′∈[ϕ]

δ(w,w′)

Now, given a set of examples ∆, a distance δ and a threshold τ ∈ R+, we
can consider an expanded set of examples ∆∗τ where for each ϕ(a)∧C(a) ∈ ∆
(resp. ϕ(b) ∧ ¬C(b) ∈ ∆) we include all those additional fictitious examples
ψ(a′)∧C(a′) (resp. ψ(b′)∧¬C(b′)), such that the distance between ψ and ϕ
is at most τ , i.e. such that δH(ϕ, ψ) ≤ τ .

Given an inductive theory T ⊆ IRK(∆), we say that T is valid to the level
τ whenever T is also an inductive theory of IRK(∆∗τ ) (hence, in particular,
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Figure 1: Margin based on similarity measure δH .

∆∗τ must be consistent). We assign a preference degree τ to an inductive
theory T , noted Pref (T ) = τ , when τ is the maximum for which T is still
an inductive theory of IRK(∆∗τ ) (i.e. Pref (T ) is the maximum degree to
which T is valid). This induces a natural preference over inductive theories:
T ≥∆,K T ′ ⇔ Pref (T ) ≥ Pref (T ′). Moreover, according to Definition 9,
a preferred inductive theory T is one such that there is no other inductive
theory T ′ ⊆ IRK(∆) such that T ′ >∆,K T .

Notice that, in the present setting, a preferred inductive theory T max-
imizes the margin according to the distance δH . As shown in Fig.1, the
reason is that ∆∗τ is expanding as much as possible around all positive ex-
amples ϕ(a)∧C(a) and negative examples ϕ(b)∧¬C(b) without T covering
any fictitious example of the opposite sign.

4.3. Exemplification

Let us now illustrate the use of preferences by continuing the exemplifi-
cation started in Section 3.3.

Let us consider again the inductive theories used before:
T1 = {r1} ⊆ IRK(∆), T2 = {r4} ⊆ IRK(∆) and T3 = {r1, r4} ⊆ IRK(∆),
and consider a new inductive theory T4 = {r1, r5, r6}, where:

r5 := (∀x)(hair(x) ∧ fourlegged(x)→ m(x))
r6 := (∀x)(milk(x) ∧ fourlegged(x)→ m(x))

Given a function size(·), counting the symbols in a formula (ignoring paren-
thesis), the size of an inductive theory is simply the sum of the sizes of
its rules. Thus we have: size(r1) = 10, size(r4) = 7, size(r5) = 10,
size(r6) = 10, and therefore: size(T1) = 10, size(T2) = 7, size(T3) = 17, and
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size(T4) = 30. Using the parsimony preference we have: T2 ≥∆,K T1 ≥∆,K

T3 ≥∆,K T4. In fact, there is no other inductive theory with size smaller than
7, and thus T2 is a preferred inductive theory. Since T2 is also minimal, it is
actually an ideal inductive theory.

Notice, however, that if we were to use margin maximization as the pref-
erence criterion, with the Hamming distance, T2 would not be preferred,
since it is only valid to the level 0. In fact, the margin preference degrees
of these inductive theories are Pref (T1) = 0, Pref (T2) = 0, Pref (T3) = 0,
Pref (T4) = 1 and, thus, T4 would be preferred to the others.

5. Induction and Argumentation

One of the main advantages of having a logical model of induction is
that it allows an easy integration of inductive reasoning with other forms
of logical reasoning. In order to illustrate its benefits, this section presents
a model of multiagent ICL obtained by directly integrating our inductive
consequence relation with computational argumentation. In this integration,
argumentation is used to model the communication between agents, and ICL
models their internal learning processes.

For the sake of simplicity of presentation, we will consider a multiagent
system scenario with two agents Ag1 and Ag2 having a same target con-
cept C. However, as shown in A, our main theoretical result applies to the
more general case of an arbitrary number of agents. We make the following
assumptions:

1. The background knowledge K of both agents is the same2,

2. The set of rules Lr and the set of examples Le are defined as before
(see Section 3).

3. Each agent has a set of examples ∆1,∆2 ⊆ Le such that ∆1 ∪ ∆2 is
consistent.

The goal of each agent Agi is to induce an inductive theory Ti such that
Ti ⊆ IR(∆1 ∪∆2) and that constitutes an inductive theory w.r.t. ∆1 ∪∆2.
We will call this problem multiagent ICL.

2For simplicity, since both agents share K and C, in the rest of this paper we will write
IR(∆) rather than IRK(∆), and just say inductive theory, instead of saying inductive
theory of C.
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For this purpose, a näıve approach would be to have both agents sharing
their complete sets of examples; however, that might not be always feasible
for a number of reasons, like cost or privacy. In this section, we will show that
by sharing some of the rules they have induced from examples (rather than
all of their examples), two agents can also solve the multiagent ICL problem.
Let us start presenting our computational argumentation framework.

5.1. Computational Argumentation

We will follow Dung’s abstract argumentation formalization [19] and de-
fine an argumentation framework as a pair A = (Γ,�), where Γ is a finite
set of arguments, and � is an attack relation.

Given two arguments, r and r′, we write r � r′ to represent that r attacks
r′. Moreover, if both r � r′ and r′ � r we say that r blocks r′.

As in any argumentation system, the goal is to determine whether a given
argument is defeated or not according to a given semantics. In our case we
will adopt the semantics based on dialectical trees [20, 21] explained below:

Definition 11. (Argumentation Line) Given an argumentation frame-
work A = (Γ,�) and r0 ∈ Γ, an argumentation line in A rooted in r0 is a
sequence: λ = 〈r0, r1, r2, . . . , rk〉 such that:

1. ri+1 � ri (for i ≤ k),

2. if ri+1 � ri and ri blocks ri−1 then ri 6� ri+1.

The argument rk is called the leaf node of λ.

Additionally, for the purposes of ICL, we will assume that the attack
relation has no cycles (which is the case for the definition of attack we will
introduce later in this paper, Definition 12), and hence there are no repeated
arguments in an argumentation line. Consequently, argumentation lines are
always finite by construction. The set Λ(r0) of maximal argumentation lines
rooted in r0 are those that are not subsequences of other argumentation lines
rooted in r0. Clearly, Λ(r0) can be arranged in the form of a tree, where all
paths from the root to the leaf nodes exactly correspond to all the possible
maximal argumentation lines rooted in r0 that can be constructed in the
given argumentation framework. In order to decide whether r0 is defeated in
A, the nodes of this tree are marked U (undefeated) or D (defeated) according
to the following (cautious) rules:

1. Every leaf node is marked U,
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2. Each inner node is marked U iff all of its children are marked D, oth-
erwise it is marked D.

Therefore, the arguments in the argumentation framework A will be ei-
ther undefeated or defeated according to their marking, as follows:

Undefeated: U(A) = {r ∈ Γ | r is marked U in the tree Λ(r)}

Defeated: D(A) = {r ∈ Γ | r is marked D in the tree Λ(r)}.

5.2. Argumentation-based Induction

Induction and argumentation can be integrated through the notion of
argumentation-consistent induction. While induction was defined with re-
spect to a set of observations ∆, argumentation-consistent induction will be
defined with respect to a set of observations ∆, and a set of arguments Θ.
The essential idea is that we consider arguments to be rules, i.e. Θ ⊆ Lr (an
example can also be used as an argument through its corresponding lifted
rule, see the reflexivity property in Proposition 1). Therefore, in the rest of
this paper, we will use the terms “rule” and “argument” interchangeably.

Given that arguments will be rules, we can now define the attack relation
� between rules as follows.

Definition 12. (Attack) Given two rules r, r′ ∈ Γ, an attack relation r � r′

holds whenever:

1. r = (∀x)(α(x)→ `(x)),

2. r′ = (∀x)(β(x)→ ¬`(x)), and

3. K ` (∀x)(α(x)→ β(x)).

where ¬` = ¬C when ` = C and ¬` = C when ` = ¬C.

Argumentation-consistent induction consists of inducing rules that agree
with both ∆ (i.e. not covering negative examples present in ∆) and Θ (i.e.
not being defeated by the arguments in Θ).

Definition 13. (Argumentation-consistent Inducible Rule)
A rule r ∈ IR(∆) is argumentation-consistent with respect to a set of

arguments Θ if r ∈ U(A), where A = (Θ ∪ IR(∆),�).
The set of all the argumentation-consistent rules induced is AIR(∆,Θ) =

IR(∆) ∩U(A).
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Now we can define argumentation-consistent inductive theories.

Definition 14. (Argumentation-consistent Inductive Theory) An
argumentation-consistent inductive theory T , with respect to ∆ and a set
of arguments Θ, is an inductive theory of ∆ such that T ⊆ AIR(∆,Θ).

In the multiagent context starting in the next section, the goal of an agent
is to build an argumentation-consistent inductive theory, where such theory
will be composed by rules that have not been defeated by a set of arguments
Θ coming from another agent.

6. Argumentation-consistent Induction in Multiagent Systems

Let us now show how the notion of argumentation-consistent induction
can be used to model induction in a scenario with two agents. The main idea
is that agents induce rules from the examples they know, and then they share
them with the other agent. Rules received from the other agent are added
into the own agent’s argumentation framework to update her argumentation-
consistent induced rules. Thus, in addition to the set of examples ∆i, each
agent Agi has an individual argumentation frameworkAi, containing both (1)
the set of inducible rules IR(∆) inducted by Agi and (2) the set of arguments
Θ received from another agent.

Let us now prove that two agents communicating their induced rules and
performing argumentation using the kind of attack in Definition 12 would
obtain the exact same set of inducible rules as a single agent knowing the
examples known to both agents.

Since the attack relation between rules is always the same, in the following
we will simply write U(Γ) instead of U(A) to denote the set of undefeated
rules of the argumentation system A = (Γ,�).

Theorem 1. (Argumentation-consistent Induction)
U(IR(∆1) ∪ IR(∆2)) = IR(∆1 ∪∆2).

Proof. Notice that by definition U(IR(∆)) = IR(∆); consequently, we have
AIR(∆, IR(∆)) = IR(∆).

First, we prove that IR(∆1 ∪ ∆2) ⊆ U(IR(∆1) ∪ IR(∆2)). Let r ∈
IR(∆1 ∪∆2) then r = α→ C covers a positive example of ∆1 ∪∆2 and does
not cover any negative example of ∆1 ∪ ∆2. W.l.o.g., assume the covered
positive example is from ∆1. Then r ∈ IR(∆1). Suppose there exists a rule
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Figure 2: Achieving multiagent induction by combining inductive reasoning and compu-
tational argumentation.

r′ = β → ¬C ∈ IR(∆1)∪IR(∆2) such that r′ � r, i.e. such that K ` β → α.
It is clear that r′ 6∈ IR(∆1), hence assume that r′ ∈ IR(∆2). This means r′

covers a negative example δ− ∈ ∆2, but if r′ covers it, r must cover δ− as
well, contradiction.

Second, we prove that IR(∆1 ∪ ∆2) ⊇ U(IR(∆1) ∪ IR(∆2)). Let r ∈
U(IR(∆1)∪ IR(∆2)). W.l.o.g., assume r ∈ IR(∆1). Then r = α→ C covers
a positive example of ∆1 and does not cover any negative example of ∆1.
Assume also, looking for a contradiction, that r 6∈ IR(∆1∪∆2). Since we have
assumed that r ∈ IR(∆1), this means that r covers a negative example of ∆2.
This negative example can be specialized to a rule r′ = β → ¬C ∈ IR(∆2)
such that K ` β → α. Since r′ is the specialization of an example in ∆2

and ∆1 ∪ ∆2 is consistent, the rule r′ is undefeated. Consequently, r 6∈
U(IR(∆1) ∪ IR(∆2)), which contradicts our original assumption. Therefore
we can conclude IR(∆1 ∪∆2) ⊇ U(IR(∆1) ∪ IR(∆2)).

The previous theorem shows that, given two agents, Ag1 and Ag2, each
one with sets of examples ∆1 and ∆2 respectively, they can induce the same
set of rules either by sharing their induced rules IR(∆1) and IR(∆2) and
then using argumentation, or by exchanging all of their examples and then
using induction. This equivalence is illustrated in Figure 2, that shows two
equivalent approaches to obtain an inductive theory w.r.t ∆1∪∆2: centralized
induction (on the left hand side), and argumentation-consistent induction (on
the right hand side). In A of this paper, we show how this result applies to
the more general case of an arbitrary number of agents.

Clearly, sharing the complete IR(∆i)’s is not a practical solution either,
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since a) they can be very large, and b) given the reflexivity property, IR(∆i)
contains ∆i. Nevertheless, Theorem 1 shows that theoretically, the problem
of multiagent ICL can be modeled using individual induction plus argumen-
tation. In fact, if the purpose is finding inductive theories, not all arguments
in the IR(∆i)’s need to be exchanged. Section 7 presents a dialogue game
that finds an inductive theory w.r.t. ∆1∪∆2 using the same theoretical idea
as used in Theorem 1, but focusing on exchanging a smaller subset of rules.

However, let us first illustrate the concepts of argumentation-consistent
induction described in this section with an exemplification.

6.1. Exemplification

Consider two agents, Ag1 and Ag2, knowing a set of examples
∆1 = {e1, e2, e4} and ∆2 = {e5, e6, e7}. Here, e1, e2 and e3 are the three
examples used in Section 3.3, and the new four examples (e4 is a sealion, e5

is a seasnake, e6 is a platypus, and e7 is a chicken) are defined as:

e4 := hair(a4) ∧milk(a4) ∧ aquatic(a4) ∧ predator(a4) ∧ toothed(a4)
∧ backbone(a4) ∧ breathes(a4) ∧ fins(a4) ∧ twolegged(a1)
∧ tail(a4) ∧ catsize(a4) ∧m(a4)
= ϕ4(a4) ∧m(a4)

e5 := aquatic(a5) ∧ predator(a5) ∧ toothed(a5) ∧ backbone(a5)
∧ venomous(a5) ∧ fins(a5)
∧ tail(a5) ∧ ¬m(a5)
= ϕ5(a5) ∧ ¬m(a5)

e6 := hair(a6) ∧ eggs(a6) ∧milk(a6) ∧ aquatic(a6) ∧ predator(a6)
∧ backbone(a6) ∧ breathes(a6) ∧ fourlegged(a6) ∧ tail(a6)
∧ catsize(a6) ∧m(a6)
= ϕ6(a6) ∧m(a6)

e7 := feathers(a7) ∧ eggs(a7) ∧ airborne(a7) ∧ backbone(a7)∧
breathes(a7) ∧ twolegged(a7) ∧ tail(a7) ∧ ¬m(a7)
= ϕ7(a7) ∧ ¬m(a7)

Thus, ∆1 contains three positive examples (e1, e2 and e4) and no negative
example, and ∆2 contains two negative examples (e5 and e7) and one positive
example (e6). Let us now consider some of the rules that the agents can
induce from those examples. For instance, two of the rules that Ag1 can
induce are r1, r3 ∈ IR(∆1) below:
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Figure 3: Two agents, Ag1 and Ag2, knowing different sets of examples, and some sample
rules that can be induced from them.

r1 := (∀x)(backbone(x)→ m(x))
r3 := (∀x)(backbone(x) ∧ toothed(x) ∧ twolegged(x)→ m(x))

Agent Ag2 can induce the rule r2 ∈ IR(∆2):
r2 := (∀x)(backbone(x) ∧ toothed(x)→ ¬m(x))

When the two agents perform induction in isolation, no issues are found
with those three rules, as shown in Figure 3. However, let us consider now
the situation where agent Ag1 communicates r1 and r3 to Ag2, and Ag2

communicates r2 to Ag1. In this situation, according to Definition 12, the
following attacks hold: r2 � r1 and r3 � r2.

Let us first consider Ag1, who, in addition to its inducible rules IR(∆1),
now has access to the set of rules Θ2→1 = {r2}. Now, to perform
argumentation-consistent induction, Ag1 assesses which are the rules that
are both inducible from ∆1 and consistent with Θ2→1. For that purpose,
Ag1 constructs the argumentation framework A1 = (IR(∆1)∪{r2},�). It is
easy to verify that, since r2 is attacked by r3, and r3 is not attacked by any
other rule, r2 is defeated. Thus, both r1 and r3 are argumentation-consistent
inductions and belong to AIR(∆1,Θ2→1). Therefore, knowing r2 does not
change the set of inducible rules of Ag1, even if r2 attacks r1 (see Figure 4).

Now, considering agent Ag2, in addition to its inducible rules IR(∆2), now
Ag2 has access to the set of rules Θ1→2 = {r1, r3}. Similarly as before, to
perform argumentation-consistent induction, Ag2 assesses which are the rules
that are both inducible from ∆2 and consistent with Θ1→2. Ag2 constructs
the argumentation framework A2 = (IR(∆2)∪ {r1, r3},�). In this case, the
rule r2, induced by Ag2 is defeated (because it is attacked by r3, which is
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Figure 4: The same two agents from Figure 3, after they communicate some rules.

not attacked by any other rule), and thus r2 6∈ AIR(∆2,Θ1→2). Thus, in this
case, knowing r1 and r3 changes the the set of inducible rules of Ag2.

7. Reaching Inductive Theories in Multiagent Concept Learning

While Theorem 1 shows that it is possible to solve the problem of multi-
agent ICL using individual induction plus argumentation, this section shows
that when agents want to just agree on a single inductive theory, it is not
necessary, in general, to exchange all of their induced rules. This section
presents a dialogue game [22] through which two agents can solve the mul-
tiagent ICL problem by communication, specifically by exchanging some of
the rules they induced from examples. To define the dialogue game, we need
to define an interaction protocol, including the types of messages that agents
are allowed to use, and the conditions under which types of messages can
be exchanged. The dialogue game is defined for two agents Ag1 and Ag2,
each of which has an individual set of examples ∆1, ∆2, and consists of a
series of rounds. At each round t of the dialogue game, each agent Agi holds
a current inductive theory, T ti , that is revised after each round. When the
game terminates, both agents reach a common inductive theory with respect
to ∆1 ∪∆2.

During the dialogue game, agents communicate to each other rules in-
duced from their examples. Through this rule exchange, an agent Agi may
attack the inductive theory T tj of the other agent Agj if it is not consistent
with ∆i.
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At the end of each round t, an agent Agi knows the following six pieces
of information, namely (∆i, T

t
i , T

t
j ,Θ

t
i→j,Θ

t
j→i,Ati), where:

1. ∆i is the set of examples known to Agi.

2. T ti is the current inductive theory w.r.t ∆i that agent Agi is holding.

3. T tj is the current inductive theory w.r.t ∆j that the other agent is
holding.

4. Θt
i→j is the set of arguments (rules) that agent Agi has sent to Agj up

to the round t. Notice that Θt
i→j ⊆ IR(∆i).

5. Θt
j→i is the set of arguments (rules) that agent Agi has received from

Agj up to the round t.

6. Ati = (IR(∆i) ∪ Θt
j→i,�) is the argumentation framework for Agi;

notice that the set of arguments is composed of the rules inducible by
Agi plus the arguments sent by the other agent Agj.

Let us now provide some auxiliary definitions, before we introduce the dia-
logue game interaction protocol.

Definition 15. (Defeaters of a rule)
Given an argumentation framework A = (Γ,�), and a defeated argument
r ∈ D(A), the set of defeaters of r is:

Defeaters(r,A) = {r′ ∈ Γ | r′ � r and r′ ∈ U(A)}

That is to say, the set of undefeated arguments that attack r.

Definition 16. (Defeated Arguments From Communication)
Given the set of arguments Θt

j→i communicated by Agj to Agi, the set of those
received arguments that are defeated according to Agi is Dt

j→i = D(Ati)∩Θt
j→i.

Using the previous definitions, we can now present the dialogue game
through which two agents Ag1 and Ag2 can find an inductive theory w.r.t.
∆1 ∪∆2.

Before the first round, at t = 0, the two agents are assumed to hold
initial inductive theories T 0

1 ⊆ IR(∆1) and T 0
2 ⊆ IR(∆2) w.r.t. ∆1 and ∆2

respectively. Moreover, we assume each agent has communicated its own
inductive theory to the other agent, and thus:

Θ0
1→2 = T 0

1 and Θ0
2→1 = T 0

2 ,
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Consequently, the initial argumentation systems of the agents are set to:

A0
1 = (IR(∆1) ∪Θ0

2→1,�) and A0
2 = (IR(∆2) ∪Θ0

1→2,�).

Then, at each round t, starting at t = 1, each agent Agi computes the new
values of the tuple (T ti ,Θ

t
i→j,Ati), based on the values at the previous round

(T t−1
i ,Θt−1

i→j,At−1
i ). Notice that ∆i does not change and T tj and Θt

j→i are
computed by the other agent.

Actually, each round t ≥ 1 of the protocol is divided in five simple steps:
generate attacks, send attacks, update inductive theories, send updated in-
ductive theories, and update state. The process ends when no agent generates
new attacks. In more detail, a round t of the protocol is as follows:

1. Generate Attacks: Agi generates a set of attacks Rt
i by selecting a

single argument (whichever) r′ ∈ Defeaters(r,At−1
i ) for each r ∈ Dt−1

j→i
i.e. Agi selects one attack for each argument r sent by the other agent
that is defeated according to Agi.

2. Send Attacks: Each agent Agi sends Rt
i to the other agent.

If Rt
i = Rt

j = ∅, then the process terminates, since this means that

the current theories held by each agent (T t−1
i and T t−1

j ) are acceptable
for the other agent (no attack can be found). Otherwise the protocol
proceeds to the next step.

3. Update Inductive Theories: Each agent Agi generates a new
argumentation-consistent inductive theory T ti ⊆ AIR(∆i,Θ

t−1
j→i ∪ Rt

j)

such that (T t−1
i ∩U(Bt−1

i )) ⊆ T ti , where Bt−1
i = (IR(∆i)∪Θt−1

j→i∪Rt
j,�)

—i.e. the new theory T ti contains all the undefeated rules from T t−1
i

taking into account the attacks received, and replaces the rules that
were defeated in T t−1

i by new rules.

4. Send Updated Inductive Theories: Each agent Agi sends T ti to
the other agent.

5. Update State: the set of arguments received by each agent is in-
creased accordingly:

• Θt
1→2 = Θt−1

1→2 ∪Rt
1 ∪ T t1

• Θt
2→1 = Θt−1

2→1 ∪Rt
2 ∪ T t2

both agents update their argumentation frameworks:

• At1 = (IR(∆1) ∪Θt
2→1,�)
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• At2 = (IR(∆2) ∪Θt
1→2,�)

And new round t+ 1 starts by going back to the first step.

When the process terminates, both agents have a common and agreed
argumentation-consistent inductive theory, namely T ∗ = T t1 ∪ T t2.

The reason is that, when the process terminates, if the set ∆1 ∪ ∆2 is
consistent, then each agent Agi has an argumentation-consistent inductive
theory T ti w.r.t. ∆i that is also consistent with the examples in ∆j. Never-
theless, T ti might not be an inductive theory w.r.t. ∆j, since there might be
examples in ∆j not covered by T ti . However, their union T ∗ = T t1 ∪ T t2 is an
inductive theory w.r.t. the examples in ∆1∪∆2 and, since both agents know
T t1 and T t2, both agents can have T ∗ as a common and agreed argumentation-
consistent inductive theory w.r.t. ∆1 ∪∆2, as the following theorem proves.

Theorem 2. If the set ∆1 ∪ ∆2 is consistent, the previous process always
ends in a finite number of rounds t, and when it ends, T t1 ∪T t2 is an inductive
theory w.r.t. ∆1 ∪∆2.

Proof. First, let us prove that the final theories (T t1 and T t2) are consistent
with ∆1 ∪∆2. For this purpose we will show that the termination condition
(Θt

1→2 = Θt−1
1→2 and Θt

2→1 = Θt−1
2→1) implies that the argumentation-consistent

inductive theory T ti found by agent Agi at the final round t has no counterex-
amples in either ∆1 nor in ∆2.

Let us assume that there is an example ak ∈ ∆1 which is a counterexample
of a rule r ∈ T t2. Because of the reflexivity property, there is a rule rk ∈
IR(∆1) which corresponds to that example. Since ∆1 ∪ ∆2 is consistent,
there is no counterexample of rk, and thus rk is undefeated. Since rk � r
by assumption, r would have been defeated, and therefore rule r could not
be part of any argumentation-consistent inductive theory generated by Ag2.
The same reasoning can prove that there are no counterexamples of T t1 in
∆1 ∪∆2.

Since T t1 and T2 are inductive theories w.r.t. ∆1 and ∆2 respectively, it
follows from the above that T t1 ∪ T t2 is an inductive theory w.r.t. ∆1 ∪ ∆2

because it has no counterexamples in ∆1∪∆2, and every example in ∆1∪∆2

is explained at least by one rule in T t1 or in T t2.
Finally, the process has to terminate in a finite number of steps, since,

by assumption, IR(∆1) and IR(∆2) are finite sets, and the sets Θt
1→2 and

Θt
2→1 grow at least with one new argument at each round; however, since
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Θt
i→j ⊆ IR(∆i), there is only a finite number of new arguments that can be

added to Θt
i→j before the termination condition holds.

Thus, we have shown that the inductive theories achieved by
argumentation-consistent induction are sound. Theorem 1 has shown that
the set of inductive theories that can be reached through sharing examples
is the same as the set of inductive theories that can be reached by sharing
induced rules and then performing argumentation-consistent induction. Fur-
thermore, Theorem 2 shows that it is possible to reach one of those inductive
theories by using a simple dialogue game that does not require in general the
exchange of all the induced rules made by an agent. As a consequence, cen-
tralizing all examples into a single inductive process is no longer imperative,
at least in ICL, since induction followed by argumentation is a viable option.

The process to find a multiagent inductive theory can be seen as composed
of three mechanisms: induction, argumentation and belief revision. Agents
use induction to generate general rules from concrete examples, they use
argumentation to decide which of the rules sent by another agent cannot
be defeated, and finally they perform belief revision when they change their
inductive theories in light of the arguments sent by another agent. The belief
revision process is embodied in the way the set of undefeated rules U(Ati)
changes from round to round, which also determines how an agent’s inductive
theory changes in light of the arguments shared by the other agent.

A particular implementation of this integration model is the A-MAIL
framework [9], where two agents perform induction on separate example sets
and engage in argumentation until they reach individual inductive theories
that are consistent with their example sets. The A-MAIL framework offers a
particular realization of three mechanisms of induction, argumentation and
belief revision. The need of having an argumentation-consistent inductive
process is met by ABUI (Argumentation-based Bottom-Up Induction), a new
inductive method that finds inductive rules consistent with the set of unde-
feated rules at any step of the argumentation process.

7.1. Exemplification

Let us assume we have two agents, Ag1 and Ag2 and let ∆1 = {e1, e2, e3}
(containing the three examples used in Section 3.3, an aardvark, an antelope
and a bass), and ∆2 = {e4, e6, e7} (containing some of the examples used in
Section 6.1, a sealion, a platypus, and a chicken). Now, the two agents want
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to find a common inductive theory of the concept mammal, represented by
the unary predicate m. Let us explain the process.

Before the protocol starts, at t = 0, each agent has individually found an
inductive theory:

T 0
1 = {(∀x)(breathes(x)→ m(x))}, and
T 0

2 = {(∀x)(aquatic(x)→ m(x))}.

Intuitively, since all the positive examples of mammal known to Ag1 are land
animals, and all the negative ones are not, Ag1 has induced that breathing
is enough to characterize a mammal. A similar situation has occurred with
Ag2, who has find by induction that being aquatic is enough to characterize
a mammal, since it happens that the only two examples of mammals Ag2

knows are aquatic.
Moreover, at t = 0, each agent has communicated to the other agent their

individually found inductive theories and build their initial argumentation
systems, and thus:

Θ0
1→2 = T 0

1 , and Θ0
2→1 = T 0

2 ;
A0

1 = (IR(∆1) ∪Θ0
2→1,�) and A0

2 = (IR(∆2) ∪Θ0
1→2,�).

The protocol then proceeds as follows.

Round t = 1.

1. Agents proceed by generating attacks against the rules they have re-
ceived they believe are defeated.

• Since the rule (∀x)(aquatic(x) → m(x)) generated by Ag2 is
defeated according to Ag1, Ag1 selects one attack to defeat it:
R1

1 = {(∀x)(aquatic(x) ∧ ¬hair(x)→ ¬m(x))};
• Since the rule (∀x)(breathes(x) → m(x)) generated by Ag1 is

defeated according to Ag2, Ag2 selects one attack to defeat it:
R1

2 = {(∀x)(breathes(x) ∧ feathers(x)→ ¬m(x))};
2. These attacks are sent to each other.

3. Agents update their theories:
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• Due to the attacks recieved, Ag1 updates its inductive theory by
removing all the defeated arguments, and replacing them by new
undefeated arguments, and generates: T 1

1 = {(∀x)(hair(x) →
m(x))}.
• Analogously, Ag2 updates its inductive theory by removing all

the defeated arguments, and replacing them by new undefeated
arguments, and generates: T 1

2 = {(∀x)(milk(x)→ m(x))}.
4. These theories are sent to each other.

5. Agents update their states:

• Θ1
1→2 = Θ0

1→2 ∪R1
1 ∪ T 1

1 ; Θ1
2→1 = Θ0

2→1 ∪R1
2 ∪ T 1

2 ;

• A1
1 = (IR(∆1) ∪Θ1

2→1,�),A2
1 = (IR(∆2) ∪Θ1

1→2,�)

Round t = 2.

1. Agents should try now to generate attacks, but since the arguments sent
in the previous round R1

1 and R1
2 are undefeated in the argumentation

systems A1
2 and A1

1 respectively, no new attacks can be generated and
the protocol ends.

As a result, both agents have reached inductive theories T 1
1 and T 1

2 that
are consistent with the whole set of examples of both agents ∆1 ∪ ∆2 (i.e.
each theory has any counterexample neither in ∆1 nor in ∆2). Theorem 2
guarantees that

T ∗ = T 1
1 ∪ T 1

2 = {(∀x)(hair(x)→ m(x)), (∀x)(milk(x)→ m(x))}

is a common and agreed argumentation-consistent inductive theory. Notice
that this result is reached without exchanging any example, and exchanging
a small amount of inducible rules.

8. Related Work

Peter Flach [1] introduced a logical analysis of induction, focusing on
hypothesis generation. In Flach’s analysis, induction was studied on the
meta-level of consequence relations and focused on different properties that
may be desirable for different kinds of induction. In this paper we cover both
hypothesis generation and hypothesis selection, but we focus in a limited
form of induction, namely inductive concept learning, extensively studied in
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machine learning. A direct difference between Flach’s work and the research
presented in this paper is that we impose strong syntactical constraints on our
inductive consequence relation (from sets of examples to rules), in order to
focus on the specific machine learning problem of inductive concept learning,
whereas the work of Peter Flach, no restrictions were applied, in order to
study the soundness and completeness of sets of meta-level properties of
inductive consequence relations. Appendix B offers an in-depth comparison
of some properties of our consequence relation with some of Flach’s meta-
level properties.

A refinement of Flach’s consistency-based confirmation using Hempel’s
direct confirmation was studied in [4]. The authors proposed that inductive
generalization can be modeled as a deductive process given a completion
technique, which captures inductive assumptions, such as “every unknown
individual is similar to the known ones.” The difference with our work is
that, albeit restricted to the particular task of ICL, we propose a specific non-
monotonic logic consequence relation, instead of resorting to a completion
technique.

Related to the work of Flach is that of DelGrande [3], where he studied
the algebra of hypotheses that can be formed by induction from sets of exam-
ples. In the same way as Flach, DelGrande limited his study to hypothesis
generation, and considered that his model is a restriction with respect to
the general problem of induction, where induction as such plays the limited
role of proposing an initial set of hypotheses, which is later refined using
deductive techniques.

Also related is the work of Datteri et al. [2], where induction (in machine
learning) was understood as a deductive process; Dateri et al. modeled a typ-
ical process of a machine learning inductive algorithm in several steps, and
provided a logical model for each step (that they call “deductive”). The final
argument was that machine learning inductive algorithms are then “induc-
tionless,” as every step in the process is a logical inference. Our approach, a
non-monotonic logical model of the whole process of an inductive algorithm,
clarifies the nature of inductive concept learning: it is a form of defeasible
(i.e. non-deductive) reasoning, similar (albeit not identical) to other forms
of defeasible reasoning modeled by non-monotonic logic.

Concerning the integration of inductive reasoning with other forms of log-
ical reasoning, Michalski [23], in his Inferential Theory of Learning, started a
unified characterization of all forms of inference (deduction, analogy, induc-
tion, etc.) and defined knowledge transmutation operators. However, those
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operators were only illustrated with examples, and never completely formal-
ized. In this paper, we have taken on a smaller task: instead of trying to
formalize all types of inference, we have focused on a very specific form of
inference (inductive generalization), and, in this way, we have managed to
completely characterize it in the form of a consequence relation.

Our approach to model multiagent induction is related to that of merging
argumentation systems, which has been studied by Coste-Marquis et al. [24],
where a group of agents, each one having a different argumentation frame-
work (with potentially inconsistent attack relations) want to merge them.
Coste-Marquis et al. proposed to do so by sharing all the arguments and
then letting each agent construct a partial argumentation system where one
argument attacks another when the majority of agents in the group that
know both arguments consider there is an attack. After that, agents can
merge their opinions on which arguments are defeated. Notice, however,
that in our setting, since we are not dealing with an abstract argumentation
framework and our arguments are actually logical formulas, all agents agree
on the attack relation, and thus, we don’t require such merging procedure.

Arguments and argumentation have been used in a few approaches of
machine learning. For instance, arguments are used in the argument-based
machine learning framework [25]; this approach did not employ an argumen-
tation process, instead it assumed that arguments are given as part of the
input of the inductive process, and are exploited by the inductive algorithm.

Argumentation has been used in the context of multiagent learning in
[26]; however, this approach used argumentation and machine learning as
black-boxes that are not integrated, while our logical model of inductive
generalization allows for a deep integration of inductive reasoning and argu-
mentation. Amgoud and Serrurier [27] proposed the use of argumentation
as a framework to formalize the classification process, and in particular bi-
nary classification in the context of concept learning. The main difference
between the work of Amgoud and Serrurier and ours is that they focus on
classification, i.e. given an unclassified example, a set of examples and a set
of hypotheses, find the classification of the new instance together with an
explanation of why such classification is provided. Argumentation, in their
framework, is used to determine which possible classifications (understood
as arguments coming from examples or hypotheses) are acceptable, given all
the other hypotheses and examples, and thus determine a classification for
the new example. They also considered a preference relation on the set of
hypothesis for guiding the search in the hypothesis space and to define the
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attack relation between them. In contrast, in our work, we are interested on
a logical modeling of the concept learning process itself: the process through
which hypotheses (rules) are generated from a given set of examples. We
also use a preference relation, but we used it to rank the induced rules and
the set of inductive theories, rather than to define the attack relation. In our
proposal, argumentation is only used as a communication framework when
multiple agents are involved in the learning process.

Our previous work focused first on case-based learning from
argumentation-based communication processes [28], where arguments in the
form of both rules and cases were interchanged, but no inductive theory was
reached: the agents used case-based learning plus argumentation to clas-
sify unknown examples. Later, as mentioned before, the A-MAIL framework
was the first realization of an argumentation-based approach to multiagent
induction [9]. The main difference between [9] and the work presented in
this paper is that A-MAIL was a particular implementation that was ex-
perimentally validated to work, in the sense that agents achieved mutually
consistent inductive definitions of a concept by exchanging arguments and
attacks3. However, there was no formal proof, in [9], that achieving mutually
consistent inductive definitions was always possible, as we have done in this
paper. On the other hand, in this paper we focus on providing theoretical
results that explain why an approach like A-MAIL may achieve coordinated
induction using argumentation.

9. Conclusions and Future Work

This paper presents two main contributions, one being an inductive con-
sequence relation in the framework of non-monotonic reasoning for inductive
concept learning, and the other argumentation-consistent induction, integrat-
ing learning from examples by inductive generalization with learning from
argumentation-based communication.

The standard model of non-monotonic reasoning could not be directly
applied to our inductive consequence relation. We needed to relax and rein-

3Specifically, in [9] we focused on developing and evaluating an inductive algorithm that
take into account argument attacks; this algorithm, called ABUI for argumentation-based
bottom-up induction, performs a bottom up search in the space of generalizations to find
an induced rule from examples such that is not defeated by the set of known arguments
attacking previously induced rules.
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terpret some of the properties of this model, taking into account that our
inductive consequence relation is defined between two different sets of formu-
las (examples and rules). Specifically, Cautious Monotonicity and Cautious
Right Weakening properties maintain the spirit of the standard model prop-
erties by reinterpreting them into a context in which we have two separate
sets of formulae.

Furthermore, Proposition 2 presented six additional properties that char-
acterize our inductive consequence relation which, as we have shown, are the
properties specific to, and anticipated for, inductive concept learning.

The notion of inductive theory, introduced here, is a formalization of
the intuitive notion of the output resulting from an ICL algorithm: a set of
formulas that, as a whole, cover and explain all positive examples of the target
concept. This notion allows us to deal with hypothesis selection modeled as
preferences over inductive theories, modeling well established inductive biases
such as parsimony and error margin maximization.

Moreover, the notion of inductive theory has allowed us, in the second
part of this paper, to integrate the non-monotonic reasoning process of induc-
tive generalization with another non-monotonic reasoning process, namely
argumentation. Argumentation-consistent induction is the key notion in ar-
ticulating inductive generalization with argumentation: the rules derived by
induction are required to be acceptable inside the argumentation framework.
Conceptually, the rules induced by an agent are learnt not only from ex-
amples but from the arguments that are the result of communicating with
another agent.

Finally, argumentation-consistent induction allowed us to prove that a
group of agents communicating their induced rules and performing argumen-
tation would obtain the exact same set of inducible rules as a single agent
knowing the examples known to all agents. Thus, learning directly from ex-
amples is equivalent (modulo inductive theory equivalence) to learning from
communication from another agent that also learns from examples. In other
words, for two agents or more, first communicating all their examples and
then learning by induction is equivalent to first learning by induction indi-
vidually and then communicating the generalizations they have learnt using
argumentation.

In this paper we have centered our analysis on a setting where we assume
no noise in the examples, and where we do not allow induced rules to have
any counterexamples. ICL techniques usually accept generalizations that are
not 100% consistent with the set of examples. Our future work will focus on
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moving from a purely Boolean approach to a graded (or weighted) approach,
where generalizations that are not 100% consistent with the examples can
have a degree of acceptability. This broader framework would be closer to
implemented systems such as A-MAIL [9] that accept induced rules with less
than 100% consistency as long as they are above a given confidence threshold.
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Appendix A. Argumentation-consistent Induction for n Agents

The main theoretical result of this paper concerning inductive concept learning
in multiagent systems is captured in Theorem 1. Such result states that learning
directly from examples is equivalent to learning from communication from another
agent that also learns from examples. In this appendix, we generalize this result
for multiagent systems with more than two agents.

Theorem 3. (Argumentation-consistent Induction for n Agents)
U(

⋃
i=1...n IR(∆i)) = IR(

⋃
i=1...n ∆i).

Proof. Notice that by definition U(IR(∆)) = IR(∆); consequently, we have
AIR(∆, IR(∆)) = IR(∆).

First, we prove that IR(
⋃
i=1...n ∆i) ⊆ U(

⋃
i=1...n IR(∆i)). Let r = α → C be

such that r ∈ IR(
⋃
i=1...n ∆i), then r covers a positive example of

⋃
i=1...n ∆i and

does not cover any negative example of
⋃
i=1...n ∆i. W.l.o.g., assume the covered

positive example is from ∆k. Then r ∈ IR(∆k). Suppose there exists a rule
r′ = β → ¬C ∈ ⋃

i=1...n IR(∆i) such that r′ � r, i.e. such that K ` β → α. It is
clear that r′ 6∈ IR(∆k), hence assume r′ ∈ IR(∆j) for some ∆j , such that j 6= k.
This means r′ covers a negative example δ− ∈ ∆j , but if r′ covers it, r must cover
δ− as well, contradiction.

Second, we prove that IR(
⋃
i=1...n ∆i) ⊇ U(

⋃
i=1...n IR(∆i)). Let r = α → C

be such that r ∈ U(
⋃
i=1...n IR(∆i)). W.l.o.g., assume r ∈ IR(∆k). Then r covers

a positive example of ∆k and does not cover any negative example of ∆k. Assume
also, looking for a contradiction, that r 6∈ IR(

⋃
i=1...n ∆i). Since we have assumed

that r ∈ IR(∆k), this means that r covers a negative example of some ∆j . This
negative example can be specialized to a rule r′ = β → ¬C ∈ IR(∆j) such that
K ` β → α. Since r′ is the specialization of an example in ∆j and

⋃
i=1...n ∆i is
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consistent, the rule r′ is undefeated. Consequently, r 6∈ U(
⋃
i=1...n IR(∆i)), which

contradicts our original assumption. Therefore we can conclude IR(
⋃
i=1...n ∆i) ⊇

U(
⋃
i=1...n IR(∆i)).

Appendix B. Flach’s general approach to inductive consequence
relations

In their seminal paper [7] Kraus, Lehmann and Magidor (KLM) study “general
patterns of non-monotonic reasoning and try to isolate properties that could help
us map the field of non-monotonic reasoning by reference to positive properties”.
Following Gabbay [14], KLM focus their study at the level of consequence rela-
tions and choose a Gentzen-style notation of axiom schemata and inference rules
to express structural properties of a consequence relation that could adequately
represent a non-monotonic logic.

Based on the KLM framework, Flach [1, 5] studies the process of inductive
hypothesis formation from two perspectives: finding general rules that explain
given specific evidence (explanatory induction), and finding general rules that are
confirmed by the evidence (confirmatory induction). Both forms of hypothesis
formation are axiomatised also at the level of consequence relations, providing a
set of rationality postulates for various forms of induction.

For Flach, an inductive consequence relation |∼ is a set of pairs of formulae,
α |∼ β meaning that “β is a possible inductive hypothesis given evidence α”.
Inductive consequence relations are intended to model the behaviour of inductive
agents. Flach does not fix a particular definition of |∼, he studies rationality
postulates limiting different possible definitions. He starts with a set of general
principles for induction and then presents specific sets of principles for each type
of induction (explanatory and confirmatory).

Since our consequence relation |∼K is defined between two different sets of
formulas (examples and rules), most of these properties do not directly apply to
our setting. Nevertheless, it is interesting to check whether the Flach’s general
principles (listed below) underlying these properties hold for |∼K .

1. Verification (a predicted observation verifies the hypothesis)

` α ∧ β → γ, α |∼ β
α ∧ γ |∼ β

2. Falsification (an observation, the negation of which was predicted, falsifies
the hypothesis)

` α ∧ β → γ, α |∼ β
α ∧ ¬γ 6|∼ β
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3. Left Logical Equivalence (the logical form of the evidence is immaterial)

` α↔ β, α |∼ γ
β |∼ γ

4. Right Logical Equivalence (the logical form of the hypothesis is immaterial)

` β ↔ γ, α |∼ β
α |∼ γ

5. Left Reflexivity (evidence allowing some hypothesis is admissible)

α |∼ β
α |∼ α

6. Right Reflexivity (any hypothesis allowed by some evidence is admissible)

α |∼ β
β |∼ β

7. Right Extension (any hypothesis can be extended with a prediction)

` α ∧ β → γ, α |∼ β
α |∼ β ∧ γ

In order to check the validity of these general principles in our ICL framework,
we need first to set out how to interpret Flach’s consequence relation |∼ in terms of
our inductive consequence relation |∼K , taking into account our restricted language
of rules and examples. Indeed, in an expression α |∼ β we interpret the evidence
α as a set of (both positive and negative) examples ∆ for a concept C, and the
hypothesis β as a rule (∀x)(ϕ(x)→ C(x)).

In this setting, we provide the following justifications and propose an adapted
form of these principles to our framework:

1. Verification: interpreting a predicted observation as a new positive example
γ(a)∧C(a) already covered by an induced rule β → C from a set of examples
∆, the principle holds by property 3 of Proposition 2 (Positive monotonicity).

K ` γ → β, ∆ |∼K β → C

∆ ∪ {γ(a) ∧ C(a)} |∼K β → C

2. Falsification: with the same interpretation as in the previous item, a new
negative example γ(a) ∧ ¬C(a) is not covered by an induced rule β → C
from ∆ when γ(a) ∧ C(a) was already covered by β → C. That is,

K ` γ → β, ∆ |∼K β → C

∆ ∪ {γ(a) ∧ ¬C(a)} 6|∼K β → C

This follows by the very definition of the inductive consequence relation |∼K .
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3. Left Logical Equivalence: if ∆ |∼K α→ C and ∆ ≡K ∆′, then ∆′ |∼K α→
C. This directly follows from property 2 in Proposition 1.

∆ |∼K α→ C, ∆ ≡K ∆′

∆′ |∼K α→ C

4. Right Logical Equivalence: if K ` β ↔ α and ∆ |∼K α → C, then ∆ |∼K
β → C. This directly follows from property 3 in Proposition 1.

K ` β ↔ α, ∆ |∼K α→ C

∆ |∼K β → C

5. Left Reflexivity: if ∆ |∼K β → C for some rule β → C, this means that ∆ is
consistent, and hence, for every α(a)∧C(a) ∈ ∆, we have {α(a)∧C(a)} |∼K
α→ C. This follows from property 1 of Proposition 1.

∆ |∼K β → C, α(a) ∧ C(a) ∈ ∆

{α(a) ∧ C(a)} |∼K α→ C

6. Right Reflexivity: if ∆ |∼K β → C for some set of examples ∆, for every
example β(a) ∧C(a), we have {β(a) ∧C(a)} |∼K β → C. This follows from
property 1 of Proposition 1.

∆ |∼K β → C

{β(a) ∧ C(a)} |∼K β → C

7. Right Extension: if ∆ |∼K β → C, by definition of covering, there must
exist a positive example α(a) ∧ C(a) ∈ ∆ such that ` α → β. Assuming
` α∧β → γ, we have that ` α→ β∧γ. Since ∆ is assumed to be consistent,
β∧γ cannot cover any negative example, and consequently ∆ |∼K β∧γ → C.

∆ |∼K β → C, {α(a) ∧ C(a)} |∼K β → C, ` α ∧ β → γ

∆ |∼K β ∧ γ → C
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