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Abstract. This paper focuses on a logical model of induction, and specifically of
the common machine learning task of inductive concept learning (ICL). We de-
fine an inductive derivation relation, which characterizes which hypothesis can be
induced from sets of examples, and show its properties. Moreover, we will also
consider the problem of communicating inductive inferences between two agents,
which corresponds to the multi-agent ICL problem. Thanks to the introduced log-
ical model of induction, we will show that this communication can be modeled
using computational argumentation.
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Introduction

Inductive inference is the basis for all machine learning methods which learn general
hypotheses or models from examples. However, there has been little effort in finding a
logical characterization of inductive inference, except for a few proposals such as [6].
This paper focuses on a logical model of inductive inference, and specifically of the
common machine learning task of inductive concept learning (ICL).

The lack of a formal logical model of induction has hindered the development of
approaches that combine induction with other forms of reasoning, such as the defeasi-
ble reasoning used in computational argumentation. In this paper, we define an induc-
tive derivation relation (denoted by |∼), which characterizes which hypotheses can be
induced from sets of examples, and show the properties of this inductive derivation re-
lation. We will focus both in the single-agent inductive concept learning process as well
as in a multi-agent setting. To consider multi-agent settings, we will show that the prob-
lem of communicating inductive inferences can be modeled as an argumentation frame-
work. Since inductive inference is a form of defeasible inference we will see that our
inductive derivation relation can be easily combined with an argumentation framework,
constituting a coherent model of multi-agent inductive concept learning.

The remainder of this paper is organized as follows. Section 2 introduces the prob-
lem of inductive concept learning as typically framed in the machine learning literature.
Then, Section 3 introduces a logical model of induction and proposes an inductive deriva-
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tion relation. Section 4 then focuses on the multi-agent induction problem, framing it as
an argumentation process. Finally, the paper closes with related work and conclusions.

1. Inductive Concept Learning

Concept learning [10] using inductive techniques is not defined formally, rather it is
usually defined as a task, as follows:

Given 1. A set of instances X expressed in a language LI

2. A space of hypotheses or generalizations H (expressions in a language LH )
3. A target concept c defined as a function c : X → {0, 1}
4. A set D of training examples, where a training example is a pair 〈xi, c(xi)〉

Find a hypothesis h ∈ H such that ∀x ∈ X : h(x) = c(x)

This strictly Boolean definition is usually weakened to allow the equality h(x) = c(x)
not being true for all examples in X but just for a percentage, and the difference is called
the error of the learnt hypothesis. This definition, although widespread, is unsatisfactory
and leave several issues without a precise characterization. For example, the space of
hypotheses H usually is expressed only by conjunctive formulas. However, most con-
cepts need more than one conjunctive formula (more than one generalization) but this
is “left outside” of the definition and is explained as part of the strategy of an inductive
algorithm. For instance, the set-covering strategy, where one definition h1 is found but
covers only part of the positive examples in D, proceeding then to eliminate the covered
examples and obtain a new D′ that will be used in the next step.

Another definition of inductive concept learning (ICL) is that used in Inductive
Logic Programing (ILP) [9], where the background knowledge, in addition to the exam-
ples, has to be taken into account. Nevertheless, ILP also defines ICL as a task to be
achieved by an algorithm, as follows:

Given 1. A set of positive E+ and negative E− examples of a predicate p
2. A set of Horn rules (background knowledge) B
3. A hypothesis language LH (a sublanguage of Horn logic language)

Find A hypothesis H ∈ LH such that

• ∀e ∈ E+ : B ∧H |= e (H is complete)
• ∀e ∈ E− : B ∧H 6|= e (H is consistent)

In this paper our goal is to provide a logical model of inductive inference in ICL that
covers the commonly held but informally defined task of learning concept description by
induction in Machine Learning.

2. Inductive Inference for Concept Learning

In order to present our model of induction, let us start by describing the language we will
use, which corresponds to a small fragment of first order logic and is built as follows. For
the sake of simplicity we assume to work with two disjoint finite sets of unary predicates:
a set of predicates to describe attributes Pred_At = {P1, . . . , Pn} and a set of predicates



to denote concepts to be learnt Pred_Con = {C1, . . . , Cm}. To simplify notation, for
each C ∈ Pred_Con, we will write C(·) to denote C(·) or ¬C(·); moreover, we will
write ¬C(·) to denote ¬C(·) if C(·) = C(·), and ¬C(·) to denote C(·) if C(·) = ¬C(·).
Moreover we assume a finite domain of constantsD = {a1, . . . , am} which will be used
as example identifiers. For instance, if P ∈ Pred_At, C ∈ Pred_Con and a ∈ D,
then P (a) will denote that example a has the attribute P , and C(a) will denote that the
concept C applies to a. Our formulas will be of two kinds:

• Examples will be conjunctions of the form ϕ(a) ∧ C(a), where ϕ(a) = Q1(a) ∧
. . . ∧ Qk(a), with Qi(a) being of the form Pi(a) or ¬Pi(a). A positive example
of C will be of the form ϕ(a)∧C(a); a negative example of C will be of the form
ϕ(a) ∧ ¬C(a).

• Rules will be universally quantified formulas of the form (∀x)(ϕ(x) → C(x)),
where ϕ(x) = Q1(x) ∧ . . . ∧ Ql(x), with Qi(x) being of the form Pi(x) or
¬Pi(x).

The set of examples will be noted by Le and the set of rules by Lr, and the set of all
formulas of our language will be L = Le ∪ Lr. In what follows, we will use the symbol
` to denote derivation in classical first order logic. By background knowledge we will
refer to a finite set of formulas K ⊂ Lr, although sometimes we will consider K as the
conjunction of its formulas.

Definition 1 (Covering) Given background knowledge K, we say that a rule r :=
(∀x)(α(x)→ C(x)) covers an example e = ϕ(a) ∧ Ĉ(a) when ϕ(a) ∧K ` α(a).

These notions allow us to define inductive inference of rules from examples.

Definition 2 (Inductive Derivation) Given background knowledge K, a set of exam-
ples ∆ ⊆ Le and a rule r = (∀x)(α(x) → C(x)), the inductive derivation ∆ |∼K

(∀x)(α(x)→ C(x)) holds iff:
1) (Explanation) r covers at least one positive example of C in ∆,
2) (Consistency) r does not cover any negative example of C in ∆

Notice that if we have two conflicting formulas in ∆ of the form ϕ(a)∧C(a) and ψ(b)∧
¬C(b) where the example a has more (or less) description attributes than example b, then
no rule (∀x)(α(x) → C(x)) covering either example can be inductively derived from
∆. The next definition identifies when a set of examples is free of these kind of conflicts.

Definition 3 (Consistency) A set of examples ∆ is said to be consistent with respect to a
conceptC and background knowledgeK when: if ϕ(a)∧C(a) and ψ(b)∧¬C(b) belong
to ∆, then both K 6` (∀x)(ϕ(x)→ ψ(x)) and K 6` (∀x)ψ((x)→ ϕ(x)).

Definition 4 (Inducible Rules) Given a set of examples ∆ and background knowledge
K, we call IRK(∆) = {(∀x)(ϕ(x)→ C(x)) | ∆ |∼K (∀x)(ϕ(x)→ C(x))} the set of
all rules that can be induced from ∆ and K.

We will assume in the rest of the paper that IRK(∆) is finite. Next we show some
interesting properties of the inductive inference |∼K .

Lemma 1 The inductive inference |∼K satisfies the following properties:



1. Reflexivity: if ∆ is consistent w.r.t. C and K, then if ϕ(a) ∧ C(a) ∈ ∆ then
∆ |∼K (∀x)(ϕ(x)→ C(x)).

2. Positive monotonicity: ∆ |∼K (∀x)(α(x) → C(x)) implies ∆ ∪ {ϕ(a) ∧
C(a)} |∼K (∀x)(α(x)→ C(x))

3. Negative non-monotonicity: ∆ |∼K (∀x)(α(x)→ C(x)) does not imply
∆ ∪ {ϕ(a) ∧ ¬C(a)} |∼K (∀x)(α(x)→ C(x))

4. If K ` (∀x)(ϕ(x)→ α(x)) then,
∆ |∼K (∀x)(α(x)→ C(x)) does not imply ∆ |∼K (∀x)(ϕ(x)→ C(x))

5. If ∆ |∼K (∀x)(α(x) → C(x)) and ` (∀x)(α(x) → ϕ(x)) then ∆ 6|∼K

(∀x)(ϕ(x)→ ¬C(x))
6. If ∆ |∼K (∀x)(α(x) → C(x)) and ` (∀x)(ϕ(x) → α(x)) then ∆ 6|∼K

(∀x)(ϕ(x)→ ¬C(x))
7. Falsity preserving: let r = (∀x)(α(x) → C(x)) such that it covers a negative

example from ∆, hence r 6∈ IRK(∆); then r 6∈ IRK(∆ ∪ ∆′) for any further
set of examples ∆′.

8. IRK(∆1 ∪∆2) ⊆ IRK(∆1) ∪ IRK(∆2)

Proof: 1. Since ϕ(a) ∧ C(a) ∈ ∆ and we obviously have ϕ(a) ∧ K ` ϕ(a), ex-
planation trivially holds. Now assume ψ(a) ∧ ¬C(a) ∈ ∆. Then, since ∆ is
consistent w.r.t. C and K, ψ(a) ∧K 6` ϕ(a), hence consistency also holds.

2. Trivial
3. The reason is that nothing prevents that ϕ(a) ∧K ` α(a) may hold.
4. The reason is that, since ϕ is more specific than α, it may not cover any example.
5. Let us assume that ` (∀x)(α(x) → ϕ(x)) and ∆ |∼K (∀x)(ϕ(x) → ¬C(x)).

Then, by consistency, for all ψ(a) ∧ C(a) ∈ ∆ we have ψ(a) ∧K 6` ϕ(a), and
hence ψ(a) ∧K 6` α(a) as well. Then clearly, ∆ 6|∼K (∀x)(α(x)→ C(x)).

6. Let us assume now that ` (∀x)(ϕ(x) → α(x)) and ∆ |∼K (∀x)(ϕ(x) →
¬C(x)). Then, by explanation, there exists ψ(a) ∧ ¬C(a) ∈ ∆ such that
ψ(a) ∧ K ` ϕ(a). But then we have ψ(a) ∧ K ` α(a) as well, so again
∆ 6|∼K (∀x)(α(x)→ C(x)).

7. Notice that if r covers a negative example of ∆, that particular example will
remain in ∆ ∪∆′.

8. LetR ∈ IRK(∆1∪∆2). It means thatR at least covers a positive example e+ ∈
∆1 ∪ ∆2 and covers no negative example of ∆1 ∪ ∆2, so it covers no negative
example of both ∆1 and ∆2. Now, if e+ ∈ ∆1 then clearly R ∈ IRK(∆1);
otherwise, if e+ ∈ ∆2, then R ∈ IRK(∆2), hence in any case R ∈ IRK(∆1) ∪
IRK(∆2).

�

Let us now examine the intuitive interpretation of the properties in Lemma 1 from
the point of view of ICL; for this purpose we will reformulate some notions into the
vocabulary commonly used in ICL. The first property, Reflexivity, transforms (or lifts)
every example in e ∈ ∆ into a rule re where constants have been substituted by variables.
This lifting is usually called in ICL literature the “single representation trick,” by which
an example in the language of instances is transformed into an expression in the language
of generalizations.

Property 2 states that adding a positive example e+ does not invalidate any existing
induced rule, i.e. IRK(∆) does not decrease; notice that it can increase since now there



are induced rules that explain e+ that were not in IRK(∆) that are in IRK(∆ ∪ {e+}).
Property 3 states that adding a negative example e− might invalidate existing induced
rules in IRK(∆), i.e. IRK(∆∪{e−}) ⊆ IRK(∆). Property 4 states that specializing an
induced rule does not imply it is still in IRK(∆), since it may not explain any example
in ∆. Properties 5 and 6 state that by generalizing (resp. specializing) an induced rule
will never conclude the negation of the target concept.

Property 7 states the well known fact that inductive inference is falsity preserving,
i.e. once we know some induced rule is not valid, it will never be valid again. This is
related to Property 3, since once a negative example defeats an induced rule r, we know
r will never be valid regardless of how many examples are added to ∆, i.e. it will never
be in IRK(∆ ∪∆′). Property 8 states that the rules that can be induced from the union
of two sets of examples are a subset of the union of the rules that can be induced from
each of the sets.

The notions of inductive derivation and inducible rules allows us to define next an
inductive theory for a concept as a set of inducible rules which, together with the back-
ground knowledge, explain all positive examples.

Definition 5 (Inductive Theory) An inductive theory T for a concept C, w.r.t. ∆ and K,
is a subset T ⊆ IRK(∆) such that for all ϕ(a) ∧ C(a) ∈ ∆, it holds that T ∪ K ∪
{ϕ(a)} ` C(a). T is minimal if there is no T ′ ⊂ T that is an inductive theory for C.

Since rules in IRK(∆) do not cover any negative example, notice that if T is an inductive
theory for C w.r.t. ∆ and K, and ψ(a) ∧ ¬C(a) ∈ ∆ for some constant a, then it holds
that T ∪K ∪{ψ(a)} 6` C(a). In the remainder of this paper we will assume agents have
an algorithm capable of generating inductive theories, e.g. [11].

3. Multi-agent Induction through Argumentation

We will consider a multi-agent system scenario with two agents Ag1 and Ag2 under the
following assumptions: (1) both agents share the same background knowledge K2 and
(2) each agent has a set of examples ∆1,∆2 ⊆ Le such that ∆1 ∪ ∆2 is consistent.
The goal of each agent Agi is to induce an inductive theory Ti of a concept C such that
Ti ⊆ IR(∆1 ∪∆2) and that constitutes an inductive theory w.r.t. ∆1 ∪∆2. We will call
this problem multi-agent ICL.

A naïve approach is for both agents to share their sets of examples, but that might
not be feasible for a number of reasons, like cost or privacy. In this section we will show
that by communicating their inductive inferences two agents can also solve the multi-
agent inductive concept learning (ICL) problem. Let us present an argumentation-based
framework that can model this problem of sharing and comparing inductive inferences
in order to address the multi-agent ICL problem.

3.1. Computational Argumentation

Let us introduce the necessary notions of computational argumentation we will use in the
rest of this paper. In our setting, an argumentation framework will be a pairA = (Γ,�),
where arguments are rules, i.e. Γ ⊆ Lr.

2For simplicity, since both agents share K, in the rest of this paper we will drop the K from the notation.



Definition 6 Given two rules R,R′ ∈ Γ, an attack relation R � R′ holds when
R = (∀x)(α(x)→ C(x)), R′ = (∀x)(β(x)→ ¬C(x)), and K ` (∀x)(α(x)→ β(x)).
Otherwise, R 6� R′. If R � R′ and R′ 6� R we say that R defeats R′, otherwise if both
R � R′ and R′ � R (i.e. if K ` (∀x)(α(x)↔ β(x))) we say that R blocks R′.

As in any argumentation system, the goal is to determine whether a given argument is
acceptable (or warranted) according to a given semantics. In our case we will adopt the
semantics based on dialogical trees [3,13].

Definition 7 Given an argumentation framework A = (Γ,�) and R0 ∈ Γ, an argu-
mentation line rooted in R0 in A is a sequence: λ = 〈R0, R1, R2, . . . , Rk〉 such that:

1. Ri+1 � Ri (for i = 0, 1, 2, . . . k),
2. if Ri+1 � Ri and Ri blocks Ri−1 then Ri 6� Ri+1.

Notice that, given Def. 6, an argumentation line has no circularities and is always finite.
We will be interested in the set Λ(R0) of maximal argumentation lines rooted in R0,

i.e. those that are not subsequences of other argumentation lines3 rooted in R0. It is clear
that Λ(R0) can be arranged in the form of a tree, where all paths from the root to the
leaf nodes exactly correspond to all the possible maximal argumentation lines rooted in
R0. In order to decide whether R0 is accepted in A, the nodes of this tree are marked U
(undefeated) or D (defeated) according to the following (cautious) rules:

1. every leaf node is marked U
2. each inner node is marked U iff all of its children are marked D, otherwise it is

marked D

Then the status of a rule R0 in the argumentation framework A is defined as follows:

• R0 will be accepted if R0 is marked U in the tree Λ(R0)
• R0 will be rejected if R0 is marked D in the tree Λ(R0)

In this way, we decide the status of each argument and define two sets:

Accepted(A) = {R ∈ Γ | R is accepted} Rejected(A) = Γ \Accepted(A)

3.2. Argumentation-based Induction

Given a set of examples ∆, and an argumentation framework A = (Γ,�), such that
IR(∆) ⊆ Γ, we can define the set AIR(∆,A) of argumentation-consistent induced
rules as those induced from ∆ which are accepted by A, i.e. AIR(∆,A) = IR(∆) ∩
Accepted(A). This allows us to define argumentation-consistent inductive theories.

Definition 8 An argumentation-consistent inductive theory T for a concept C, with re-
spect to ∆, and an argumentation framework A = (Γ,�), such that IR(∆) ⊆ Γ, is an
inductive theory of ∆ such that T ⊆ AIR(∆,A).

In other words, an argumentation-consistent inductive theory is an inductive theory com-
posed of rules which have not been defeated by the arguments known to an agent.

3An argumentation line λ1 is a subsequence of another one λ2 if the set of arguments in λ1 is a subset of
the set of arguments in λ2.



3.3. Argumentation-based Induction in Multi-agent Systems

Let us see now how can argumentation and induction be combined in order to model the
multi-agent ICL problem for two agents. The main idea is that agents induce rules from
the examples they know, and then they share them with the other agent. Rules are then
contrasted using an argumentation framework, and only those rules which are consistent
are accepted in order to find a joint inductive theory.

Thus, in addition to K and the set of examples ∆i, each agent has a different ar-
gumentation framework Ai, corresponding to its individual point of view. Let us ana-
lyze the situation where each agent Agi communicates all its inducible rules IR(∆i)
to the other agent. As a result, each agent will have the same argumentation framework
A∗ = (IR(∆1) ∪ IR(∆2),�). Given a rule R ∈ Accepted(A∗), clearly there are no
counterexamples ofR in either ∆1 or in ∆2 (given the reflexivity property the arguments
corresponding to those examples would defeat R otherwise). Thus, if T ∗1 and T ∗2 are
argumentation-consistent inductive theories of ∆1 and ∆2 respectively with respect to
A∗, then T ∗1 ∪ T ∗2 is clearly a (joint) inductive theory w.r.t. ∆1 ∪∆2.

Therefore, two agents can reach their goal of finding a joint inductive theory w.r.t.
∆1∪∆2, by sharing all of their inductive inferences IR(∆1) and IR(∆2), then comput-
ing individually an argumentation-consistent inductive theory, T ∗1 and T ∗2 respectively,
and then computing the union T ∗1 ∪ T ∗2 . In other words, by sharing all the inductive in-
ferences and using argumentation, agents can also reach their goal in the same way as
sharing all the examples. However, sharing the complete IR(∆i) is not a practical so-
lution since it can be very large. Nevertheless, not all arguments in IR(∆i) need to be
exchanged. We will present a process that finds a joint inductive theory w.r.t. ∆1 ∪ ∆2

without forcing the agents to exchange all their complete IR(∆i).
During this process, agents will communicate rules to each other. Let us call St

j to the
set of rules that an agentAgj has communicatedAgi at a given time t during this process.
Moreover, we assume that St

j ⊆ IR(∆j), i.e. that the rules communicated by the agent
Agj are rules that Agj has been able to induce with its collection of examples. Thus, for
two agents, A1 = (IR(∆1) ∪ S2,�) (i.e. Ag1 will have as arguments all the inducible
rules for the agent plus the rules shared by the other agent Ag2); and analogously A2 =
(IR(∆2) ∪ S1,�).

For each argument R ∈ Rejected(Ai), let us denote by Defeatersi(R) the set of
undefeated children of R in the argument tree Λ(R) in Ai (which will be non-empty by
definition). Two agents can find a joint inductive theory w.r.t. ∆1 ∪∆2 as follows:

1. Before the first round, t = 0, S0
1 = ∅, S0

2 = ∅, T 0
1 = ∅, T 0

2 = ∅.
2. At each new round t, starting at t = 1, each agent Agi performs two actions:

(a) GivenAgi’s argumentation frameworkAt
i = (IR(∆i)∪St−1

j ,�),Agi gen-
erates a argumentation-consistent inductive theory T t

i w.r.t. its examples ∆i

such that (T t−1
i ∩Accepted(At−1

i )) ⊆ T t
i , and (T t

i ∩Rejected(At−1
i )) = ∅,

i.e. the new theory T t
i contains all the accepted rules from T t−1

i and replaces
the rules that were defeated in T t−1

i by new rules.
(b) Agi creates a set of attacks Rt

i in the following way. Let D = {R ∈
Rejected(At

i)∩S
t−1
j | Defeatersi(R)∩St−1

i = ∅}.D basically contains all
the arguments sent by the other agent which are, according to Agi, defeated
but Agj might not be aware of (since Agi has not shared with Agj any of the



arguments which defeats them). Rt
i is created by selecting a single argument

(whichever) R′ ∈ Defeatersi(R) for each R ∈ D. That is, Rt
i contains one

attack for each argument that Agi considers defeated, but Agj is not aware of.

3. Then, a new round starts with: St
i = St−1

i ∪ T t
i ∪ Rt

i. When St
1 = St−1

1 and
St

2 = St−1
2 , the process terminates, i.e. when there is a round where no agent has

sent any further attack.

If the set ∆1 ∪ ∆2 is consistent, when the process terminates each agent Agi has
an argumentation-consistent inductive theory T t

i w.r.t. ∆i that is also consistent with the
examples ∆j of the other agent Agj (but it might not be an argumentation-consistent
inductive theory w.r.t. ∆j). However their union T t

1 ∪ T t
2 is an inductive theory w.r.t. the

examples in ∆1 ∪ ∆2 and since both agents know T t
1 and T t

2 , both agents can have an
argumentation-consistent inductive theory w.r.t. ∆1 ∪ ∆2. Notice that Ag1 can obtain
from T t

1 ∪ T t
2 a minimal inductive theory T ′ ∪ T t

2 where T ′ ⊆ T t
1 is the minimum set of

rules that cover those examples in ∆1 not covered by T t
2 (and analogously for Ag2).

Lemma 2 If the set ∆1 ∪∆2 is consistent, the previous process always ends in a finite
number of rounds t, and that when it ends T t

1 ∪ T t
2 is an inductive theory w.r.t. ∆1 ∪∆2.

Proof: First, let us prove that the final theories (T t
1 and T t

2) are consistent with ∆1 ∪∆2.
For this purpose we will show that the termination condition (St

1 = St−1
1 and St

2 = St−1
2 )

implies that the argumentation-consistent inductive theory T t
i found by an agent Agi at

the final round t has no counterexamples in either ∆1 nor in ∆2.
Let us assume that there is an example ak ∈ ∆1 which is a counterexample of a

rule R ∈ T t
2 . Because of the reflexivity property, there is a rule Rk ∈ IR(∆1) which

corresponds to that example. Since ∆1 ∪ ∆2 is consistent, there is no counterexample
of Rk, and thus Rk is undefeated. Since, by assumption Rk � R, Rk should have been
in St−1

1 , R would have been defeated, and therefore rule R could not be part of any
argumentation-consistent inductive theory generated by Ag2. The analogous proof can
be used to prove that there are no counterexamples of T t

1 in ∆1 ∪∆2.
Given that T t

i is an inductive theory w.r.t. ∆i, T t
1 ∪ T t

2 is an inductive theory w.r.t.
∆1 ∪∆2 because it has no counterexamples in ∆1 ∪∆2, and every example in ∆1 ∪∆2

is explained at least by one rule in T t
1 or T t

2 .
Finally, the process has to terminate in a finite number of steps, since, by assumption,

IR(∆1) and IR(∆2) are finite sets, and at each round sets St
1 and St

2 grow at least
with one new argument, but since St

i ⊆ IR(∆i), there is only a finite number of new
arguments that can be added to St

1 and St
2 before the termination condition holds. �

The process to find a joint inductive theory can be seen as composed of three mech-
anisms: induction, argumentation and belief revision. Agents use induction to generate
general rules from concrete examples, they use argumentation to decide which of the
rules sent by another agent can be accepted, and finally they use belief revision to revise
their inductive theories in light of the arguments sent by other agents. The belief revi-
sion process is embodied by how the set of accepted rules Accepted(At

i) changes from
round to round, which also determines how an agent inductive theory changes in light of
arguments shared by the other agent4.

4For reasons of space an example of the execution is not included in this paper, but it can be found at
http://www.iiia.csic.es/~santi/papers/IL2010_extended.pdf



4. Related Work

Peter Flach [6] introduced a logical analysis of induction, focusing on hypothesis gener-
ation. In Flach’s analysis induction is studied on the meta-level of consequence relations,
and focuses on different properties that may be desirable for different kinds of induc-
tion, while we focus in a limited form of induction, namely inductive concept learning,
extensively studied in machine learning.

Computational argumentation is often modeled using Dung’s abstract approach [4],
that consider arguments as atomic nodes linked through a binary relation called “attack”.
On the other hand there are argumentation systems [12,7,8,2] which take as basis a log-
ical language and an associated consequence relation used to define an argument. Some
of these systems, like [7] use a logic programming language defined over a set of literals
and an acceptability semantics based on dialectical trees is applied in order to determine
the “acceptable arguments”. In our argumentation approach, we argue about the accept-
ability of induced rules from examples with a well defined notion of attack relation, and
the semantics is based on dialectical trees.

Finally, about the use of argumentation for concept learning, let us mention two
related works. Ontañón and Plaza [11] study an argumentation-based framework (A-
MAIL) that allows agents to achieve a shared, agreed-upon meaning for concepts. Con-
cept descriptions are created by agents using inductive learning and revised during ar-
gumentation until a convergent concept description is found and agreed-upon. A-MAIL
integrates inductive machine learning and MAS argumentation in a coherent approach
where the belief revision mechanism that allows concept convergence is sound w.r.t. in-
duction and argumentation models.

Amgoud and Serrurier [1] propose an argumentation framework for the inductive
concept learning problem. In their framework, both examples and hypotheses are con-
sidered as arguments and they define an attack relation among them following Dung’s
framework. However, they do not model the inductive process of generating hypotheses
from examples, but assume that a set of candidate hypotheses exists.

5. Conclusions and Future Work

This paper has two main contributions. First, we have presented a logical characteriza-
tion of the inductive inference used in inductive concept learning, a common problem
in machine learning. Additionally, we have proposed an argumentation-based approach
to model the process of communication of inductive inferences which appears in multi-
agent inductive concept learning. This combination of induction with argumentation in
a common model is the second contribution to the paper. This combination is useful in
itself, as we have shown elsewhere [11], for communication in multi-agent systems and
for learning from communication. But more importantly, this combination of induction
with argumentation shows the usefulness of developing a logical characterization of in-
duction; without a formal framework to model induction there would be no possibility
to combine with other forms of inference and reasoning, as for example the defeasible
form of reasoning that is argumentation.

Our future work will focus on moving from a Boolean approach to a graded (or
weighted) approach. ICL techniques usually accept generalizations that are not 100%



consistent with the set of examples. We intend to investigate a logic model of induc-
tion where generalizations have an associated confidence measure. Integrating induc-
tion with argumentation can make use of a confidence measure, specifically by consider-
ing weighted argumentation frameworks [5], where attacks may have different weights.
We intend to investigate how weighted attacks and confidence-based induction could be
modeled using multivalued or graded logics.
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