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Abstract

In this paper we present DIRAS, an application supporting the physicians to determine the risk of

complications for individual diabetic patients. The risk pattern of each diabetic patient is ob-

tained using a Case-based Reasoning method called LID. Case-based Reasoning is an Artificial In-

telligence technique based on solving new situations according to past experiences. For each patient,

the LID method determines the risk of each diabetic complication according to the risk of already

diagnosed patients. In addition, LID builds a description that can be viewed as an explanation of

the obtained risk.

1. Introduction

Lucas and Abu-Hanna [1] define prognosis as the prediction of the course and outcome of disease

processes. Usually, computer systems supporting the physicians to take decisions use prognosis mod-

els that predict the outcomes of a particular process. Techniques used to build prognosis models

range from a construction by hand to statistical techniques or Artificial Intelligence (AI) techniques

–see [1] for the description of specific techniques. In particular, we have been investigating Case-

based Reasoning [2] an AI technique based in the human capability to solve new situations by learn-

ing from the past situations already solved.

In this paper we present DIRAS (Diabetes Individualized Risk Assessment System), an ap-

plication whose goal is to predict the risk of complications for diabetic patients. Diabetes Mellitus
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is one of the most frequent human clinic diseases since it affects around a 3% of the European popu-

lation and around one hundred million people in the world. There are two major types of diabetes:

type 1 (or insulin-dependent) and type 2 (or non insulin-dependent). The diabetes type 1 usually de-

velops in children or people less than 40 years old. This form of diabetes is characterized by an in-

sufficient production of insulin at the pancreas. People with this type of diabetes need daily injec-

tions of insulin. If not diagnosed and treated with insulin, the person can lapse into a l ife-

threatening coma. Diabetes type 2, the most common one, usually develops in adults over the age of

40 being more common among adults over 55. Usually, people with diabetes type 2 have overweight

and sedentary lifestyle. In diabetes type 2 the pancreas produces insulin but the body does not uses

it effectively. The consequences are the same that those of the diabetes type 1 although its symp-

toms appear gradually, and they tend to be vague. Some people with diabetes type 2 must inject in-

sulin, but most are controlled with a combination of weight loss, exercise, and prescription of oral

diabetes medication.

A bad management of both forms of diabetes will produce microcomplications (such as

blindness, renal failure or polyneuropathy), and macrocomplications (such as gangrene and amputa-

tion, aggravated coronary heart disease or stroke). Therefore, main concern in the management of

the diabetes is reducing the risk of a patient developing a new long-term complication and the risk

of progression in the complications already present. The prediction of the individual risk to de-

velop long-term complications is based on the analysis of a large quantity of data (e.g. diabetes

type, diabetes duration, age, cholesterol, and metabolic control degree) that have to be continu-

ously evaluated. The therapeutic goals to offer a good life quality to the patient depend on this

analysis. Because diabetes mellitus has a high prevalence, sometimes physicians taking care of

diabetic patients have not a specialized formation in diabetes and, consequently, the management

of these patients may be less accurate. For this reason, a system supporting an individualized as-

sessment of the patients can be a useful tool to improve both the management and the treatment of

diabetes.

We have developed the DIRAS application supporting the physicians to determine the

risk of complications for each patient according to the clinical data of that patient. We call r isk

pattern to the set of assessments concerning diabetic complications. DIRAS obtains a risk pattern

where the risk of diabetic macrocomplications (ischemic cardiopathy, low extremities vasculopa-

thy, and stroke) and diabetic microcomplications (nephropathy, retinopathy and polyneuropathy)

are explicitly assessed. The DiabCare Quality Network (http://www.diabcare.de) is a European

consortium having as goal the improvement of the care in diabetes type 1 and type 2. Basically, the

goal of this project is to implement effective measures for the prevention of complications such as

blindness due to diabetes, number of people entering to an end-stage diabetic renal failure, etc.

DiabCare manages groups of diabetic patients using statistical tools. The main contribution of

DIRAS is focusing on individual patients instead of populations of patients. For this purpose, we
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use an Artificial Intelligence technique called Case-based Reasoning (2) for assessing the risk of

complications in patients with diabetes type 1 or type 2.

The structure of this paper is the following. Section 2 explains the goal and the knowledge

structures used by the DIRAS application. Section 3 presents LID, a Case-based Reasoning method

used by DIRAS to assess the complication risks of a patient. Finally, in section 4 the results of

DIRAS are discussed.

2. The DIRAS Application

The goal of DIRAS is to determine the risk of complications for individual diabetic patients, what

we will call the risk pattern. For each patient, DIRAS works with five kinds of data (Figure 1):

Personal-Data, Basic-Diabetes-Data, Info-Patient-Consultation, Assessment and Risk-Pattern. Personal-data

contains information such as the name, address, birth date, etc. Basic-Diabetes-Data contains basic

information of diabetes (such as diabetes type, duration, and whether diabetes is treated with oral

drugs or insulin). Info-Patient-Consultation has data on relevant measures (e.g. glycated hemoglobin,

cholesterol, blood pressure, etc), eye and foot examination, current treatments, etc.
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Figure 1. Description of a patient

Assessment contains knowledge obtained by applying domain knowledge provided by an expert dia-

betologist. This domain knowledge allows the analysis of the patient's data obtaining a high level

perspective of the patient's state. For instance, Assessment holds a qualitative measure of the LDL-

cholesterol (q-LDL-chol of Assessment in Fig. 1). This qualitative measure may have a value low ,

moderate or high depending on the following conditions:

if the patient has macrocomplications then

if LDL-chol > 130 then q-LDL-chol = high

else if LDL-chol > 100 then q-LDL-chol = moderate

           else low

if the patient has no  macrocomplications then

if LDL-chol > 150 then q-LDL-chol = high

else if LDL-chol > 130 then q-LDL-chol = moderate

           else low

Notice that the qualitative measure depends on the presence or absence of macrocomplications.

DIRAS has similar rules for qualifying other measures in an appropriate way.

In addition, from some measures and symptoms, DIRAS can infer for Assessment new facts

like whether or not the patient has a specific complication. For instance the feature micro-compl? of

Assessment contains information about the presence or absence of microcomplications in the current

patient. This feature has value true if the patient has eye lesions, nephropathy or polyneuropa-

thy; otherwise the feature micro-compl? has value false . In turn, the presence or absence of eye le-

sions, nephropathy or polyneuropathy is inferred by DIRAS using similar rules that take into ac-

count relevant data held in Info-Patient-Consultation.

Finally, the last kind of patient data is Risk-Pattern i.e. the assessment of individual long-

term risks that we want to estimate using Case-based Reasoning. Risk-Pattern has two parts (Figure

1): 1) the macrocomplication risks, and 2) the microcomplication risks. For macrocomplications we

want to assess both the global risk and the risk of three particular macrocomplications (namely

stroke, infarct and amputation). Similarly, for microcomplications we want to assess both the

global risk and the risk of polyneuropathy, nephropathy and retinopathy. The global risk repre-

sents the risk of a patient to vascular alterations that have not defined symptoms such as the intes-

tine infarct.

There are two kinds of risk for complications: development risk and progression risk. The

development risk has to do with patient's likelihood of developing a new complication in the fu-

ture. The progression risk is when a patient already has a macrocomplication and thus the risk of

further deterioration has to be assessed.
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The next section shows in detail how DIRAS uses Case-based Reasoning to obtain a risk pat-

tern for individual patients.

3. CBR Assessment Risk Pattern

The goal of DIRAS is to obtain an individual risk pattern for diabetic patients using Case-based

Reasoning [2]. Case-based Reasoning (CBR) is an AI technique based on the human capability to

solve new situations according to past experience. The core idea of CBR is that when a new situation

is similar to one or several old situations, the decisions taken and the knowledge contained in old

situations provide a starting point to interpret or solve the new situation. Each situation is called a

case (or precedent) that may be reused to solve new problems. The collection of cases of a system is

called the case base. The description of a new situation to be solved is called the current case or

problem.

Given a case base and a problem, CBR methods perform three tasks [3]: 1) retrieve, that ob-

tains past cases similar to the new case; 2) select, that decides which of the retrieved past cases is

the most similar (i.e. the best precedent) to the current problem; and 3) adapt , that decides how to

adapt the solution of the best precedent to solve the current problem.

DIRAS uses a case base where each case is a patient described as explained in the previous

section, i.e. the patient's data plus the solution (the risk pattern) for that patient. The goal of

DIRAS is to obtain the risk pattern for the current patient. Several features (see Figure 1) form the

risk pattern and DIRAS obtains the risk for each feature in an independent way.

RISK-ASSESSMENT
case base

new patient

risk pattern for 
the new patient

MACRO-RISK-ASSESSMENT MICRO-RISK-ASSESSMENT

KIND

GLOBAL MACRO

STROKE

AMPUTATION

GLOBAL MICRO

POLYNEUROPATHY

NEPHROPATHYLID

KIND

LID

LID

LID

LID

LID

LID

LID

SPECIFIC-RISKS

INFARCT

LID

SPECIFIC-RISKS

RETINOPATHY

LID

Task                          Method

Figure 2. Task decomposition of the risk-assessment task that obtains the risk pattern of diabetic
patients.
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The complete risk pattern is obtained by solving the Risk-Assessment task that decomposes in two

tasks (Fig. 2): the Macro-Risk-Assessment task and the Micro-Risk-Assessment task. The Macro-Risk-

Assessment task decomposes, in turn, in three subtasks: the Kind task determines whether the risk of

macrocomplications is progression or development; the Global-Macro task assesses the global risk of

macrocomplications; and the Specific-Risks task assesses the risk of three specific macrocomplica-

tions, namely infarct, stroke and amputation. Similarly, the Micro-Risk-Assessment task is decom-

posed in three subtasks: Kind, Global-Micro and Specific-Risks. In particular the Specific-Risks task as-

sesses the risk of three specific microcomplications: retinopathy, polyneuropathy and nephropa-

thy. All these risks are inferred using LID (Lazy Induction of Descriptions), a Case-based Reasoning

method that is explained in the following section.

3.1. The LID Method

In this section we introduce LID, the CBR method used by DIRAS to solve the risk assessment tasks

described in Fig. 2. For each diabetic task LID searches the case base for the best precedent and in-

fers the risk according to that precedent.

For  a given collection of risk classes R = {unknown, low, moderate, high, very-high}, a dia-

betic complication C, and a problem p, the task of LID is to obtain the risk Ri ∈ R of p concerning C.

For each complication C, this can be seen as a classification task where the goal is to identify the

class in R to which p belongs. DIRAS solves this classification task using LID.

Given a case base B containing diabetic patients classified into the collection of risk classes

R for a diabetic complication C, and a problem p to be classified, LID obtains the class Ri ∈ R to

which p belongs. Intuitively, LID follows a top-down strategy to build a description D containing

the most relevant features of p such that all features in D are satisfied by a subset of cases in B. In

general, cases in this subset belong to different solution classes in R. LID adds relevant features to D

until the subset of cases satisfying D belong to one unique solution class Ri. LID takes this class Ri as

the solution for the current task, i.e. Ri is the risk of p concerning C.

D:= ∅; R = {R 1 … Rn}

   Function     LID (B, p, D)

  S D:= Discriminatory-set (D, B)

     if     ∀ ei ∈ SD ⇒  ei ∈ Ri    then       return     R i  

     else   f d:= Select-Feature ( p, B, R)

  D':= Add-Feature (f d, D)

LID (S D, p, D')

     end-if    

   end-function    

Figure 3. The LID algorithm



7

The LID algorithm (Fig. 3) begins with the whole set of precedents B classified into the collection

of risk classes R for a complication C, a problem p to be solved and the description D = ∅ (i.e. D has

no features). In the following we will explain this algorithm using an example. See [4] for more de-

tailed explanation and some results of the LID method on other domains of application.

Example 1. Let p be a patient with no macrocomplications (i.e. feature macro-compl? in Assessment

has value false), high blood pressure and low albumin. In this example DIRAS has to determine

the risk Ri ∈ R for the macrocomplication C = stroke.

The set of cases SD ⊆  B that are subsumed by the description D is called discriminatory set.

Intuitively, a case c is subsumed by a description D when all the information contained in D is also

contained in c, although c can contain more information. See a formal description of subsumption in

[5].

Initially D is an empty description, i.e. it is the most general description. Therefore D sub-

sumes all the cases in B (i.e. SD = B), and consequently D has to be specialized. The specialization of

a description D is achieved by adding features to it. In particular, LID adds a feature f with the

value v that this feature has in the current problem p. After that, the new description D' = D +

(f=v) has a smaller discriminatory set SD' formed by those cases subsumed by D'. Thus, specializa-

tion reduces the discriminatory set SD' ⊆ SD at each step. As we explain below, LID uses a heuristic

measure based on the López de Mántaras distance [6] to determine the feature to be added.

LID specializes D by selecting one feature f from all the features used in p in the following

way. Each feature fi in p induces a partition Pi  = {Si1… Sin} in the set SD such that each Sik ∈ Pi con-

tains those patients in SD having the same value vk in the feature fi. For instance, the presence or

absence of macrocomplications will divide the set SD (currently SD = B) in two subsets: one contain-

ing those precedents having macrocomplications and the other one containing patients without

macrocomplications. There is also a partition of SD, called the correct partition Pc, that divides SD

according to the risk (Ri ∈ R) for the complication C. In the example, SD is divided in subsets accord-

ing to the values for the risk of stroke being unknown, low, moderate, high, and very-high.

For each partition Pi, LID computes the López de Mántaras (RLM) distance [6] to the correct

partition Pc. Intuitively, the RLM distance assesses how similar a partition is with respect to a ref-

erent partition (i.e. the correct partition), in the sense that the lesser the distance the more similar

they are. The RLM distance was introduced as an alternative to the Quinlan’s Gain [7] used in the

ID3 inductive learning algorithm. The Quinlan’s Gain is a selection measure that selects the object

feature providing the highest information gain. RLM distance shows that normalizing the Quin-

lan's Gain in an appropriate way, we obtain a distance between partitions.

Formally, given two partitions Pi and Pc of a set SD, the RLM distance between them is com-

puted as follows:
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where I(Pi) measures the information contained in the partition Pi; n is the number of possible values

of the feature inducing  Pi; m = Card(R); pi is the probability of occurrence of  class Sij (Rj) i.e. the

proportion of examples in SD that belong to Sij (Rj); I(Pi ∩ Pc) is the mutual information of two parti-

tions; and pjk is the probability of occurrence of the intersection Rj ∩  Sik, i.e. the proportion of ex-

amples in SD that belong to Rj  and to Sik.

Using the RLM distance, we can define what it means for a feature to be more discriminatory

than another.

Definition ["More discriminatory than" relation]. Let Pc be the correct partition (i.e. the partition

that correctly classifies the examples), and Pj and Pk the partitions induced by features fj and

fk respectively, we say that feature fj is more discriminatory than feature fk iff RLM (Pj, Pc)  <

RLM(Pk, Pc)

In other words, when a feature fj is more discriminatory than another feature fk the partition that f j

induces in SD is closer to the correct partition Pc than the partition induced by fk. Intuitively, the

most discriminatory feature classifies the cases in SD in a more similar way to the correct classifica-

tion of cases (i.e. that determined by the risk of the complication C).

Thus, LID selects the feature f having minimum RLM distance to the correct partition as be-

ing the most discriminatory. Then, LID builds D', a specialization of D, by adding to D the feature f

with the same value that f takes in the current problem p. In the example, the most discriminatory

feature is macro-compl? Thus the description D' will contain the feature macro-compl? with value

false (since the current problem p corresponds to a patient that has no macrocomplications).

Let SD' be the subset of precedents that subsumed by D'. If all the precedents in SD' belong to

only one risk class Ri then LID finishes the process and classifies p as belonging to Ri. Otherwise, D '

needs to be further specialized. In Example 1, SD' contains those cases in SD = B with the feature

macro-compl? being false. However, with respect to the correct partition Pc (induced from the risk of

stroke) the cases in SD' belong to several of these solution classes in R. Because of this, D' need be

specialized in order to reduce the discriminatory set SD'. This specialization is made using LID with

the set SD', the description D' and the patient p. Notice that LID may safely ignore the precedents
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that do not belong to SD' because the precedents that are not subsumed by D' will not be subsumed by

any specialization of D'.

The next step in the specialization of D' is the selection of the next most discriminatory fea-

ture. Now LID finds that the most discriminatory feature is the qualitative measure of the blood

pressure (feature q-bp of Assessment in Figure 1). The patient p has value high  in the q-bp feature,

therefore the specialization D'' of D' contains two features: macro-compl? with value false  (as be-

fore) and the newly added feature q-bp with value high.

Subsequently, LID considers the discriminatory set SD'' containing those precedents in SD' sub-

sumed by D'' and finds whether or not all cases in SD'' belong only to one class Ri. In Example 1, a l l

the cases contained in SD'' belong to the class Ri = high for the risk of stroke. Therefore, LID finishes

inferring that the patient p has also a high risk of stroke.

There is an abnormal stopping condition produced when there is no possible to specialize

the current description. This situation occurs when LID has used all the features candidates to spe-

cialize a description but the current description Dn subsumes precedents belonging to several classes

R' ⊆  R. In that situation, LID proposes as solution for the current problem the classes in R'.

Figure 4. Browsing of a Risk-Pattern obtained by DIRAS in the example 1.

DIRAS uses LID to solve the tasks shown in Figure . That is to say, for macrocomplications LID is

used to solve the tasks Kind, Global-Macro, Infarct, Stroke, and Amputation; and for microcomplications

LID is used to solve the tasks Kind, Global-Micro, Retinopathy, Polyneuropathy and Nephropathy. There-

fore, for each diabetic patient, DIRAS obtains a risk pattern as the one in Fig. 4 for example 1.

Another concern of LID is the interpretation of the descriptions as an explanation for the

assessment of a specific risk. For instance, Fig. 5 shows the description obtained by LID for Example

1. This description considers that macro-compl? and q-bp are relevant to assess the risk of stroke. In

particular, the expert diabetologist agrees with this explanation since it is consistent with his

knowledge. For other examples, LID explains the moderate risk of stroke of a patient with no mac-

rocomplications because of the moderate blood pressure. Nevertheless, when the patient has mac-
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rocomplications and his blood pressure is moderate, LID assesses a high risk of stroke. The expert

agrees with both explanations, since it is known that the risk of stroke directly depends on the

level of the blood pressure and it is increased when the patient has macrocomplications. There also

are examples to which DIRAS has assessed a high global progression risk of macrocomplications

because the patient has high levels of both LDL-cholesterol and HDL-cholesterol. Moreover,

DIRAS has obtained the same explanation to justify the high global progression risk of other cases.

The expert agrees this explanation for these specific cases.

Figure 5. Explanation provided by LID of why a case has a high risk of stroke.

3.2. Discussion

Currently, the DIRAS system is fully implemented with a case base of 370 patient records. We are

performing several qualitative and quantitative measures to estimate which parts of the system

are stable and which parts need further refinement. In particular, we are interested in determining

whether the case base of 370 patient compiled from just one hospital, is a good enough sample of the

population or should be increased. We’ll explain first the tests we have performed to estimate the

current status and then we’ll explain the plans the final validation of DIRAS.

The qualitative verification is performed by an expert diabetologist that focuses on two

concerns: the risk assessments for a patient, and the explanation of each assessment. The goal of

this process is to determine the stable parts of the system, the quality of the case base, and the

kinds of expansion of the case base that could be needed.  In order to perform a more quantitative

estimate of the system performance our expert diabetologist constructed a gold standard consisting

of a risk pattern for macrocomplications for all 370 cases. This gold standard is somewhat artifi-

cial, in that it gives a unique “correct” risk value for each complication and considers all other risk

estimations “incorrect".

For the quantitative estimation we have built 15 test sets with our 370 patients case base,

where each test set has 319 cases randomly chosen as training set. The results of DIRAS upon the

remaining 70 cases for each test set where compared with the gold standard and averaged for each

macrocomplication. The results of DIRAS are 100% correct in determining the kind of risk (progres-

sion or development) and the risk of stroke, 90% correct in determining amputation risk, and 72.45%

correct in determining the global risk and the risk of infarct. These two last risks are in practice the

same, which is the reason they have the same accuracy. In fact, the incorrect risk assessments here

fail only by one degree (e.g. high risk vs. very-high risk) in an 81.69% of the cases.
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The estimation of pure accuracy allows us to distinguish the parts of DIRAS that require

revisions (like the one related to infarct, that probably requires an enlargement of the case base)

but it’s not a good way to validate a medical recommendation system. The final validation will

follow the process and use the criteria developed at our Institute for validating the PneumonIA ex-

pert system [8]. This process involves several expert diabetologists to which the data of the pa-

tients in the case base are shown. Each expert independently assesses the risk pattern of each pa-

tient, and in this way we find out areas of consensus and areas where risk assessment may have

some admissible variation. Finally, the goal of this validation process is to establish whether the

performance of DIRAS is indistinguishable or not from that of the human experts. Specifically, we

will perform a ranking of the set of composed of the experts plus DIRAS. If the system is ranked

among the experts this means that its performance is indistinguishable from that of the best ex-

perts, while if it ranks below them it is distinguishable [8].

3.3. Report of a Diabetic Patient

In addition to the risk pattern of an individual patient, DIRAS produces a report that can be useful

for nonexpert physicians to manage diabetic patients. This report (Fig. 6) is formed by four sections:

1. personal data of the patient (e.g. age, diabetes type, year of the diabetes diagnostic), 2. as-

sessments about the measures, 3. Information about macrocomplications, and 4. Information about

microcomplications. Section 2 of the report contains, for each measure M, the patient's value for M,

the range of normal values for M, an assessment on whether the patient's value for M is acceptable

or not. Section 3 of the report is divided in two parts. The first part contains the report of the pa-

tient's macrocomplications detailing some aspects of the patient's state (for instance the foot state).

The second part shows the risk of each macrocomplication and the factors used to determine this

risk. The section 4 of the report has the same structure that the section 3 but has to to do with the

patient's state and risks concerning microcomplications.
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___________________________________________________________________________________
1- PATIENT DATA
Number: 3408301200246854
Man, 76 years old, with a diabetes type 2 diagnosed 25 years ago

___________________________________________________________________________________
2- GENERAL ASSESSMENT

Value             Good Value               Assessment
HbA1c 9.10 <= 6.5                   unacceptable
BP (SYS)               190.00 <= 130                  unacceptable
BP (DIA)                  90.00 <= 80                       acceptable
Cholesterol            166.00 <= 180               correct
LDL Chol __            <= 100 (macro)/ <= 130     __
HDL Chol __  => 45                     __
Triglicerids             94.00 <= 150 correct
Albumin                 289.00 <= 20                    unacceptable
Creatinine              101.00 <= 106               correct

Good stability because he/she had no hypoglycemies nor hyperglycemies. No hospitalizations.

___________________________________________________________________________________
3- MACROVASCULAR COMPLICATIONS

Ischemic heart : No
Infarct (or coronary bypass or angioplasty): No
Anginal chest pain : No

Stroke : No
Low extremities vasculopathy : Yes

Amputation above ankle : No
Amputation below ankle : No
Leg claudication : No              Right foot                    Left foot

Bypass or angioplasty : No           No
Feet pulse present : No            No
Healed ulcer : No            No
Acute ulcer : No    No

___________________________________________________________________________________

Global risk progression: HIGH because the value of total cholesterol is high

___________________________________________________________________________________
Risk for Specific Macrocomplications :

               Stroke :  VERY-HIGH because the blood pressure is very high and the patient has macrocomplications
               Infarct :  HIGH because the value of total cholesterol is high
               Lesion/amp. :  HIGH, because the patient has polyneuropathy with normal sensitivity and vasculopathy

___________________________________________________________________________________
4- MICROVASCULAR COMPLICATIONS

Polyneuropathy : Yes
Neuropathy symptoms : true                  Right foot                   Left foot

Pulse present :             No                   No
Pin prich sensitivity :               Abnormal                 Abnormal
Vibration sensitivity :                Abnormal                 Abnormal

Nephropathy : Yes
Phase I: heavy MAU   (MAU : 289)
Renal insuficiency : No  (creatinine : 101)

Retinopathy : Yes Right Eye                        Left Eye
Retinopathy type :      PREPROLIFERATIVE   PREPROLIFERATIVE
Visual Acuity :  Unknown                       Unknown

___________________________________________________________________________________
Risk for specific microcomplications :

Polyneuropathy : HIGH progression risk because the HbA1c is high
Nephropathy :  VERY HIGH progression risk because the albumin is correct, the HbA1c is high, the blood pressure is not

low  and the patient does not follow nephropathy treatment
Retinopathy :  HIGH progression risk because the HbA1c is high
Visual Ac. Dec. :  MODERATE progression risk because the maculopathy has been photocoagulated

Figure 6. Report of complications for a diabetic patient.
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4. Related Work and Conclusions

There are two aspects of DIRAS that can be compared with other works: the application domain

and the methodology. Concerning to the domain application, there are several applications used in

the management of diabetic patients [9, 10]. These applications are oriented to determine the insu-

lin dosage for a diabetic patient of type 1. Basically the goal is to determine a management plan for

each patient according to both his particular lifestyle (i.e. diet and physical exercise) and his

metabolic state (i.e. glucose levels). Instead, the goal of DIRAS is to assess the risk of long term

complications for individual diabetic patients (either type 1 or type 2 diabetes).

Concerning the methodology, DIRAS uses LID, a Case-based Reasoning method that builds

a discriminant explanation of the assessed risk of complication using an heuristic based on the RLM

distance. This heuristic has been used in induction of decision trees [7]. The only similitude here is

in the use of a heuristic for selecting an attribute as more discriminant than others, but the structure

that is built in decision trees and in LID are different. Decision trees build a structure that classifies

a training set of examples and uses the heuristic to select the branching criteria of that tree struc-

ture. The case-based method LID is a problem-centered technique that builds a structure that dis-

criminates the new problem with respect to classes in the training set and the heuristic is used to

decide the attribute that is more useful in discriminating this new example with respect to the

training examples.

One of the advantages of Case-based Reasoning is that the solution to a problem provided

by a CBR system can be justified showing the user the precedent case(s) used to support such a deci-

sion.  This form of justification is supported by DIRAS by showing for each risk assessment the cases

in the discriminatory set. Moreover, DIRAS constructs a symbolic explanation with the features

that are relevant in classifying a patient complication in a risk class. This symbolic explanation is

close to the justification that can be provided by an expert for the same problem and may allow the

user to focus on the critical features for a particular patient.
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