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Abstract. This paper presents a new approach for solving the Resource-
Constrained Project Scheduling Problem using Case-Based Reasoning in
a constructive way. Given a project to be scheduled our method retrieves
similar projects scheduled in the past, selects the most similar project,
and reuses as much as possible from the old solution to build a schedule
for the project at hand. The result of this process is a partial schedule
that is later extended and revised to produce a complete and valid sched-
ule by a modified version of the Serial Schedule Generation Scheme. We
present experimental results showing that our approach works well under
reasonable assumptions. Finally, we describe several ways to modify our
algorithm in the future so as to obtain even better results.

1 Introduction

Scheduling is the process of deciding how to commit limited resources among a
variety of activities, subject to a set of constraints. Different scheduling domains
pose different types of constraints. Examples of scheduling constraints include
deadlines (e.g. activity i must be completed by time t), resource capacities (e.g.
there are only four drills), and precedence constraints on the order of tasks (e.g.
a piece must be sanded before it is painted). Scheduling is a class of optimization
problems in which one seeks to minimize or maximize a function (e.g. minimiz-
ing the time span) while meeting some constraints. The Resource Constrained
Project Scheduling Problem (RCPSP) is a class of scheduling problems consist-
ing of a network of activities, precedence relationships and resource constraints
(for general surveys on the subject see for example [1,2].

[3] showed that the RCPSP, as a generalization of the classical job-shop
scheduling problem, belongs to the class of NP-hard optimization problems. Due
to this complexity, proven optimal solutions have been computed only for very
small problems; in other words, exact scheduling methods are mainly for gen-
erating benchmark solutions, and not for real-world applications. Approximate
methods and heuristics are thus required for solving large scheduling problems
as they usually appear in the real-world.

Synthetic tasks like planning and scheduling can be approached either by con-
structive methods or by repair-based methods. Constructive methods start with
a description of requirements to build a completely new solution, while repair-
based methods take a previous solution and some new requirements and modify
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the original solution to meet the new requirements. In this paper, we present a
Case-Based Reasoning (CBR) framework for solving the Resource-Constrained
Project Scheduling Problem (RCPSP) in a constructive way. This framework
follows the general cycle of the CBR process: It begins with a retrieval step,
which obtains past scheduling problems that are similar to the current problem;
then, part of the solution to the most similar problem is reused and adapted
to build a partial solution to the new problem; finally, this partial solution is
extended and revised to produce a complete and valid solution by applying a
modified version of the Serial Schedule Generation Scheme (SSGS).

The paper is organized as follows: Section 2 describes the RCPSP and the
SSGS; Section 3 describes our framework for solving the RCPSP using CBR;
Section 4 evaluates the proposed framework through some experiments; Section
5 surveys related work; finally, Section 6 draws some conclusions and suggests
future work.

2 The Resource-Constrained Project Scheduling Problem

In project scheduling, a project consists of a set of activities that have to be
carried out in order to finish the project. Every activity has certain duration.
Some of these activities require that some other activities are already finished
(precedence relationships), and some of them require the availability of certain
resources. The outcome of project scheduling is a specification of the start(or
finish) times of every activity —a schedule— so that the project can be completed
and all the project constraints are met. Optimization functions are desirable to
select the best among all possible schedules; for example, the minimum time
span function is used to minimize projects completion.

Project scheduling is easy if only precedence relationships constrain the
project: the Critical Path Method [4] provides allowable time windows for the
activities of a project in polynomial time. However, scheduling becomes much
harder when required resources are available in limited amounts, so that some
tasks compete for the same resources. This class of problems is referred to as
the Resource-Constrained Project Scheduling Problem (RCPSP), and is known
to be NP-hard [3].

The single-mode Resource-Constrained Project Scheduling Problem for re-
newable resources can be defined as follows:

A project is a tuple 〈J ,K〉 consisting of:

– A set J = {0, 1, ..., J, J + 1} of activities to be executed, where J is the
real number of activities, and activities 0 and J + 1 are dummy activities
used to represent the project start and project end respectively.

– A set K = 1, ...,K of resources available, where K is the number of con-
strained resources (non constrained resources are ignored).

For every activity j ∈ J there is a tuple 〈dj ,Pj ,Rj〉 consisting of:

– A non-preemptable duration dj , which specifies the amount of time required
to complete the activity. Non preemptable means once started an activity
cannot stop before completion.
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– A set Pj ⊆ (J − j) of predecessors. Activity i is predecessor of activity j
(i ∈ Pj) if the former has to be finished before the later can be started.

– A vector Rj = 〈rj,1, ..., rj,K〉 of resource requirements. Each require-
ment rj,k represents the capacity of resource k required by activity j to be
executed.

Every resource k ∈ K has a limited resource capacity of Rk. This capacity is
reduced when being used by an activity, but it is restored when the activity
ends.

The start and end activities are not real activities of the project: they do not
take up time and do not require resources; however, they are included in the
model for convenience, since they are useful for describing and implementing
algorithms (actually, this has become a de facto standard representation).

The parameters dj , rj,k, and Rk are assumed to be deterministic; they remain
the same for the entire duration of the project. These parameters are expressed
discretely, using positive integers.

The objective of the RCPSP is to satisfy precedence- and resource-feasible
completion times for all activities such that the timespan of the project is min-
imized. Since activities have deterministic durations, we may indistinctly use
start times or finish times. Let fj denote the finish time of activity j. A schedule
S is given by a vector of finish times 〈F1, F2, ..., FJ〉. Let A(t) = j ∈ J |Fj−dj ≤
t < Fj be the set of activities which are being processed (active) at time instant
t. We can now specify the conceptual decision model (1) – (4) [5] for the RCPSP.

Min Fn+1 (1)

Fh ≤ Fj − dj j = 1, ..., J + 1; h ∈ Pj (2)

∑
j∈A(t) rj,k ≤ Rk k ∈ K; t ≥ 0; rj,k ≤ Rk (3)

Fj ≥ 0 j = 1, ..., J + 1 (4)

The objective function (1) minimizes the finish time of the end activity and thus
the make-span of the project; constraints (2) enforce the precedence relations
between activities; and constraints (3) limit for each resource type k and each
time instant t that the resource demand of the activities which are currently
processed does not exceed the capacity. Finally, (4) defines the decision variables.

3 Case-Based Project Scheduling (CBPS)

3.1 Preliminary Notions: The Serial Schedule Generation Scheme

Most heuristic methods to solve the RCPSP are based on a schedule generation
scheme (SGS), which starts from scratch and builds a feasible schedule by step-
wise extension of a partial schedule. There are two different schedule generation
schemes: Serial and Parallel. The Serial SGS (SSGS) performs activity incre-
ments (a new activity is scheduled each step), while the Parallel SGS (PSGS)
performs time increments (time is incremented by one each step).
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The SSGS consists of g = 1, ..., J stages. At each stage one activity is se-
lected and scheduled at the earliest precedence- and resource-feasible comple-
tion time. Associated with each stage g are two disjoint activity sets. The
scheduled set Sg comprises the activities which have been already scheduled,
the eligible set Dg comprises all activities which are eligible for scheduling. Let
R̃k(t) = Rk −

∑
j∈A(t) rj,k be the remaining capacity of resource type k at time

instant t and let Fg = {Fj |j ∈ Sg} be the set of all finish times. Further let
Dg = {j ∈ J \ Sg | Pj ⊆ Sg} the set of eligible activities. Given these defini-
tions, we can now describe the SSGS algorithm as follows.]

Algorithm 1. The SSGS algorithm
1: initialization: F0 = 0,S0 = 0
2: for g = 1 to J do
3: Compute Dg , Fg, R̃k(t)(k ∈ K; t ∈ Fg)
4: Select one j ∈ Dg

5: EFj = maxh∈Pj{Fh}+ dj
6: Fj = min{t ∈ [EFj − dj , LFj − dj ] ∩ Fg |
7: rj,k ≤ R̃k(τ ), k ∈ K, τ ∈ [t, t+ dj [∩Fg}+ dj
8: Sg = Sg−1 ∪ {j}
9: Fn+1 = maxh∈Pn+1{Fh}
10: end for
11: return F

The initialization assigns the start activity j = 0 a completion time of 0 and
puts it into the partial schedule. At the beginning of each step g the decision
set Dg , the set of finish times Fg and the remaining capacities R̃k(t) at the
finish times t ∈ Fg are computed. Afterwards, one activity j is selected from the
decision set. The finish time of j is calculated by first determining the earliest
precedence-feasible finish time EFj and then calculating the earliest resource-
feasible finish time Fj within [EFj , LFj], where LFj denotes the latest finish
time as calculated by backward recursion [6] from an upper bound of the project
finish time T .

TheSSGSalways generates feasible scheduleswhichare optimal for the resource-
unconstrained scheduling problem (1), (2), (4). Time complexity of SSGS isO(n2 ·
K) [7]. The quality of the solutions obtained by the SSGS highly depends on the
mechanism used to select the next activity j ∈ Dg to be scheduled. Typically, this
mechanism is based on the use of priority rules. A priority rule is a mapping which
assigns each activity j in the decision setDg a priority value v(j) and an objective
stating whether the activity with theminimum or themaximumvalue is preferred.
In case of ties, one or several tie breaking rules have to be employed (e.g. choose
the activity with the smallest activity label). For a description of different priority
rules see for example [8].

A useful way of representing a schedule is an activity list : a list λ = 〈j1, j2, ..., jn]
of activities that are precedence-feasible, i.e. we have Pjg ⊆ {j1, ..., jg−1} where
g ∈ 1, 2, ..., n. An activity list containing all the activities of a project encodes a
schedule for that project. There is a version of the SSGS for activity lists, which
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simply selects the next activity to be scheduled each step as the next activity in
the activity list. Formally, if we use jg to denote the gth activity of λ, then in the
SSGS (Algorithm 1) we simply have to replace ‘Select one j ∈ Dg’ (line 4) with
‘Select j = jg’, and removeDg from the initialization step [9].

3.2 Overview of the Framework

Our proposal to solve the RCPSP uses the SSGS as the underlying mechanism
to ensure that the solutions obtained meet the precedence and resource capacity
constraints. In particular, we introduce the notion of generalized activity list
(GAL), which results of removing the precedence condition from the definition
of an activity list. A GAL also encodes a solution schedule, one which can be
obtained by a modified version of the SSGS: the SSGS for generalized activity
lists, abbreviated SSGS-GAL, and described later as Algorithm 4.

1. Query
specificationProject Query

2. RetrievalRetrieved
cases

5. Reuse &
Adaptation

Priority
Rule

Case base

Ȝ (GAL)

6. Revise
(SSGS-GAL) Schedule

3. Activity
mapping

Activity
mapping

Fig. 1. Process of building a case-based activity list

Figure 1 shows a flowchart of the overall process. The process starts with a
project to be scheduled, a priority rule and a case-base, and produces a complete
and valid schedule for the project. The case-base contain resource-constrained
projects and activity lists that solve those projects. This framework contains
the usual stages in a CBR system with one remarkable difference : the retrieval
step is divided in two phases. During the retrieval step some cases are retrieved
using a standard similarity measure computed over global project properties, as
usual, but there is an additional retrieval step (the activity mapping) that uses a
graph-based similarity measure to compare projects at the structural level. Next
sections describe the entire method step by step.

3.3 Query Specification and Case Retrieval

Query specification and case retrieval are tightly related, the former analyses
the target project to find the values of some properties that are then used by
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the later to retrieve cases containing projects that are similar the target project.
These properties are specified as attribute-value pairs, a representation that
supports a wide range of well known and very fast similarity measures and
retrieval algorithms. In particular we use the classical k-Nearest Neighbour (k-
NN) algorithm and compute project similarity as a weighted average of similarity
measures for certain global project properties summarized below.

Network complexity (NC): the average number of (non redundant) arcs
per node (including super-source and sink)

Resource Factor (RF): reflects the average portion of resources requested
per activity. RF = 1 means each activity requests all resources, while RF = 0
indicates the opposite, which corresponds to the unconstrained case. For the
single mode RF is calculated as follows:

RF = 1
J

1
|K|

∑J
j=1

∑
k∈K Qj,k;Qj,k = {1 if rjk > 0 ; 0 otherwise}

Resource Strength (RS): aims at expressing how difficult it is to satisfy
the resource constrains of a project. Several ways to compute RS have been
proposed.We have chosen the one used to generate the PSPLIB datasets, because
it seems to capture better this notion of difficulty, and PSPLIB is the preferred
benchmark to compare scheduling algorithms. RS is a scaling parameter in the
interval [0, 1] used to compute resource availability (Rk) as a convex combination
of a minimum and a maximum level, Rmin

k and Rmax
k respectively. For the single

mode, Rk is defined as follows:

Rk = Rmin
k + round(RS × (Rmax

k −Rmin
k ))

There is no exact procedure to isolate RS in the former equation, but it can be
approximated by numerical methods : computing lower and upper bounds for RS
and interpolating between them.

3.4 Activity Mapping

The previous retrieval step obtains a list of cases containing similar projects,
where project similarity is based on global project properties, which is appropri-
ate to find a set of projects that are potential candidates for reuse. But in order
to select the best candidate for reuse, we have to compare projects at a deeper
level, considering the structural components of a project, that is, the network of
activities, precedence relations and resource constraints.

In order to reuse a solution, we also need a mapping of activities between the
project to be scheduled and the projects retrieved from the case base. Actually,
computing the similarity and obtaining the activity mappings are part of the
same process, since computing the structural similarity involves maximizing the
set of activity mappings.

Mathematically, a project can be described by a DAG, where nodes correspond
to activities, and edges correspond to precedence relations; therefore, computing
the structural similarity of two projects becomes a problem of computing the
similarity of two graphs. Typically, graph similarity algorithms are variations
or derivatives of the maximum common subgraph isomorphism (MCS) problem,
which takes two graphs G1 and G2 as input, and aims at finding the largest
induced subgraph of G1 isomorphic to a subgraph of G2. Exact MCS algorithms
compute several alternative mappings of nodes in G1 that are isomorphic to
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nodes in G2, and return the maximal set of node mappings. If we use nodes
to represent project activities, then the maximal node mapping returned by an
MCS algorithm is precisely the activity mapping we are seeking.

The MCS isomorphism problem is NP-hard, so exact algorithms do not scale
well with the size of the problem. There are also approximate algorithms reported
in the literature and available as free software libraries, like Absurdist II [10].
Nevertheless, our experience with this algorithm has not been satisfactory, since
the quality of the solutions obtained was rather poor.

Everything considered, we have developed our own algorithm to compute the
similarity of two projects. This is an approximate algorithm in two ways: on
the one hand, it does not enforce the isomorphism condition to map nodes; on
the other hand, it does not compute all possible node mappings. In particu-
lar, our algorithm reduces the number of potential activity mappings by using
heuristics based on some of the features making a project a special case of a
DAG, namely: (a) any project has a single start node and a single end node
(the dummy start/end activities), and (b) activities are pre-sorted taking into
account precedence relations: activity j can not be a predecessor of an activity
k given k < j.

Let us introduce some notation and definitions needed to describe the activity
mapping algorithm.

Q = 〈J Q,KQ〉 is the target project, the one to be scheduled.
P = 〈J P ,KP 〉 is a project retrieved from the case base.
S ∈ [0, 1] is the similarity between projects P and Q
M and M ′ are sets of activity mappings between J P and JQ. An activity

mapping is a pair of activities (j, j′), where j ∈ J P and j′ ∈ JQ.
sim(j, j′) is a function that returns the similarity of j ∈ J P and j′ ∈ J Q.
Algorithm 2 is a pseudocode description of the algorithm for computing the

similarity between two projects and obtaining a mapping of activities.
First (lines 2 to 6), the similarity of every possible pair of activities is com-

puted, and the pairs with a similarity greater than certain threshold α are added
to the set of potential activity mappings M ′. Activity similarity measures are
described later.

Next (lines 7 to 13), for each activity j′ in Q, a single activity mapping (h, j′)
from M ′ is selected and included in the final set M of mappings. The selection of
the final activity mappings uses a simple heuristic: the mappings comprising the
most similar activities are preferred, and in case of ties, the mapping whose left
activity h has a lower identifier is selected. This is an approximate procedure, since
not all possible combinations of activity mappings are considered, but only one.

Finally (lines 14 to 17), project similarity S is computed as the sum of similar-
ities for all activities in the final set of activity mappings, divided by the number
of activities in the target project (JQ). Since the similarity between activities
is a value in [0,1], and the maximum number of activity mappings is precisely
JQ, then project similarity is also a value in [0,1].

We still have to define a similarity measure for activities. The results of the
algorithm and its complexity can be strongly influenced by the way we compute
similarity between activities. There are two aspects to take into account to assess
the similarity between two tasks: resource requirements and precedence relations.
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Algorithm 2. Activity Mapping Algorithm

1: initialization: M = ∅; M ′ = ∅;S = 0
2: for all j ∈ J P , j′ ∈ JQ do
3: if sim(j, j′) > α then
4: M ′ = M ′ ∪ (j, j′)
5: end if
6: end for
7: for all (j, j′) ∈ M ′ do
8: if ' ∃h : (h, j′) ∈ M ′ then
9: M = M ∪ (j, j′)
10: else if sim(j, j′) > sim(h, j′) ∨ (sim(j, j′) = sim(h, j′) ∧ j < h) then
11: M = (M \ (h, j′)) ∪ (j, j′)
12: end if
13: end for
14: for all (j, j′) ∈ M do
15: S = S + sim(j, j′)
16: end for
17: S = S / |JQ|
18: return M,S

We have adopted a binary similarity approach to compute activity similarity,
that is, activity similarity can take only two values: 0 or 1. Conceptually, we
define activity mapping using equivalence relations, as follows:

Two activities are resource-equivalent if there is a mapping of resources such
that all pairs of resource requirements are capacity-proportional.

Two resource requirements are capacity-proportional if they amount for the
same proportion of resource capacity.

Two activities are equivalent if they are resource-equivalent and there is a
mapping of successors such that all pairs of successors are resource-equivalent.

Now we can define the similarity of two tasks j and j′:

(a) sim(j, j′) = 1 ⇐⇒ j and j′ are equivalent ; otherwise sim(j, j′) = 0

The similarities obtained by the mapping algorithm are used to select the case
with the highest similarity S, which is referred as the best case henceforth. The
mapping M of activities between the target project and the project included in
the best case are passed to the next step to produce an activity list, as described
in the following section.

3.5 Reuse and Adaptation

The previous step obtains a mapping of activities between the target project and
the project in the best case. The ordering of mapped activities in the solution
of the best case provides a tentative ordering of activities in the new project
to build the required schedule. In order to produce a complete activity list we
have conceived a method that uses both the schedule from the best case and a
standard priority rule, as described in Algorithm 3.

J Q and J P represent the sets of activities in the target project Q and the
project P stored in the best case respectively. Let M be the set of activity
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Algorithm 3. Reuse and Adaptation Algorithm
1: initialization: θ = ∅
2: for all j ∈ JQ do
3: if ∃(j′, j) ∈ M : j′ ∈ J P then
4: θ = θ ∪ j
5: end if
6: end for
7: λ = SORT (JQ, θ,ψ)
8: return λ

mappings between JQ and J P and let ψ denote a standard priority rule. First
the algorithm computes a partial activity list θ (lines 2 to 6) by traversing JQ

and adding to θ those activities that are mapped to activities in J P . Finally, the
algorithm calls the SORT function (line 7) to produce λ, a complete activity list
that encodes a solution for Q. SORT takes J Q, θ and ψ as inputs, and obtains
λ as output by applying the following order relation on J Q : if two activities
i, j ∈ JQ are both included in θ then their order is kept the same in λ, otherwise
their order is obtained by applying priority rule ψ.

However, being the mapping of activities approximate, the ordering of activi-
ties obtained from the best case’s solution does not guarantees the satisfaction of
Q’s constraints, so θ is actually a partial GAL. As a consequence, the resulting
list λ is also a GAL.

3.6 Revise

The reuse step returns a partial GAL (λ), so the precedence and resource-capacity
conditions are not guaranteed.As a consequence,we cannot use the standardSSGS
for activity lists to obtain the solution encodedbyλ, since itmightproduce an incor-
rect schedule. In order to obtain a valid schedulewehave developed a newversionof
the SSGS for generalized activity lists, abbreviated SSGS-GAL, which is described
in Algorithm 4, where g(j) ∈ {1, 2, ..., J} denotes the position of j in λ. A solution
obtainedby the SSGS-GAL is guaranteed to be correct even though the activity list
used as input is not, since the project constraints are enforced by the SSGS-GAL
when computing the decision setDg (Line 3).

Algorithm 4. The SSGS algorithm for generalized activity lists (SSGS-GAL)
1: initialization: F0 = 0,S0 = 0
2: for g = 1 to n do
3: Compute Dg , Fg, R̃k(t)(k ∈ K; t ∈ Fg)
4: Select j ∈ Dg |∀j′ ∈ Dg : g(j) > g(j′)
5: EFj = maxh∈Pj{Fh}+ dj
6: Fj = min{t ∈ [EFj−dj , LFj−dj ]∩Fg|rj,k ≤ R̃k(τ ), k ∈ K, τ ∈ [t, t+dj [∩Fg}+

dj
7: Sg = Sg−1 ∪ {j}
8: Fn+1 = maxh∈Pn+1{Fh}
9: end for
10: return F
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The SSGS-GAL, as the SSGS, needs a priority rule to compute the decision
set (Dg).

4 Experimental Evaluation

In order to evaluate a learning approach such as CBR, one should demonstrate
its ability to generalize, that is, the learning method should be able to solve
new problems that were not included in the learning dataset. In order to have a
pool of datasets for learning and testing purposes we have taken the well known
Patterson’s dataset [11] , and we have used it as a source to create new datasets
by randomly modifying its problems.

In particular, we have created two groups of new datasets: On the one hand,
PatI5 comprises 3 data sets obtained by removing between 1 and 5 random
activities from Patterson’s original problems. On the other hand, PatD com-
prises a sequence of 9 interdependent data sets; the first data set in the sequence
(PatD1) results of removing 1 random job from projects in the Patterson’s data
set, the next data set (PatD2) results of removing 1 random activity from the
previous data set in the sequence (thus accumulates 2 removals from the original
data set), and so on.

In order to compare different methods, we have first obtained the optimal
solutions for the new data sets using the branch and bound algorithm proposed
by [12]; that way, we can compare algorithms by comparing their solutions with
the optimal solution.

We have performed two groups of experiments: In the first group, we assess the
impact of k and the size of the case base on the performance of the Case-Based
Project Scheduling (CBPS) algorithm. In the second group we assess how the
differences between the learning and the test data sets impact the performance
of the CBPS algorithm.

In our experiments, we use the average relative error to measure the per-
formance of a scheduling algorithm. The relative error of a single project is
computed as (timespan−optimalT imespan)/optimalT imespan, thus the lower
the error the better. In all the experiments that follow we include a comparison
with a single-pass SSGS using LST (Latest Start Time) as the priority rule.
Correspondingly we have also used LST as the priority rule ψ to complete the
partial activity list obtained from the best case, as described in Algorithm 3.

Impact of k and the Size of the Case Base. The aim here is to study
how the size of the case base and the number of cases retrieved (k) influence the
performance of the CBPS algorithm. We expect CBPS to obtain better solutions
as the size of the case base and the number of cases retrieved increase.

Table 1 shows the results for the PatI5 data sets using different case bases,
where CBPS:k denotes the CBPS algorithm with k being the number of cases
retrieved. data sets with suffix ’a’ and ’b’ used for learning, while the one with
suffix ’c’ is used for testing purposes. CBPS obtains better results than LST
in all the scenarios, and the results improve consistently with the number of
cases retrieved . First and second columns show results when using PatI5a and
Pat5b respectively to build the case base. Since they have the same size, results
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Table 1. Average relative errors for PaIt5 data sets using different case bases

!!!!!!!Algor.
CB

PatI5a PatI5b PatI5a ∪ PatI5b PatI5c

LST 0,090 0,090 0,090 0,090
CBPS:1 0,083 0,085 0,078 0,006
CBPS:3 0,074 0,084 0,073 0,000
CBPS:5 0,073 0,082 0,069 0,000
CBPS:10 0,068 0,073 0,064 0,000
CBPS:20 0,066 0,070 0,058 0,000

are quite similar. Third column shows results when using PatI5a and PatI5b
together for the case base; as expected, we obtain better results due to the
increase in the size of the case base. The last column is provided to check out
that the algorithm works properly: since we use the same data set for learning
and testing, the CBPS algorithm should be able to retrieve exactly the project
being solved, and thus it should provide the optimal solution, i.e. error would be
zero. As observed, CBPS is able to find the optimal solutions when k ≥ 3 , and
the error when retrieving a single case (k = 1) as as low as 0.06. These result
suggest that the global project characterization (network complexity, resource
factor and resource strength) is a good discriminant between projects.

Impact of the Degree of Difference between the Learning Data Sets
and the Test Data Sets. The experiments reported here study the impact
of the degree or amount of difference between the learning data set and test
data set. We expect CBPS to obtain worse results as the amount of difference
increases.

Table 2. Average relative errors for PatD data sets, with Pat5 as the case-base

Algorithm Pat1 Pat2 Pat3 Pat4 Pat5 Pat6 Pat7 Pat8 Pat9
LST 0,096 0,096 0,099 0,091 0,093 0,085 0,080 0,079 0,071
CBPS:1 0,097 0,099 0,085 0,066 0,006 0,047 0,068 0,067 0,059
CBPS:3 0,095 0,096 0,076 0,052 0,000 0,033 0,054 0,059 0,071
CBPS:5 0,091 0,095 0,073 0,047 0,000 0,030 0,052 0,060 0,071
CBPS:10 0,095 0,091 0,075 0,046 0,000 0,025 0,047 0,050 0,062
CBPS:20 0,092 0,085 0,069 0,046 0,000 0,027 0,037 0,043 0,058

Table 2 shows results when solving PatD data sets using Pat5 as the case
base. As expected, Pat5 is solved optimally for a small k (when k ≥ 3). In
Pat1,...,Pat4 the projects to be solved have more activities than the projects in
the case-base (Pat1 has 4 more activities, Pat2 has 3 more activities, etc.), so
only a portion of the activities could potentially be mapped to activities in a
retrieved project. The opposite happens to projects in Pat6 to Pat9, which have
fewer activities than projects in the case base. Therefore we expect CBPS to
behave much better when solving the later than the former; which is actually
confirmed by the experiments. In all the tests CBPS obtained better solutions
than LST. Notice that the fewer the differences between the test and learning
data sets, the comparatively better our algorithm behaves.
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5 Related Work

The first system experimentally evaluated is CABINS [13], a framework for it-
erative schedule repair based on user optimization preferences. CABINS uses a
a case-based approach for capturing human experts’ preferential criteria about
scheduling quality and control knowledge to speed up schedule revision. Through
iterative schedule repair, CABINS improves the quality of sub-optimal schedules
by using past repair experiences for (1) repair action selection, (2) evaluation
of intermediate repair results, and (3) recovery from revision failures. Extensive
experimentation on a job-shop scheduling domain shows an improvement in the
efficiency of the revision process while preserving the quality of the resultant
schedule. The first constructive CBR approaches for scheduling including exper-
imental evaluation were reported by [14,15]. The first paper describes a CBR
method to solve the Traveling Salesman Problem (TSP) by reusing and adapt-
ing complete solutions. The proposed method, called T-CBR, was compared
against Simulated Annealing (SA) and a Myopic algorithm, concluding that SA
produces the best solutions but takes the longest, the Myopic algorithm is the
faster algorithm but produces the worst solutions, and T-CBR produces medium
quality solutions considerably faster than SA. The second paper compares two
CBR methods for solving the job-shop scheduling problem with a single machine
and sequence dependent setup times. CBR has also been proposed to deal with
workforce rostering problems [16,17]. Cases represent rostering constraints and
generalized patterns of workforce allocation (shift patterns) that satisfy those
constraints. In this proposal CBR is used in a constructive way to build up a
schedule that is then fixed using rules to remove constraint violations. Fixes are
expressed as ordered series of shift swapping rules. This separation between the
roster generation using CBR and the fix mechanisms is well suited to perform
reactive scheduling with no extra effort: the very same mechanisms used to fix
a new roster can be used to fix rosters that have subsequently become broken.
Typically, scheduling problems the proposals introduced above adopt the classi-
cal representation of cases as lists of attribute-value pairs. A radically different
approach using graphs was proposed in [18] to deal with timetabling problems.
Experimental results showed the effectiveness of the retrieval and adaptation
steps. This method was further developed and evaluated across a wider range of
problems [19]. Later, a multiple-retrieval approach was proposed that partitions
a large problem into small solvable sub-problems [20].

CABAROST (CAse-BAsed Rostering) is a repair-based method for solving
nurse rostering problems [21,22]. CABAROST retrieves previously encountered
constraint violations and reuses their repairs to solve new rostering problems.

All in all, research on the application of Case-Based Reasoning (CBR) to
scheduling is scarce and limited in scope. On the one hand, the application do-
main has been limited to very specific forms of scheduling, such as the job-shop
problem, rostering problems, and time-tabling problems. On the other hand,
really few systems have been evaluated experimentally. Finally, in several pro-
posals CBR is not the actual scheduling method, but just a complementary tool
used either to select the actual scheduling method or to configure it (for example
to choose one amongst a number of alternative heuristic rules).
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6 Conclusions and Future Work

Compared with other attempts to apply CBR to scheduling problems, we have
addressed a more general class of problems. In fact, a wide area of combina-
torial problems are known to be special cases of the RCPSP, including: the
two-dimensional cutting stock problem, the bin packing problem, and produc-
tion scheduling problems such as the job-shop scheduling problem, the flow-shop
problem and the open-shop problem.

In this paper, we describe a Case-Based Reasoning (CBR) framework to solve
the Resource-Constrained Project Scheduling Problem (RCPSP) in a construc-
tive way, using past schedules as a starting point to build new schedules. The
aim is not to compete with the best results reported in the literature by special
purpose specific approaches, but to generate competitive results across a wider
range of problems: for example, problems with poorly defined domains or high
degrees of uncertainty. Note that in general real scheduling problems are much
more complex and uncertain than the mathematical models used in academic
research. The more complex and uncertain the domain, the more appropriate
CBR would be compared with theoretical approaches. Besides, a CBR approach
such as CBPS will be able to adapt and improve results over time by storing
new cases in the case base and removing old ones. The experience obtained from
real world examples will probably capture complexities of the domain that will
be much harder to represent in a theoretical model.

In the experiments performed so far we have consistently obtained better re-
sults than using the best simple-pass priority-rule based heuristics. These results
demonstrate the feasibility of our proposal and indicate that under reasonable
assumptions this approach may become a useful tool to trade-off quality of the
solutions and efficiency, which is a requirement to address real world problems.

Our framework extends the well-known Serial Schedule Generation Scheme by
introducing the SSGS for generalized activity lists (SSGS-GAL). By using SSGS
as the underlying validation mechanism we ensure that only valid solutions are
generated, together with other interesting properties. Our method is compatible
with the standard view of heuristic priority rules as functions that compute a
priority value for all activities of a project. This approach supports the use of
single-pass SSGS methods as well as most multi-pass SSGS methods, including
multi-priority rule methods, forward-backward scheduling methods, and sam-
pling methods. Furthermore, our framework is flexible enough to support a wide
range of similarity measures to compare projects, which opens many possibilities
to tune up the algorithm and adapt it to different circumstances.

A limitation of our approach is the fact that in order to work properly, CBR
requires good cases, that is, cases that are representative of the application
domain, and cases that have good solutions. In the real world, sometimes there
may be a repository of past projects which can be used to generate an initial
case base, but that will not be true in general. When no previous experience is
available, one has to generate new cases using another (non-CBR) method, and
therefore, the quality of the solutions obtained by CBR would depend upon the
quality of the solutions obtained by the non-CBR method. In other words, if
there is no previous experience it would probably be better to use a non-CBR
approach, at least until gaining experience.
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There is a number of ways to further expand our framework. Firstly, there
is plenty of room to experiment with different similarity metrics to retrieve
projects. Secondly, it would be possible to experiment with different scheduling
algorithms, like the Parallel Scheduling Generation Scheme and some multi-pass
methods (eg. sampling and multi-rule methods). Another interesting extension
would be the building of new schedules by combining portions of multiple solu-
tions, instead of reusing a single solution from the case-base.
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TIN2009-13692-C03-01.

References

1. Herroelen, W., De Reyck, B., Demeulemeester, E.: Resource-constrained project
scheduling: a survey of recent developments. Computers and Operations Re-
search 25(4), 279–302 (1998)
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