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Abstract. While similarity and retrieval in case-based reasoning (CBR)
have received a lot of attention in the literature, other aspects of CBR,
such as case reuse are less understood. Specifically, we focus on one of
such, less understood, problems: knowledge transfer. The issue we intend
to elucidate can be expressed as follows: what knowledge present in a
source case is transferred to a target problem in case-based inference?
This paper presents a preliminary formal model of knowledge transfer
and relates it to the classical notion of analogy.

1 Introduction

In case-based reasoning (CBR), a problem is solved by first retrieving one or
several relevant cases from a case-base, and then reusing the knowledge in the
retrieved case (or cases) to solve the new problem. The retrieval stage in CBR has
received a lot of attention in the literature, however, other aspects of CBR have
received less attention and are less well understood; specifically, what knowledge
can be reused from a previous case (source) to solve a new (target) case?

There is no generally agreed upon model of this process, which we will call the
knowledge transfer process. This paper presents a model of knowledge transfer
in case-based inference (CBI). Case-based inference, as described in [7] corre-
sponds only to a part of the complete CBR cycle [1]. CBI basically accounts
for the general inference process performed when predicting or characterizing a
solution to a problem from a given set of cases, it does not include the process
of adaptation or revision of the proposed solutions.

Consequently, in this paper, we intend to model the process of pure knowledge
transfer, without intending to model the complete case reuse process, nor trying
to encompass the whole variety of approaches to reuse in case-based reasoning,
like rule-based adaptation. The issue we intend to elucidate can be expressed
as follows: what knowledge present in the source case is transferred to a target
problem during case-based inference?

In our model, we take a different direction from the CBI model of Hiillermeier
[7], where they focus on prediction, i.e. classification and regressions tasks, since
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we focus on design tasks. While on prediction, the solution is selecting a solu-
tion form a set of possible solutions, on design tasks the solution is deceived by
building a complex structure from “solution elements” (usually nodes and their
relationships). The goal of this paper is then to give an account of what is trans-
ferred from a previous case to a solution case when it s a complex structure. Our
model of knowledge transfer is based on the notions of refinement, subsumption,
partial unification and amalgam, defined over a generalization space. This model
is applicable to any representation formalism for which a relevant generalization
space can be defined. Consequently, albeit we do take into account the notion of
similarity, numerical measures of similarity are downplayed in this model, and
we focus on a more symbolic notion of similarity. In our approach, it is more
important to reason about what is shared among cases than the degree to which
two cases share some of their content.

The work presented in this paper is an extension of the work in [15], where
we introduced a preliminary version of this model. In this paper, we take one
step forward, generalize the model to also cover multi-case adaptation and make
more emphasis on its relation with analogical reasoning, as one of the underlying
principles of case-based reasoning.

The remainder of this paper is organized as follows. First we introduce the
idea of knowledge transfer in CBR in Section 2. Then, Section 3 briefly presents
some necessary theoretical background for our formal model of knowledge trans-
fer presented in Section 4. Finally, Section 5 discusses knowledge transfer in
computational analogy and its relations with CBR.

2 Knowledge Transfer in CBR

In standard models of CBR, cases are typically understood as problem/solution
pairs (p, s) or situation/outcome pairs. Therefore, solving a problem p’ means
finding finding or constructing a solution s’ by adapting the solution of one or
more retrieved cases. In this paper, we will consider a more general model, where
cases are a single description, and where the problem and the solution are just
two parts of this single description. In this view, an unsolved problem is just a
partial description that needs completion.

The task of solving a problem in our view consists of two steps (in accordance
to recent formal models of CBR [7]):

1. (case-based inference) finding a complete description by transferring infor-
mation from retrieved cases to the problem at hand. Thus, the process of
case-based inference can be further divided into two steps: case retrieval and
knowledge transfer.

2. (adaptation) later performing any additional domain specific adaptations
required to turn the complete description found by case-based inference into
a valid solution for the domain at hand.

In the traditional CBR cycle [1], the reuse process encompasses both knowledge
transfer and adaptation. The model presented in this section focuses exclusively
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on the process of knowledge transfer, rather than on the whole reuse process.
Therefore, the outcome of the knowledge transfer process is not a valid solution,
but the result of transferring knowledge from the one or more source cases to
the target, which might still need to be adapted by using some domain specific
rules, or any other reuse procedure. For that reason, we will refer to the result
of knowledge transfer as a conjecture. Thus, we say that a conjecture is formed
by transferring knowledge from source cases to a target problem —or, in other
words, conjectures are the outcome of case-based inference. Some conjectures
might constitute solutions, while some others might require adaptation.
There are multiple scenarios that define different knowledge transfer tasks:

— Transfer may be from a single or multiple retrieved cases.

— The unsolved problem description can be understood as a hard requirement
(i.e. when the solved problem can only add elements to the unsolved problem
description, but not change or remove anything to the problem description),
or not (when the unsolved problem description just expresses some prefer-
ences of over the final solution).

For the sake of clarity, in this paper we will only provide a formalization of the
hard requirements scenario. However, we will provide insights into how the soft
requirement scenario can be easily modeled in our framework.

Our formalization is based on the notions of generalization space and that of
amalgam and partial unification. For a more in-depth description of these ideas,
the reader is referred to [13], here, we will just provide their intuitive ideas,
sufficient to present out model of knowledge transfer.

3 Background

In this paper we will make the assumption that cases are terms in some general-
ization space. We define a generalization space as a partially ordered set (£, C),
where L is a language, and C is a subsumption between the terms of the lan-
guage L. We say that a term 1)1 subsumes another term 1y (¢ C 1)2) when 1)
is more general (or equal) than v¥»'. Additionally, we assume that £ contains
the infimum element L (or “any”), and the supremum element T (or “none”)
with respect to the subsumption order.

Next, for any two terms vy and 1y we can define their unification, (11 U
19), which is the most general specialization of two given terms, and their anti-
unification, defined as the least general generalization of two terms, representing
the most specific term that subsumes both. Intuitively, a unifier (if it exists) is a
term that has all the information in both the original terms, and an anti-unifier
is a term that contains only all that is common between two terms. Also, notice
that, depending on £, anti-unifier and unifier might be unique or not.

! In machine learning terms, A T B means that A is more general than B, while in
description logics it has the opposite meaning, since it is seen as “set inclusion” of
their interpretations.
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Fig. 1. A generalization refinement operator -, and a specialization operator p

Let us now summarize the basic notions of refinement operator over partially
ordered sets and introduce the concepts relevant for this paper —see [9] for a
more in-depth analysis. Refinement operators are defined as follows:

Definition 1. A downward refinement operator p over a partially-ordered set

(L,C) is a function such that p(vp) C {¢' € L] TP’} for all ¢ € L.

Definition 2. An upward refinement operator v over a partially-ordered set
(L,C) is a function such that y(¢) C {¢’ € L|Y' T} for allyp € L.

In other words, upward refinement operators generate elements of £ which are
more general, whereas downward refinement operators generate elements of £
which are more specific, as illustrated by Figure 1. Typically, the symbol v is
used for upward refinement operators, and p for downward refinement operators.

Refinement operators can be used to navigate the generalization space using
different search strategies, and are widely used in Inductive Logic Program-
ming. For instance, if we have a term representing “a German minivan”, a gen-
eralization refinement operator would return generalizations like “a European
minivan”, or “a German vehicle”. Moreover, in practice, it is preferable to have
refinement operators that do not perform large generalization or specialization
leaps, i.e. that make the smallest possible change in a term when generalizing or
specializing, to better explore the space of generalizations as a search space [14].

3.1 Amalgams

The notion of amalgam can be conceived of as a generalization of the notion
of unification over terms. The unification of two terms (or descriptions) 1, and
Uy is a new term ¢ = 1, Ly, called unifier. All that is true for ¢, or 1 is
also true for ¢.; e.g. if ¥, describes “a red vehicle” and v, describes “a German
minivan” then their unification yields the description “a red German minivan.”
Two terms are not unifiable when they possess contradictory information; for
instance “a red French vehicle” is not unifiable with “a red German minivan”.
The strict definition of unification means that any two descriptions with only
one item with contradictory information cannot be unified.

An amalgam of two terms (or descriptions) is a new term that contains parts
from these two terms. For instance, an amalgam of “a red French vehicle” and “a
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Fig. 2. [llustration of the idea of amalgam between two terms v, and

German minivan” is “a red German minivan”; clearly there are always multiple
possibilities for amalgams, since “a red French minivan” is another example of
amalgam. The notion of amalgam, as a form of partial unification, was formally
defined in [13]. For the purposes of this paper, we will introduce a few necessary
concepts.

Definition 3. (Amalgam) The set of amalgams of two terms 1, and 1y is
the set of terms such that:

waywb:{¢€£+‘3aaa@b€£:aaEwa A abgwb AN ¢:aa|—|ab}

where LT = £ — {T}

Thus, an amalgam of two terms v, and 1 is a term that has been formed by
unifying two generalizations a, and «ay such that a, C 9, and ap C 1, —i.e. an
amalgam is a term resulting from combining some of the information in v, with
some of the information from 3, as illustrated in Figure 2. Formally, 1, Y ¥
denotes the set of all possible amalgams; however, whenever it does not lead to
confusion, we will use ¥, Y 13 to denote one specific amalgam of 1, and .

The terms a, and ap are called the transfers of an amalgam v, Y 1. g
represents all the information from v, which is transferred to the amalgam, and
ay is all the information from ¢, which is transferred into the amalgam. As we
will see later, this idea of transfer is akin to the idea of transferring knowledge
from the source to target in CBR, and also in computational analogy [4].

Intuitively, an amalgam is complete when all which can be transferred from
both terms into the amalgam has been transferred, i.e. if we wanted to transfer
more information, o, and «; would not have a unifier.

For the purposes of case reuse, we introduce the notion of asymmetric amal-
gam, where one term is fixed while only the other term is generalized in order
to compute an amalgam.

Definition 4. (Asymmetric Amalgam) The asymmetric amalgams 1 71&,:
of two terms s (source) and 1, (target) is the set of terms such that:

s Yy ={p € LT Fas €L:as Tehy A ¢ =L}
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In an asymmetric amalgam, the target term is transferred completely into the
amalgam, while the source term is generalized. The result is a form of partial
unification that conserves all the information in v, while relaxing s by gen-
eralization and then unifying one of those more general terms with v, itself.
Finally, an asymmetric amalgam is maximal when all knowledge in 15 that is

%
consistent with 1), is transferred to the solution ¢, —i.e. ¥} € 15 Y 1, is maximal
%
iff Ay € s Y 1y such that ¢, C ).

4 A Model of Knowledge Transfer

This section provides a formalization of the idea of knowledge transfer in CBR
for the scenarios of single and multi-case retrieval, but only considering problems
as a hard requirement (see Section 2).

4.1 Knowledge Transfer with Hard Requirements

Let us define the task of knowledge transfer for single case reuse with hard
requirements as follows.

Given. A case base A = {11,...1,,} and a target description 1
Find. A ‘maximal’ case 9, such that ¢; C ¢} (a conjecture)

Clearly, if there is some 1; € A such that ; C ; then 1; is a solution, and
the conjecture can be built simply by unifying query and solution: ¢ LIv; = ;.
This specific situation is called in CBR literature “solution copy with variable
substitution” [8]. Also, notice that the CBI model worries about maximal amal-
gams, while determining whether such case is complete or not corresponds to the
whole CBR task and is beyond the scope of the knowledge transfer model.

In general, when there is no case such that v; C ;, unification is not enough,
and knowledge transfer requires the use of amalgams, and in particular of the
asymmetric amalgam. Knowledge transfer from a source 15 with hard require-
ments produces hard conjectures, defined as follows:

Definition 5. (Hard Transfer) A hard transfer o for target 1y from a source
Vs is a term o T g such that o Uy # T, i.e. a generalization of s that
unifies with V.. Thus, the set of hard transfers for target iy from a source 1

is: G(s, ) ={a e Lla Ty, Nalpy # T}.
Definition 6. (Hard Conjecture) Given a hard transfer o € G(¢s,9:), a

_>
conjecture for target 1y is a term in s Y Y where o 1s the transfer. The set of
—
hard conjectures Ky for target 1 from a source 14 is Ky (s, ) = s Y 1y,

We will be interested in the most specific conjectures, which are the ones coming
from maximal asymmetric amalgams, and as a subset of G(1s, ). Whether a
maximal conjecture is a complete solution is discussed later in Section 4.2
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(character HUMAN1)
(character BEAST1)

(character HUMAN2) (character King-Arthur)
(prop OBJECT1) (character dragon)
(protagonist HUMANT) (character Merlin)
(antagonist BEAST1) (prop excalibur)

(goal HUMAN1 (protagonist King-Arthur)

(deliver OBJECT1 HUMAN2))
(goal BEAST1 (eat HUMAN1))

a Transfer e % Target Problem

(character red-riding-hood) (character King-Arthur)
(character wolf) (character dragon)
(character grandma) (character Merlin)
(prop food) prop Excalibur)

(

(protagonist red-riding-hood) (protagonist King-Arthur)
(
(

(antagonist wolf) antagonist dragon)
(goal red-riding-hood goal HUMAN1
(deliver food grandma)) (deliver Excalibur Merlin)
(goal wolf (eat red-riding-hood)) (goal dragon (eat King-Arthur))
Source Case Conjecture

Fig. 3. Exemplification of the concepts of source, target, transfer and conjecture in a
story generation domain

In order to illustrate our model with an example let us consider the task of
story generation (which has been addressed using CBR by many authors [19]).
In this domain, the goal is to generate a story or a story schema (decide which
characters exist in the story, which props, which are the goals of the characters,
which actions will they perform, etc.). The case base contains a collection of
predefined stories, and a problem corresponds to a set of requirements over the
story we want the system to generate. We can see, first of all, that there is no
clear distinction between problem and solution. A case is just a complete story,
whereas a problem is just a partially specified story. Figure 3 illustrates our
model showing the following elements: a target problem consisting of an incom-
plete story specifying three characters (from the King Arthur fantasy world), and
asking the system to generate a story that has three characters, King Arthur,
Merlin and a dragon, where King Arthur is the main character and where Excal-
ibur is involved. The system happens to retrieve a case with the story of Little
Red Riding Hood (shown on the bottom left). We don’t show the complete case,
for space limitations, but in addition to the definitions shown in Figure 3, the
retrieved case should contain the list of actions that constitute the plot of the
story. We show the transfer, which is a generalization of the retrieved case, and
a possible conjecture, which is a unification of the transfer with the target prob-
lem. In this example, the resulting story has King Arthur wanting to deliver
excalibur to Merlin, while the dragon wants to eat Kind Arthur. We show one
possible conjecture, but notice that many different conjectures could be formed
here, by transferring different aspects from the retrieved case.

The result of CBI is a conjecture in the sense that it is a plausible solution
for 1;. Notice that, (1) a conjecture may be an incomplete solution, and (2) a
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conjecture is not assured to be correct. Moreover, since there may be more than
one conjecture, (3) the issue of which conjecture should be selected has also to
be specified. Let us review them in turn.

4.2 Conjecture Incompleteness

The purpose of knowledge transfer in case reuse is to transfer to the target
as much knowledge as possible (consistent with the target). This “as much as
possible” is satisfied if we take as transfer a term « that is one of the most
specific generalizations of the source that are unifiable with the target, what we
called maximal amalgams in Section 3.1. Nevertheless, some information is lost
in the generalization path 1), — «, which corresponded to the remainder [14].
Specifically, the remainder r(1, a) of a term ¢ and a generalization o C 1) is a
term ¢ such that a ¢ = 1 (and there is no ¢’ C ¢ such that a U ¢’ = ). That
which is lost from the source case will be called source differential in our model.

Definition 7. (Source Differential) The source differential 1vp of a source
term s with respect to a transfer o € G(vs, 1) is the remainder r(is, ).

Notice that, even assuming the source ¥; to be a consistent and complete case
in a case base, now we view the source as having two parts with respect to the
target, namely ¢s = aLUr(1)s, a), and only one of this parts («) is transferred to
the target. Therefore, we cannot assume, in general, that the result of case-based
inference o Ll ¢¢ (even when « LI 1)y is maximal) is a complete solution for the
new case (that depends on what is in 7(¢s, @) and what are the requirements
for a solution to be ‘complete’).

Depending on the task a CBR system is performing, this partial solution may
be enough. Classical analogy systems take this approach: the goal is to transfer
(as much as possible) knowledge from source to target —there is no notion of an
externally enforced task that demands some kind of completeness to solutions.
Thus, our model of case-based inference encompasses maximal conjectures, but
solution completeness is out of its scope, since it depends on the whole CBR
process beyond case-based inference.

4.3 Conjecture Correctness

A conjecture ¥y Lo may be maximal, but even so this might be a correct solution
or not with respect to v;. If we see 1, as a set of requirements that the complete
solved target case must satisfy, then if a conjecture vy Ll v is maximal, then the
conjecture 1, LI v is correct. Although this supplementary assumptions makes
sense in theory (if 1y expresses the “requirements” to be satisfied), often CBR
systems operate in domains where it is not feasible to assure that 1, is a com-
plete requirement on the correctness and completeness of solutions; it is more
reasonable to assume that ¢ is a partial requirement and the final acceptability
or correctness is left to be assessed by the Revise process.

Therefore, knowledge transfer in case reuse produces a solution that is con-
sistent and maximal, but possibly partial, and not assured to be correct; i.e.
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produces a conjecture. Since there are multiple transfers that can produce mul-
tiple conjectures, we turn now into the issue of assessing, comparing, and ranking
conjectures.

4.4 Conjecture Ordering

Multiplicity of maximal conjectures may have two causes. The first is that
I' (s, 1) might not be unique. The second is when, even if I'(¢s, ;) is unique,
more than one source is taken into account (as considered in the next sec-
tion): a set of k precedent cases Py = (¢1,...,1x) produce a set of transfers
U(Pr) =W, U...UW, which in turn generates a set of conjectures.

Conjectures in K (P, 1¢) may be complete, but from a practical point of view
it is useful to rank them according to their estimated plausibility, their degree of
completeness, or any other heuristic that can be used in a particular application
domain. Typically, the Retrieve phase estimates relevance of precedent cases with
some similarity measure, so we can use the similarity degrees (s1 > ... > si)
of the k retrieved cases Py = {11, ...,1%} to induce a partial order on the set
of transfers: (W (Py),>) = (¥1 > ... > ¥;). Thus, the conjectures coming from
transfers originating in more similar precedent cases (or those transferring more
knowledge from more similar cases, in the case of multi-case reuse) are preferred
to those from less similar cases.

Since conjectures are in general partial solutions, using some measure that
estimates the degree of completeness of conjectures may also be used for ranking
conjectures. Domain knowledge can be used to estimate conjecture completeness.
In previous work [15] we proposed a measure called preservation degree for this
purpose. This ranking can be combined with the similarity based ordering to
establish a combined partial order on conjectures.

4.5 Knowledge Transfer from Multiple Cases

There are scenarios when the conjecture generated using case-based reasoning is
a combination of more than one case in the case base. The intuitive idea in this
scenario is that, instead of an asymmetric amalgam where a generalization of a
single retrieved case (transfer) is unified with the target problem, we will have
an asymmetric amalgam where a generalization of each of the source cases (one
transfer per source case) is unified with the target problem. Therefore, instead
of a single transfer, we will have multiple transfers (one per source case).
This process can be formally modeled again as an asymmetric amalgam.

Definition 8. (Hard Conjecture from Multiple Cases) Given a set of
source cases {Yl, ... Y™} a target 1y and a set of hard transfers ai,...,ay,

where a; € G(¥%,1)4), a conjecture for a target 1y is a term in {3l ... ﬂﬂ?}?iﬂu
where oy, ...,y are the transfers. The set of hard conjectures Ky for target 1

is Ky ({0, 00y ) = {1, ... 0} Y 1)y
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Fig. 4. An schema showing multi-case hard conjecture from two sources v} and 2

This idea is illustrated in Figure 4 for the situation of two source cases.

Although Kp({¢l,..., 4"}, 1) is formally well defined, complexity clearly
increases as the number of sources increases, since the number of possible con-
jectures grows. In practical approaches, a CBR system will typically use a small
number of source cases, say 2 or 3, and will use heuristics or domain knowledge
that restrict the set of amalgams to consider.

Let us illustrate the idea with the same story generation domain used before.
This time, assume that two cases were retrieved: Little Red Riding Hood and Star
Wars. The target problem is the same as the one shown in Figure 3. This time,
there will be two different transfers, one from each case, and the conjecture will
be the unification of the two transfers with the target problem. For example, if
the transfer form Little Red Riding Hood is that the dragon wants to eat the main
character, and the transfer from Star Wars is that the main character wants to
learn how to use a sword to defeat the villain and asks another character to train
him /her, the resulting story would be the following: King Arthur wants Merlin
to train him in the use of Excalibur to defeat the dragon, and the dragon wants
to eat King Arthur. Notice, that by transferring from more than one story, there
is a wider variety of conjectures that can be formed, and thus, the chances of
finding a good solution are also higher.

For the sake of space, in this paper we have only considered the scenario of
seeing problems as hard requirements. This means that the conjectures proposed
by a CBR system always satisfy the target problem. In the soft requirements
scenario, the term representing the problem is considered to just express the
preferences over the kind of solutions we want. Therefore, instead of considering
asymmetric amalgams, the soft requirements scenario is modeled with the sym-
metric amalgams, where both the retrieved case and the target problem can be
generalized in order to produce the final conjecture. That is, if the system cannot
find any solution that completely satisfies the target problem, it can relax the
problem, and find a solution that only partially satisfies the target problem.

5 Knowledge Transfer in Analogy

We turn now to discuss how the classic concept of analogical reasoning [4] is
related to our model of knowledge transfer, and to CBR in general. It is well
accepted that CBR and analogical reasoning are tightly related and share some
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common underlying principles [10]. In this section we will see how our model
of knowledge transfer underlies both CBR and some forms of analogical reason-
ing, showing that CBR and analogy indeed share a common underlying formal
reasoning mechanism, at least in the limited scope of knowledge transfer.

Computational models of analogy operate by identifying similarities and trans-
ferring knowledge between a source domain S and a target domain T. This pro-
cess can be divided into four stages [6]: 1) recognition of a candidate analogous
source, S, 2) elaboration of an analogical mapping between source domain S and
target domain T, 3) evaluation of the mapping and inferences, and 4) consol-
idation of the outcome of the analogy for other contexts (i.e. learning). At a
superficial level, those 4 processes can be likened to the 4 processes of CBR:
retrieve, reuse, revise and retain, although some differences exist. For example,
while the reuse process in CBR aims at generating a candidate solution for the
problem at hand, the elaboration step in computational analogy limits itself
to mapping a source domain to a target domain and proposing candidate in-
ferences (conjectures, in the vocabulary used in this paper). Another piece of
evidence that the 4 process of analogy can be likened to those in the CBR cycle
is that CBR theoretical frameworks, such as Richter’s knowledge containers can
be applied to analyze computational analogy processes [16].

Moreover, we would like to emphasize that analogy is an overloaded concept.
The previous 4 step process models the complete cycle of analogical reasoning
as understood in cognitive science. However, the term analogical reasoning in
mathematics and logic corresponds just to the elaboration step. In the remainder
of this paper, we will specifically focus our attention on this elaboration step,
which is the most studied in computational models of analogy like SME [4].

5.1 Analogy as a Special Case of Induction

Analogy in the logical sense is typically defined as the process of transferring
knowledge or inferences from a particular source domain S to another particular
target domain T'. John Stuart Mill [12, Ch. XX] argued that analogy is simply a
special case of induction. In his view, analogy could be reduced to: “Two things
resemble each other in one or more respects; a certain proposition is true of
the one; therefore it is true of the other”. That is to say, analogy between two
situations S and T can be interpreted as having two steps:

Inductive Step: In a first step we perform an inductive leap. Assume that
S and T are similar in some aspects, we will use anti-unification S M 7T to
denote all the information shared between S and 7' (i.e. that in which they
are similar). Now, given a proposition a which is true in S (i.e. « T S) but
we don’t know if it is true in 7', we assume (inductive leap) that ST is the
cause of @ —i.e. ST1T implies o (which we will write as ST — «).

Deductive Step: Then, in a second step, we apply the inductively derived
assumption ST17T — « to derive that « is also true in 7', and conclude aUT’
is true (i.e. the target with the added piece of knowledge « is also true).
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Let us illustrate this analogical reasoning principle with a typical example. Let
us consider our solar system as the source domain 7', and Bohr’s model of the
atom as the target domain S. Both domains are similar in some aspects, ST1T =
“There are smaller elements orbiting a larger element in the center”. We know
that the following statement is true for the solar system S: a = “there is an
attraction force between the small elements and the larger element in the center”.
We can now use the previous model of analogical reasoning in the following
way. In the first (inductive) step of analogy we reach the following assumption:
SMNT — «a (which means that the fact that there are elements orbiting is enough
to conclude that there is an attraction force). In the second (deductive) step,
we apply ST1T — « to T and conclude that there in Bohr’s model of the atom
there must also be an attraction force between the small elements and the larger
element in the center. By adding this new piece of information to 7', now we can
conclude o U T, that represents the model of the atom with the added piece of
knowledge referring to the attraction force.

5.2 Knowledge Transfer in Analogy

This view of analogy can be defined as follows in a generalization space.

Definition 9. Given two terms s, € L (called source and target respectively)
a formula 8 # T is derived by analogy whenever:

1. Ja:aC s AN iL (s M) (o is true in source only)
2. B=aly (knowledge « is transferred to target)

where « is the knowledge transferred from source to target.

Since « I£ ¥4 M1y we cannot (deductively) derive that « is true in ¢;. There-
fore, this analogical reasoning requires an inductive step, which can be seen as
a defeasible or conjectural inference. This “inductive analogy” model is illus-
trated in Figure 5. The solid lines depict sound inferences, i.e. the subsumption
relationships among terms (15, and «). Analogy makes some conjectural in-
ferences shown as dotted lines. Specifically, if « is not inconsistent with ; (i.e.
a1y # T) then possibly both situations may also have a in common; this
is represented as the term ¢, = a LIy that is conjectured to be true. Now,
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assuming ¢, is true, and v, is true, we can then conjecture that § = ¥ U « is
true (i.e. that o can be “transferred to” ;).

This conjectural inference can be seen in two ways: induction or knowledge
transfer, that nonetheless are equivalent. In the knowledge transfer approach,
we derive [ by conjecturing « is also true in the target (i.e. we derive av Ll 1y);
i.e. we use the idea of asymmetric amalgam to derive § by transferring o to 1.

In the inductive model of analogy we conjecture that the implicit generaliza-
tion should also include « as being true (that is we move from s MY to ¢q).
Later, since the target also shares 15 M1, we can (deductively) infer that « is
true in the target. Figure 5 shows how both views reach the same conjecture.

5.3 Analogy and Case-Based Reasoning

The “inductive analogy” model sheds some light on the nature of analogical
reasoning, and also provides insights on how to assess when the conclusions
reached by analogy are stronger or weaker.

Conclusions reached by analogy are considered strong when the similarity
between source and target is high. In Stuart Mill’s words: “[...] it follows that
where the resemblance is very great, the ascertained difference very small, and
our knowledge of the subject-matter tolerably extensive, the argument from
analogy may approach in strength very near to a valid induction”. This follows
from his inductive view of analogy, because if source and target are not very
similar, then S M T would contain very little information, and thus the rule
ST — « reached by induction would most likely be an over generalization.
Moreover, if ST1T contains a lot of information, then ST — a would be a rule
with a very narrow scope (only applicable to those domains satisfying S M T,
and thus more likely to be correct.

As stated above, conclusions reached by analogy can be seen as a knowledge
transfer process from the source domain to the target domain. It should be
now clear that the principles underlying knowledge transfer are a special case of
analogical reasoning. This can be seen when we bear in mind that the assumption
behind CBR, namely “similar problems have similar solutions”, is just a special
case of the analogical reasoning principle: “if two things resemble each other in
one or more respects; a certain proposition is true of the one; therefore it is true
of the other”. Moreover, the second principle of analogy, stating that analogical
reasoning reaches stronger conclusion when the two domains are more similar,
explains the principle behind the most common approaches to case retrieval in
CBR, that simply look for the most similar case to the problem at hand.

Notice that what we are stating is that knowledge transfer (and thus CBI) is
a special case of analogical reasoning, not that the whole case-based reasoning
paradigm is. Moreover, we also state that the goal of the retrieval step in CBR
should be to provide a source domain from which the conclusions reached by
analogy (knowledge transfer) are stronger. Solution adaptation, typically domain
dependent, is not explained by analogical reasoning, and constitutes the main
theoretical difference between CBR and computational models of analogy in
cognitive science.
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6 Discussion

This paper has presented a model of knowledge transfer in case-based inference
based on the idea of partial unification. We have focused on cases are represented
as terms in a generalization space. In our model, case reuse is seen as having
two steps: a first step (case-based inference) where knowledge is transferred from
one or several source cases to the target case (called a conjecture), and a second
step (adaptation) where the conjecture might need to be adapted. This paper
has focused on a model of the first step.

Our model of knowledge transfer offersinsights on the relation between case reuse
and analogical reasoning. Previous work on relating CBR with analogy has focused
on superficial aspects such as CBR being typically intra-domain, whereas analogy
is inter-domain [18]. In our model, we can see that analogical reasoning is related to
the knowledge transfer step of case reuse rather than with the second (adaptation)
step. The work of Prade and Richard [17] is an exception, and proposed a Boolean
model of analogical reasoning and suggested it could be used for adaptationin CBR,
following an inductive view of analogy as we presented above. An interesting line of
future work is the relation of knowledge transfer with conceptual blending [5]. We
have seen that analogy can be likened to an asymmetric amalgam, whereas concep-
tual blending could be seen as a form of symmetric amalgam.

Our work is related to existing general models of case reuse, like [2]. However,
such models focus on the adaptation step, and typically obviate the process of
knowledge transfer (transfer is seen as a mere “solution copy” from source to
target). We believe that this oversimplification of the knowledge transfer problem
is at the root of the difficulty of finding general models of multi-case reuse. The
work presented in this paper is a step towards that direction, since it can easily
cope with transferring knowledge from multiple sources.

Also related is the work on case-based inference [7], but they focus on predic-
tion (classification and regression tasks where the outcome is a form of similarity-
based inference). The difference with our work is that we have focused on how
complex solutions and conjectures can be formed by transferring knowledge from
one or multiple source cases to a partial solution of a target case.

Part of our long term goal is understanding case reuse and its relation to other
forms of reasoning. We envision case-based inference as a form of conjectural or
defeasible inference, like other forms of non-monotonic reasoning (induction,
abduction and hypothetical reasoning). The model presented in this paper is
one step towards this goal. As future work, we want to formalize the process of
knowledge transfer from multiple source cases, and develop case reuse methods
based on the idea of knowledge transfer.

Finally, although the model presented in this paper is theoretical, practical
implementations of the underlying principles are possible. For example, our pre-
vious work on similarity measures over generalization spaces [14], and on case
adaptation in multiagent systems using amalgams [11] are steps in this direction.
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