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Abstract
Computational models of novel concept understanding and creativity are addressed in this
paper from the viewpoint of conceptual blending theory (CBT). In our approach, a novel,
unknown concept is addressed in a communication setting, where this novel concept, cre-
ated as a blend by an emitter agent, sends a communicative object (words, or in this paper,
a visual representation of that concept) to another agent. When received by a computational
agent, a novel concept for that communicative object can only be understood by blend-
ing concepts already known by that agent. In this paper, we first posit that understanding
new concepts via blending is also a creative process. Albeit different from generating con-
ceptual blends, understanding a novel concept via blending involves the disintegration and
decompression of that novel concept, in such a way that the receiver of that concept is able
to re-create the conceptual network supposedly intended by the emitter of the novel con-
cept. Secondly, we also propose image schemas as a tool that agents can use to interpret
the spatial information obtained when disintegrating/unpacking novel concepts and then re-
create the new blend. This process is studied in a communication setting where semiotics
and meaning are conveyed by visual and spatial signs (instead of the usual setting of natural
language or text). In this case study, qualitative spatial descriptors are applied for obtaining
a formal description of an icon or pictogram, which is later assigned a meaning by a process
of conceptual blending using image schemas.
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1 Motivation

Computational creativity is a multidisciplinary field originated in Artificial Intelligence (AI)
research and strongly related to cognitive psychology, philosophy and the arts. Summar-
ily, the goal of computational creativity is to develop computational models and systems
that address tasks that can be considered creative when undertaken by humans. This paper
addresses a particular topic of interest in computational creativity, namely Concept Blending
Theory (CBT) [20]. The theory of conceptual blending (or conceptual integration) origi-
nates from cognitive science, specifically, cognitive linguistics. CBT explains the process by
which a new concept (also called a mental space) can be created from two existing concepts
(or mental spaces). CBT was first formalised in category theory by Goguen [23], as shown
in Fig. 1. Succinctly, given two concepts or mental spaces I1 and I2, conceptual blending
is characterised by (1) a generic mental space G, that embodies some similarities or corre-
spondences between I1 and I2, and (2) a new mental space B (the blend) that integrates two
partial projections from the content of I1 and I2 following correspondences determined in
G. A classical example is this: given the input mental spaces of house and boat, two differ-
ent blends (with corresponding generic spaces) can be created: houseboat and boathouse.
The houseboat blend is shown in Fig. 2.

A comprehensive computational model of conceptual blending was developed recently
[12]. This is a computationally feasible cognitively-inspired formal model of concept inven-
tion developed in the CoInvent project [4]. This model follows Goguen’s category theoreti-
cal approach [23] and, by incorporating the notion of amalgams [38], it develops a feasible
computational model that can effectively create blends in different representation for-
malisms of AI. Another computational model of conceptual blending is the seminal Divago
system [39] which later evolved into the Blendville system [24]. Other approaches related
to this paper are Divago’s approach applied to visual blending [8] and previous work on
generating new computer icons using computational models of conceptual blending [3, 6].

However, although most computational models of conceptual blending focus on the gen-
eration of novelty, this paper focuses on the dual problem: that regarding understanding and
integrating novelty by agents different from the “creative agent”. This dual problem is in
fact envisaged by CBT in cognitive linguistics. In concept-blending theory, understanding a
(new/unknown) concept that is the result of a blend involves disintegration and decompres-
sion of that blend and reconstructing the network of concepts linked to that blend. In the
example above, houseboat could be understood by an agent who did not already knew them
if that agent has the house and boat mental spaces and applies a process of disintegration
and decompression of that blend.

Fig. 1 An overview of
conceptual blending by Goguen
[23]. Notice here the blend is on
the bottom
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Fig. 2 An illustration of the ‘houseboat’ blend. Notice here the blend is on the top

Nevertheless, this is not a well-defined task, specially if we intend to create a compu-
tational model for (novel) concept understanding. A main goal of this paper is to better
understand such task and to advance in the development of such a computational model. It’s
worth noticing that both creativity and novelty can be defined (a) with respect to an individ-
ual, or (b) in absolute terms. Generally speaking, CBT focuses on the cognitive process of
an individual person, so creating a new blend in CBT is understood as a creative process for
that individual. Moreover, this new concept created by blending can be a novelty in absolute
terms or only with respect to that individual.

A relevant aspect in this paper is that we are dealing with unknown/novel concepts, that
is with a blend network (like that of Fig. 2) created by an agent but that is new or unknown to
another agent. To deal with this novelty we have to add the level of communication on top of
the level of (internal) creative processes based on conceptual blending. The communication
level requires the transmission of signs or descriptions of concepts, not the concepts them-
selves (the mental spaces in CBT). In this approach, a creative agent generates a novelty by
means of a blend network where a new concept is constructed, and then the communication
level is used to transmit a sign (encoded information) about this novelty to a receiver agent.

Note that, if the concept is a novelty (at least to the receiver agent), then the blend network
does not exist in the receiver agent, since what is transmitted by communication is a word or
an image (or sign, in the more general semiotic sense). The CBT may say the receiving agent
understands the new concept when capable of “reconstructing” the blend network (e.g. the
network in Fig. 2). However, the communication layover added between the creative agent
and the receiver agent implies that there is a less direct relation between generating and
understanding a concept via blending. This is because the receiving agent has not access
to a new concept (mental space), but to a new word or sign for a novelty and thus there
is some process required by the receiver to understand that novelty, to make sense of it by
connecting this new concept with previously know concepts. For instance, upon receiving
a word like houseboat, if it is a novel/unknown concept for the receiver, he/she first needs
to identify that by splitting this word in a specific way (e.g. house-boat) then the words
house and boat can be associated to known mental spaces, and only then the agent can
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reconstruct the blending network that yields houseboat (the blend). While the CBT may
take this for granted in cognitive linguistics because humans seem to do this effortlessly,
developing a computational model is more complicated since we need to make explicit these
tacit subtasks.

This paper is a first step towards a computational theory of understanding novel concepts
by a computational agent. We use the CBT and the CoInvent project computational model
of blending, but we argue that understanding a novelty requires “disintegration and decom-
pression”, but also a creative process by the receiver agent too —the receiver agent creates
a blend in the process, using its own cognitive resources (e.g. image schemas in the case
study developed in this paper). Note that, understanding involves re-creation rather than re-
construction, that is, it involves not simply “disintegrating” a mental space which does not
yet exist in the receiving agent, if the concept is a novelty.

For this purpose, let us briefly examine some statements used in the literature regarding
the CBT in order to explain understanding a (new) blend. For instance, “disintegration and
decompression” are mentioned twice in [20]. One mention appears in the definition of an
optimisation principle:

The Unpacking Principle: Other things being equal, the blend all by itself should
prompt for the reconstruction of the entire network. (...) Unpacking is often facilitated
by disintegrations and incongruities in the blended space.

Also, section “How networks do compression and decompression” in [20] states:

In principle, a conceptual integration network contains its compressions and decom-
pressions. Typically, in use and processing, only parts of the network are available
and the rest must be constructed dynamically. In some cases, decompression will be
the main avenue of construction, and in other cases, compression will.

However, our viewpoint is that we cannot assume as inputs the mental spaces from which
the blend is obtained by concept integration. If the blended concept is really new (for the
receiver), then unpacking the new concept into a full-fledged conceptual network is not triv-
ial. Although such a network may exist in the generation side of blends (e.g. the speaker,
the writer), it is not trivial how it can be (re-)created by the receiver agent (e.g. the lis-
tener, the reader). We posit here that understanding is also a creative task when it involves
unpacking real novelty (a new blended concept). Certainly this process requires disintegra-
tion and decompression, in this case with the goal of recreating a (valid, adequate) concept
network that is hopefully the one intended by the utterer. Our intuition is that this requires
not only unpacking the blended spaces (that does not yet exist in the receiver agent), but also
it requires harnessing internal cognitive resources (like image schemas) to find the possible
candidates to be the input mental spaces that —if blended in an appropriate way (finding an
adequate Generic Space and two adequate partial projections)— create the same (or equiv-
alent) concept. Thus, similarly, reading a novel or a poem is a creative process. Of course, it
is a different process than that undertaken by the writer, but it is a creative process and this
might be the reason why readers find novels and poems pleasant but also challenging at the
same time.

Dealing with the complexity of natural language and the various theories of meaning is a
very complex task. The approach presented in this paper focuses on a more straightforward
and meaning-bearing language: graphical signs used in our society to convey meaning, such
as icons and pictograms used in signage. Thus, we will focus on how a receiver can “decode
the meaning” of graphical signs (i.e. understand that sign). Essentially, iconic meaning
involves spatial relations between lines which form shapes that are interpreted as signs that
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have some meaning (e.g. interpreting a shape “←” as an “arrow” or as a “left arrow”). We
propose to use qualitative spatial descriptors to analyse complex spatial relations in visual
signs, together with image schemas to ascertain the meaning of those signs (e.g. interpreting
“left arrow” with the image schema “source-path-goal” may yield the meaning “moving on
a path to the left”). Only after semiotic interpretation is performed, the receiver can build
the concept-blending process upon that basis. As far as we are aware, none of the papers in
the literature has dealt with this topic before.

The rest of the paper is organised as follows. Section 2 explains how understanding can
be interpreted as a creative process starting from a new concept B, which is a novelty for
the receiver agent who receives a semiotic sign (utterance) denoting B (but not concept B

itself, being a mental space). If the semiotic sign is an icon in a digital image, the process of
deconstruction can be done using tools such as qualitative image descriptors (presented in
Section 4) which can deconstruct the icon by colour segmentation, identify its components
and then describe their shape, location, topology and direction qualitatively, that is, using
spatial descriptions. Then, the process of re-creation can be carried out by the receiver using
tools such as image schemas (presented in Section 3). Section 5 shows the deconstruction
process of the our use case icon by applying qualitative spatial descriptors. Then, Section 6
integrates spatial qualitative descriptions with image schemas for assigning some meaning
to elementary signs (creating their corresponding concepts or mental spaces). Finally, those
mental spaces are blended together obtaining the mental space corresponding to the under-
standing (or interpretation) of the novel concept B (in this paper, our use case will be an
icon introduced in the next section). Finally, Section 7 discusses the main issues addressed
in the paper and discusses future work.

2 Understanding novel concepts as a creative process

This section describes the computational task of concept-blending by following the com-
putational model in [12]. It also introduces the computational task of blend understanding,
and then it highlights the commonalities and differences between these two tasks.

Let us define the task of blend generation, shown in Fig. 3, as follows:

Given Two (input) mental spaces I1, I2.
Find 1. G, a generic space of I1 and I2, and

2. B, a blended mental space of I1, I2 and G (that satisfies some optimality criteria)

Note that the arrows in Fig. 3 indicate how the information flows in the task, and they are
different from the arrows in Fig. 2.

Blend “disintegration and decompression” can be considered the dual case of blending
(blend generation), that is, given the blend (a blended mental space), the task is to find the
input spaces and an adequate generic space. However, the task of blend understanding, as
shown in Fig. 4, is not exactly the dual task of blending because the novel concept (the
“blend”) is not a complete and full-fledged mental space, but a semiotic sign denoting the
concept blend. The mental space of the blend exists in our computational model only after
re-constructing the blending network that yields the blend, that is, when the receiver agent
understands that blend. Otherwise, if the complete mental space is available, there is no
novelty for the receiving agent and therefore there is no need to reconstruct the blending
network since the agent already knows it, the task is then recognising a sign (linking a sign
with an existing mental space).
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Fig. 3 The task of blend generation: two input spaces are assumed as given (I1, I2) and the task is, from I1
I2, finding an adequate generic space (G) and a blend (B). Arrows indicate information flow

Next we define the task of novel concept understanding using blending, as follows:

Given 1. An (incomplete) description that refers to the mental space of a new concept
B, and

2. a collection of image schemas and general background knowledge.
Find 1. two adequate mental spaces I1 and I2,

2. an adequate generic space G of I1 and I2,
3. a mental space B for the novel concept created by blending I1 and I2 following G.

Note that the last line is exactly the definition of conceptual blending: creating a blend
from two input spaces following a generic space. Hence, if the blending process of the CBT
is a model for creativity (combinatorial creativity to be precise [12]), then we claim that
when novel concept understanding (creating a mental space for the novel concept) requires
blending, then we should also consider it to be a creative process.

Fig. 4 The task of novel concept understanding by blending: when a novel concept is given (and only an
incomplete mental space can be created for it), then the task is finding an adequate blending network that
creates a complete mental space for the novel concept. Arrows indicate information flow
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Fig. 5 Example of an icon: A
concept visually represented by
an arrow shape and a C-like shape

It is important to remark that three arrows indicating information flow in Fig. 4 are
bidirectional: the novel concept B has an incomplete mental state, which yields some infor-
mation to find the adequate input mental spaces, and then those input mental spaces are
used to generate the actual blend for B (thus completing B’s mental space).

As a case study, the process of understanding the icon shown in Fig. 5 has been chosen.
Notice that the input here is the visual sign, and the understanding task consists on adjudi-
cating a meaning to that visual sign. In the case of a computational agent, perceiving the
visual sign in Fig. 5 may not yield a concept immediately (i.e. the mental space built by per-
ception is not complete), only after reconstructing a blending network the agent may have
the mental space of the new concept —which is equivalent, in our approach, to understand
the input; in other words, to understand what the image in Fig. 5 means.

Thus, in the approach presented, understanding a novel concept in a computational agent
is not directly equivalent to having a blend that needs to be “unpacked” —since that blend
(mental space) is still not complete —it is just a novel concept with an incomplete repre-
sentation in its mental space. The input is, like a word in linguistic approaches such those
of Wittgenstein or Grice,1 not immediately given as a concept (as a specific meaning),
but as an index to concepts, and the relationship between language and concepts is bet-
ter modelled as a mapping between two separate domains. In our case of study, we have a
visual sign (instead of a word or a sentence), but the same principle applies: the meaning
of the concept is not immediately and unequivocally given by the visual sign: we under-
stand it by being able to construct a blending network that works, and that maps some
lines to an “arrow” (i.e. concept usually indicating direction) and other lines to a delim-
ited C-shaped icon space/area. These two elements generate a new meaning2 together. For
that, agents can use tools such as: image schemas (see Section 3) and spatial descriptors of
shape/topology/location/direction (see Section 4) to indicate the relations of the elements in
the icon/sign.

3 Image schemas

The definition of the term image schema in [33] and [29] emphasises the bodily, sensory-
motor nature of various structures of our conceptualisation and reasoning. That is, if our

1Grice [25, 26] contends sentence and word meaning can be analyzed in terms of what utterers mean.
2We are assuming the visual sign is not already known, in which case no blending reconstruction is needed,
since it is just recalled from memory. The same is true of blends like “houseboat”: if we know what a
houseboat is we do not need to blend “house” and “boat”. Another example is “shipwreck”, that is commonly
understood as concept, without knowing whether it is (or historically originated from) a blend of “ship” and
“wreck” —Latin languages for this concept use words deriving from naufragium whose etymology is from
navis (“a ship”) and frangō (“I break”). Creative understanding addresses giving meaning to signs that are
novel with respect to an agent.
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cognitive reasoning operations are embodied (i.e. meaning, imagination and reasoning
emerge from our body interactions with the environment), then structures of perceiving and
doing must shape our acts of understanding and knowing. And these structures of perceiv-
ing and doing, or structures of sensory-motor experience (e.g. image schemas) can be used
to understand abstract concepts and to perform abstract reasoning [30]. So, according to
this, image schemas are defined in [30] as:

recurring patterns of our sensory-motor experience by means of which we can make
sense of that experience and reason about it, and that can also be recruited to
structure abstract concepts and to carry out inferences about abstract domains of
thought.

Different types of image schemas exist, as pointed out in [30], and some reflect properties
of space:

– Verticality schema: we give great significance to standing up, rising and falling down
because of the gravitational field we perceive.

– Source-path-goal: underlies our understanding of bodily motion along a path, where
there is a starting point (Source), a continuous set of steps (Path), taken toward the
destination (Goal).

– Scale schema: we continuously monitor our degree, intensity and quality of feelings or
body states which is the basis of our sense of scales of intensity of a quality.

– Container schema: we interact with containers of all shapes and sizes, and we natu-
rally learn the logic of containment, also hearing or reading the word in activates our
container image schema to understand the scene.

– Center-Periphery schema: we project right, left, back, near and far throughout the
horizon of our perceptual interactions, because of our embodiment.

There is also a logic inherent to image-schemas, for example via the transitive logic of
containment [30]: if the car keys are in your hand and your hand is in your pocket, then
we infer that the car keys are in your pocket. That is, image schemas arise in our per-
ception and bodily movement and have their own logic, which can be applied to abstract
conceptual domains. The book by Lakoff and Núñez [32] shows examples of the use of
image-schematic structure in abstract reasoning in mathematics. They show that image
schemas (operating within conceptual metaphors) make it possible for us to employ the logic
of our sensory-motor experience to perform high-level cognitive operations for abstract enti-
ties and domains. Moreover, each image schema can be conceived of as a cluster of related
schemas, as shown in [27], where a family of schemas around the notion of path, following
in the Source-path-goal image schema, are analysed from a computational point of view.

Research on image schemas is an active area of study in cognitive science that has not
yet been comprehensively formalised. This paper formalises two image schemas to apply
them to our case study (see Sections 5 and 6). Note that it is out of the scope of this paper
to formalise all image schemas in general.

In addition to image schemas, the next section presents other tools that a computational
agent can use for adjudicating an interpretation of an icon: qualitative spatial descriptors.

4 Qualitative spatial descriptors and its relation to image schemas

Qualitative modelling [21] concerns the representations and reasoning that people use
to understand continuous aspects of the world. Qualitative Spatial Representations and
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Reasoning (QSR) [2, 34, 41] models and reasons about properties of space (i.e. topol-
ogy, location, direction, proximity, geometry, intersection, etc.) and their evolution between
continuous neighbouring situations. Spatio-temporal reasoning models deal with imprecise
and incomplete knowledge on a symbolic level. Qualitative spatial descriptors that repre-
sent properties of space are the following: (i) topology: 4IM [11], 9IM [10], RCC-8 [7];
(ii) shape: QSD [14], LogC-QSD [40]; (iii) location: [22, 28]; (iv) orientation: [19, 36]; (v)
orientation and distance: [1], etc.

In the literature, qualitative models have been applied in AI, for example, the extended
Qualitative Image Descriptor and Logics QIDL+ apply computer vision algorithms to
digital images and extract spatial logics automatically from them [15, 16]. Other qualita-
tive spatial descriptors have also been used in cognitive science to solve perceptual tests
for matching 3D perspective descriptions [18], for paper folding reasoning [13], for solv-
ing Raven Progressive Matrices intelligence test by analogical reasoning [35], etc. In the
context of creativity, spatial descriptors and qualitative shape and colour descriptors and
their similarity formulations were tools for object replacement and object composition in
the theoretical approach presented by [37] to solve Alternative Uses Test. As qualitative
descriptors are suitable for modelling human spatial reasoning [13, 18, 35], a relation can be
established between image schemas and qualitative descriptors, as some examples shown in
Table 1.

Thus, qualitative spatial descriptors can link the visual representation of an icon with a
conceptual representation which can be related to a more cognitive interpretation, for exam-
ple, using image schemas. In the use case presented in Fig. 5, note that the lines in the icon
may correspond to concepts with meaning by matching with corresponding shape descrip-
tors (i.e. arrows); and, interior and exterior areas in icon-elements can be also identified by
topology descriptors. All these is detailed in the next section.

5 Extracting the spatial description of the icon structure

Following the part-whole schema, let us consider that the meaning of a whole icon can be
composed by the meaning of its parts and their relationships.

In our study case regarding visual signage, let us highlight that icon elements can be
identified and described separately. As an example, Fig. 6 shows our icon use case decon-
structed in: Element-I labelled as an Arrow-Icon, and Element-II labelled as a C-shaped icon
or C-Icon for short. Note that these two elements can be easily extracted from the icon by a
digital image colour segmentation approach, e.g. that used by Qualitative Image Descriptors
[15, 16].

Table 1 Relation between
images schemas and qualitative
descriptors

Image schema Qualitative descriptor

Path-source-goal orientation [19, 36], direction [19]

Scale shape [14, 40], relative length [17]

Container topology [7, 10, 11];

Verticality location [22, 28], orientation [19, 36]

Centre-Periphery orientation and distance [1]
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Fig. 6 The use case icon
decomposed in two visual
elements

These two icon elements are both described qualitatively (as Figs. 10 and 11 show below)
and then recognised as an Arrow-Icon and a C-Icon using pattern recognition algorithms (for
more details see [14]). Each icon element is further interpreted acquiring spatial meaning in
relation to an image schema, as shown in Fig. 7. The following subsections address these
relations.

5.1 Spatial description of element I: Arrow-icon

Arrows are visual signs that are very present in our daily lives. Figure 8 reminds us of
different examples of arrows. As it can be observed, all the examples of arrows provided
have many shapes. However, studies on qualitative spatial reasoning about arrow description
[31] determine that arrows in general can be defined by three component slots: the tail slot,
the body slot and the head slot (Fig. 9).

Thus, let us give a logical definition of an arrow a as follows:

tail(a, x) ∧ head(a, y) ∧ body(a, x, y) ⇒ arrow(a, x, y)

Another property that can be observed is that the head of the arrow is very characteristic
and it is mostly defined by 3 points (i.e. y, y2 y3 in Fig. 9) — the main point in the head,

Fig. 7 A description of the two icon visual elements interpreted by two image schemas
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Fig. 8 Examples of Arrows: straight arrows, curved arrows, round arrows, dashed arrows and double-arrows

and two other points that define a triangular shape:

head(a, y) ∧ triangle(y, y2, y3) ⇒ triangular-shape(a, y)

The body of the arrow is defined by the tail and the head. Thus it has a length, which can
be calculated as the distance between both points.

tail(a, x) ∧ head(a, y) ∧ distance(x, y, l) ⇒ has-length(x, y, l)

When the tail and head of an arrow are the same point, then the arrow can be categorised
as a round-arrow, which can be defined as:

arrow(a, x, y) ∧ arrow(a, y, x) ⇒ round-arrow(a, x, y)

A double arrow is characterised by having 2 heads and 2 tails, as follows:

head(a, x) ∧ head(a, y) ∧ tail(a, x) ∧ tail(a, y) ⇒ double-arrow(a, x, y)

The shape s of the arrow body can also be described –for example using a Qualitative
Shape Descriptor (QSD) [14].

tail(a, x) ∧ head(a, y) ∧ body(a, x, y) ⇒ has-shape(a, x, y, s)

Different kinds of arrows can be categorised using shape, but this is beyond the scope of
our paper.

The orientation of an arrow o is indicated by the location of its head with respect to its
tail:

tail(a, x) ∧ head(a, y) ∧ has-orientation(o, x, y) ⇒ orientation(a, o)

Orientation descriptor (OD ) In order to obtain the orientation of an element of an icon (i.e.
an arrow), the coordinates of the front/head (p1) and the back/tail (p0) are compared. In 2D,

Fig. 9 Arrows are spatial signs
that have a starting and ending
point indicating a direction
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Fig. 10 Describing Arrow-Icon using qualitative descriptors

their increasing or decreasing x and y values define the orientation of the object as indicated
by the Orientation Reference System (ORS) [19] summarised as follows:

OD ORS

towards-right �x

towards-right-up �x � y

towards-right-down �x � y

towards-left �x

towards-left-up �x � y

towards-left-down �x � y

towards-up �y

towards-down �y

Note that if, e.g. the arrow is circular, its orientation is composed by all the orientations
defined by ORS , since they have all been taken at some point in the cycle.

Thus, the Arrow-Icon can be described using some of the previous predicates, as shown
in Fig. 10.

5.2 Spatial description of element-II: C-icon

Let us describe the topology of the space delimited by C-Icon by taking into account the
Gestalt closure principle and the study on open containers [9], which show that human
perception tends to fill in the missing information in order to close shapes.

Thus, according to RCC-8 [7], it can be stated that a point p is in the interior of an object
(obj ) if a line can be built using 2 points in the border of the object and this point p is
included in that straight line:

border-point(obj, b1) ∧ border-point(obj, b2) ∧ line(b1, b2, l) ∧ point-in-line(p, l)

⇒ interior(p, obj)

Therefore an interior space and an exterior space can be defined for the C-Icon as shown
in Fig. 11. Moreover, the shape of C-Icon can be described using a Qualitative Shape
Descriptor (QSD) as shown in Fig. 11, that is: how many lines or curves are connected, what
kind of angles they define, its lengths, etc. (for definitions and a more detailed description
see [14, 40]).

5.3 Spatial relation between the icon elements: Arrow-icon and C-icon

The spatial relation of the Arrow-Icon and C-Icon elements (with respect to each other and
with respect to the overall icon) can be described by qualitative descriptors of location and
topology.
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Fig. 11 Describing the shape and topology of C-Icon using qualitative descriptors

Topological descriptors (TD ) Situations in space that are invariant under translation, rota-
tion and scaling transformations of elements are described by topology. Some common
topological relations used in describing the situation of an object a with respect to another
object c (a wrt c) are the following:

TD = {disjoint, touching, inside, container}
In 2D space, an object a is disjoint from another object c, if they do not have any edge or

vertex in common. In contrast, they are touching if there is a point from a (pa) included in
the border of c (bc) at least, or vice versa —i.e., if they have a point at least in their common
border. Note that disjoint and touching are inverse relations. This can be expressed logically
as follows:

has-border(a, ba) ∧ has-point(ba, pa) ∧ has-border(c, bc) ∧ has-point(bc, pc) ∧
(point-in-border(pa, bc) ∨ point-in-border(pc, ba)) ⇒ touching(a, c)

¬touching(c, a) ⇒ disjoint(a, c)

Location descriptors (LD ) For obtaining the location of an object a (or a point of an object
x) with respect to another object c, the following Location Reference System (LoRS) [22,
28] is used which divides the space into nine regions (see Fig. 12):

LD= {up, down, left, right, up-left, up-right, down-left, down-left, centre}
Figure 13 presents an excerpt of the qualitative descriptors which relate the icon

elements.

Fig. 12 Locations described by
the QIDL+
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Fig. 13 An excerpt of the qualitative spatial descriptors generated for our icon use case

6 Recreating the novel concept blend

This section presents the relation between the two extracted icon elements (and its qualita-
tive spatial descriptors) with two image schemas. Intuitively, the goal to achieve is a blend
that generates the icon meaning. For this purpose, this section proceeds as follows: the C-
Icon is related to the Container image schema (Section 6.1), the Arrow-Icon is related to the
Source-Path-Goal image schema (Section 6.2), and thus the two input mental spaces needed
for blending are obtained. Finally, the last blend of this two input spaces is undertaken; the
result is a re-creation of the blending network with last blended space giving the meaning
exit to our use case icon (see Fig. 14).

6.1 Relating C-icon with the container image schema

Let us define the Container image schema as follows:

∀x ∈ Space

Axioms : Within(x, Border) ⇒ x ∈ IN;
x ∈ OUT ⇔ x �∈ IN

that is, a schema that defines two subspaces (IN and OUT) in a space with an abstract Border
separating IN from OUT.

Blending the Container image schema with the C-Icon, as shown in Fig. 15, requires a
generic space G1 with mappings f and g that identify the elements in the two input spaces

Fig. 14 An interpertation of the Exit visual sign combining Container and Source-Path-Goal image schemas
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Fig. 15 A blend of the C-Icon element and the Container image schema

with the generalised elements a1, a2:

f (a1) = border g(a1) = obj

f (a2) = x ∈ IN g(a2) = interior(x, obj)

where obj refers to the visual element C-Icon that is identified with the abstract Border, and
when x is situated in the interior of the C-Icon is identified with being situated inside the
container (x ∈ IN ).

The blend B1 that integrates the Container schema and the C-Icon is directly obtained by
the identifications made in G1:

∀x ∈ Space

Axioms : interior(x, obj) ⇔ x ∈ IN;
exterior(y, obj) ⇔ y ∈ OUT

x ∈ OUT ⇔ x �∈ IN

that is, the interior of the C-Icon (noted as obj ) is identified with the IN subspace of the
Container schema (and the rest with the OUT subspace).

6.2 Relating arrow-icon with source-path-goal image schema

Let us define the Source-Path-Goal (SPG) image schema as follows:3

source(x) ∧ goal(y) ∧ path(x, y) ∧ trajector(p);
Axioms: loc(p, x, t) ∧ loc(p, y, t ′) ⇒ t < t ′

where loc(p, x, t) stands for the entity p located at place x in time t .
The generic space G2 in Fig. 16 establishes the mappings f and g that identify the

elements in the two input spaces with the generalised elements a1, a2, a3, as follows:

f (a1) = source g(a1) = tail

f (a2) = goal g(a2) = head

f (a3) = path g(a3) = body

3Note that this is not intended to be a general valid specification for the Source-Path-Goal (SPG) schema,
just a consistent interpretation of SPG suitable for our purpose of study. Regarding the approach where an
image schema is considered to be a family of similar but distinct schemas, e.g. see [27]. In this view, we use
an image schema of the SPG family.
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Fig. 16 Blending a spatial description of the Arrow-Icon with the Source-Path-Goal image schema

Let us rename, for clarity’s sake, the generalised elements a1, a2, a3 respectively as origin,
destination, and trajectory; then the blend B2 in Fig. 16 can be defined as:

arrow(a, x, y) ∧ origin(x) ∧ destination(y) ∧
trajectory(x, y) ∧ trajector(p) ∧
loc(p, x, t) ∧ loc(p, y, t ′) ∧ t < t ′

that is to say, the Arrow-Icon is interpreted as a visual metaphor for the SPG schema and this
interpretation adopts some properties of the SPG (i.e. an implicit “trajector” and a temporal
dimension).

6.3 Generating themeaning of Exit by a concept blend

The meaning Exit may be achieved by blending the input spaces from the two previous
blends, B1 and B2, as shown in Fig. 17. For that purpose, let us first specify how B1 and B2
match in a new generic space G3:

f (a1) = origin(x) g(a1) = interior(x, obj)

f (a2) = destination(y) g(a2) = exterior(y, obj)

Fig. 17 Blending the two previous blends to understand the meaning of the icon Exit
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That is to say, G3 maps the origin of the Arrow-Icon (x) to an interior point of the C-Icon
(obj ) and that the head of the arrow (y) is mapped to an exterior point.

Given the mappings at G3, the blend B3 is created as shown in Fig. 17. This blend B3
gives meaning to the Exit icon by projecting and integrating the two previous blends that
serve as input spaces yielding the following:

arrow(a, x, y) ∧ origin(x) ∧ destination(y) ∧
interior(x, obj) ∧ exterior(y, obj) ∧
trajectory(x, y) ∧ trajector(p) ∧
loc(p, x, t) ∧ loc(p, y, t ′) ∧ t < t ′

that is to say, the origin of the Arrow-Icon is inside the container (a place, an inside), the
destination is outside the container, and there is a trajector that starts inside the container and
moves until reaching a place in the exterior of the container (an outside) at a later time. This
is precisely equivalent to a conceptual description of the verb exit —“an act of going out of
or leaving a place” (New Oxford American Dictionary). Notice that the blend B3 mentions
the arrow but not the place (or container): it states properties of being inside or outside of
that elided place. This is consistent to the use of the visual sing Exit, where the place is also
implicit: it is the place where the sign is located (be it a building lobby, an airport lounge,
etc.) that (deictically) indicates the place to be exited from. Similarly, the trajector is not
explicitly given.

The overall process of re-creating the blend (or more technically the blended network) is
shown in Fig. 18 (generic spaces are omitted for simplicity). Notice that the blended mental
spaces –including the blend B3– have visual information (qualitative spatial descriptors) and
abstract properties (from the image schemas). Initially, creative understanding has only the
visual information, that is perceived and characterised as a collection of qualitative spatial
descriptors (defining the Arrow-Icon and the C-Icon and their spatial relations). Finding
image schemas that fit well with the visual information gives a possible interpretation for

Fig. 18 The overall process of understanding the visual representation for Exit. Generic spaces are omitted
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the meaning of the Arrow-Icon and the C-Icon by blending them to obtain the Exit-icon
mental space by reconstruction of the blending network.

Moreover, note that more than one possible blend may be obtained when reconstruct-
ing the blending network. For example, for our use case, in addition to the blend B3 Exit,
another blend B ′

3 could have been obtained with meaning “Exit to the right”. That would
be possible if the predicate orientation(arrow-icon,towards-right) in B2 was included in the
partial projection from B2 to B ′

3, so that B ′
3 would include a further spatial location predicate

like this: orientation(x,y,towards-right). This fact shows that the process of understanding a
(novel) blend is more complex than a mere unpacking of information that is “already there”.
Instead, we view understanding (or interpreting) a novel visual sign as a full-fledged blend-
ing process (in the sense the computational blending model by [12]) that aims at creating
the concept blend that corresponds to that novel sign.

7 Discussion

In a communication setting, what is transmitted by the utterer is not a conceptual blend,
but a (semiotic) sign: a blend, we shall recall here, is a mental space in the CBT. Thus,
the expression “unpacking the blend” may be misleading, in that it seems to assume we
have already the blend we need to unpack. The approach taken in this paper, at least for
computational models of blending, requires some creative processes of blending whenever
a received sign is novel/unknown, that is, does not have an already known meaning. The
receiver hypothesises the elements of that sign which can be understood (be it houseboat or
Exit) if a blend that reconstructs the intended meaning of the sign is found by recreating the
blending network that was used in generating that sign.

In the visual language scenario of icons, pictograms and signage, our approach shows
that meaning can be grounded whenever pre-existing mental spaces can be used to recon-
struct such blending network. Failure to find adequate mental spaces (e.g. to extract the
visual information of each element of an icon) ends up in failing to create a blend and thus
failing to understand the meaning of that complete visual sign/icon.

Therefore, we assume that, understanding a new concept via blending is also a cre-
ative process, whether the blend is a new concept (e.g. “houseboat”), a new metaphor (e.g.
“This surgeon is a butcher”) or a new pictogram (e.g. the Exit icon). The reason is that
understanding a “new blend” (that is in fact a sign charged with a not yet ascertained mean-
ing) involves creating a new blended space that (if successful) reconstructs the blending
network (and thus the meaning) of the utterer. Thus, understanding requires conceptual
blending, and even more: it also requires to select or create the mental spaces (if they do not
already exist) that will serve as input spaces, together with the generic space that determines
which elements and relations of both input spaces are identified. If this summary is cor-
rect, and we have shown here a case study with the Exit icon example, blend understanding
requires the same components and processes as blend generation: (1) creating mental spaces
for the two input spaces (note that this can be a complex process, including selecting an
image schema and a specific blending process); (2) creating a generic space that determines
what is identified as commonalities in both input spaces; and (3) blending the two input
spaces.

In this paper, we argue that both generation and understanding of new conceptual blends
are (individually) creative. The reason is that they involve the same components and opera-
tions (at least from the point of view of a computational model, which is our interest here).
However, they are not the same, so the question of how they differ must also be clarified.
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For this, we may take an approach to meaning such as Grice [25, 26] in our computational
models: that the relationship between language (oral, textual or pictographic) and concepts
is better modelled as a mapping between two separate domains. This approach is also con-
sistent with construction grammar models of linguistics, where a construction (f, c) is a
pairing of forms f (sounds, pictograms) and content c (conceptual structures having seman-
tic and pragmatic meaning). In this view, generation is a process c −→ f (from content to
form) while understanding is a process f −→ c (from form to content or meaning).

Thus, for a pictographic sign like Exit to be understood, this involves that there is a
process f −→ c, and creating c requires constructing a blending network that uses “unpack-
aged” information from f . However, we should not call f a blended mental space, instead
it is better to consider f as a sign that constitutes a partial specification of a mental space
that needs to be created. The blended mental space is a pairing (f, c) where c has been
created by one or several blends, and it is successful if (or as long as) it reconstructs
the intended meaning by the utterer of f . Previous work has been focused on designing
computer icons by means of conceptual blending [3, 5], that is, going from an intended
meaning to a pictogram the can express that meaning. That work considers icons as pair-
ings (f, c) (visual form and concept structure), and it considers also icon understanding
as the dual process (going from form to meaning). However, this duality goes further than
expected: understanding was assumed to be ‘simpler’ than generating but, as we have tried
to show in this paper, understanding requires the whole gamut of mental space creation,
generic space determination, and blend generation. For this reasons we state that under-
standing of a novel/unknown concept, a creative artefact, is also a creative process in the
sense of the CBT.

As future work, we intend to evaluate our approach by asking designers to create novel
icons which we will use as inputs for our system to obtain an interpretation. For that,
designers may use a tool which may obtain automatically a qualitative description of the
icons. This description will be the logic input to our approach. Finally, in order to validate
the interpretations obtained by our approach, we will ask different people to find out the
meaning of that novel icons and we will find out if they agree with our approach, with the
designers or with both.
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