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Abstract

The explanation of the results is a key point of auto-
matic problem solvers. CBR systems solve a new prob-
lem by assessing its similarity with already solved cases
and they commonly show the user the set of cases that
have been assessed as the most similar to the new prob-
lem. Using the notion of symbolic similarity, our pro-
posal is to show the user a symbolic description that
makes explicit what the new problem has in common
with the retrieved cases. Specifically, we use the no-
tion of anti-unification (least general generalization) to
build symbolic similarity descriptions. We also present
an explanation scheme using anti-unification for CBR
in classification tasks that focuses on explaining what
is shared between the current problem and the retrieved
cases that belong to different classes.

Introduction
Explaining the results of automated problem solving sys-
tems is a key issue concerning their acceptability and un-
derstandability. These explanations have to support the user
in both the understanding of the result and the process to
reach it. When this process is not clearly explained in a con-
vincing way the user could reject using the problem solving
system. Case-based reasoning (CBR) systems predicts the
solution of a problem based on the similarity between this
problem and already solved cases. Clearly, the key point is
the measure used to assess the similarity among the cases.
Sometimes the resulting similarity value is difficult to ex-
plain, thus CBR systems commonly show the user the re-
trieved cases (the set of cases that have been assessed as the
most similar to the new problem). Nevertheless, when the
cases have a complex structure, simply showing the most
similar cases to the user may not be enough.

In this paper we will propose a way to summarize the sim-
ilarity of a new case with the retrieved cases by means of a
symbolic description. These descriptions capture in a sym-
bolic way those aspects of the retrieved cases that are similar
to current case; these symbolic similarity descriptions will
be showed to the user as an explanation of the CBR predic-
tion for the current case.
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In our experience, we observed that for classification
problems using the k-NN algorithm sometimes the k re-
trieved cases are classified in different classes. Commonly,
these situations are solved using criteria such as the majority
rule (i.e. the new problem is classified in the same class as
the majority of the retrieved cases) to give the classification
of the new problem. Nevertheless, this situation needs to be
well explained to the user, specially when the majority is not
overwhelming (for instance, when k = 5 and three of the re-
trieved cases are in a class C1 and the other two cases are
in another class C2). The approach in this paper is that, in
addition to make explicit the similarities of the current case
with the retrieved cases, it is useful to make explicit the sim-
ilarities among the new problem and the retrieved cases in
each class separately.

While CBR systems customarily use numeric assessment
techniques (usually metrics or distance measures), the key
notion in our approach is that of symbolic similarity. Us-
ing numeric assessment techniques makes sense to induce
a ranking on the degree of importance that past cases have
with respect to the current case, and finally selecting the
higher ranking ones as the set of retrieved cases. In order to
provide explanations, however, numeric values provide less
leverage than symbolic explanations. Thus, we can consider
the notion of symbolic similarity between two cases as a type
of description that expresses aspects common to (or shared
by) these two cases.

In fact, taking the notion of generalization from Machine
Learning, we can see that any generalization of two cases is
a description of some aspects they both have in common; in
other words, a symbolic similarity description can be built
by any generalization process. The difference is that gener-
alizations in inductive ML are built to symbolically describe
necessary (and often also sufficient) conditions for a case to
belong to a class; since many generalizations can be built, in-
ductive ML can then be seen as a search process in the space
of generalizations. Moreover, inductive ML techniques of-
ten focus on finding discriminant generalizations, i.e. gen-
eral descriptions that predict a case to be of a specific class
and not of any other.

In our situation, however, is different: CBR already pro-
vides a way to predict a solution. We consider the general-
ization of two or more cases (e.g. the current case and one
or more retrieved cases) as a description of what is simi-



lar, what is shared, among them. Moreover, we will not be
building discriminant descriptions, instead we will use gen-
eralizations as explanations of the current CBR prediction
being endorsed by the currently retrieved cases. Therefore,
although a symbolic similarity description is technically a
generalization, the use we put them to is different than the
use they have in inductive ML. For this reason, and to avoid
confusion with ML usage, we will call the explanations we
will build symbolic similarity descriptions.

Approach
The goal of our approach is to explain the CBR result in a
way understandable by an user that is expert in some domain
but that he has not necessarily be aware of the formalism
used to represent the domain. In the present paper we pro-
pose an explanation scheme for classification problems that
follows the same idea of the symbolic similarity introduced
in (Plaza, Armengol, & Ontañón 2005) but that is indepen-
dent of the CBR method used to solve the problem. Our
hypothesis is that the result of the retrieval process is a re-
trieval set C with the k cases; our approach is independent
of how the cases in retrieval set are determined, although in
the rest of the paper we will assume they are the most similar
cases to the new problem following some k-NN technique.

The explanation scheme we propose is based on apply-
ing to the set C the concept of least general generalization,
commonly used in Machine Learning. The relation more
general than (≥g) forms a lattice over a generalization space
G. Using the relation≥g we can define the least general gen-
eralization or anti-unification of a collection of descriptions
(either generalizations or cases) as follows:

• AU(d1, ..., dk) = g such that g ≥g d1 ∧ ... ∧ g ≥g dk

and does not exists g′ ≥g d1 ∧ ... ∧ g′ ≥g dk such that
g >g g

′

That is to say, g is the most specific generalization of
all those generalizations that cover all the descriptions
d1, ..., dk. The interpretation of anti-unification from the
point of view of symbolic similarity is the following: con-
sider the anti-unification of two cases g = AU(d1, d2), then
g is the description of all that is common to (or shared by) d1

and d2. Therefore, anti-unification builds a symbolic simi-
larity that describes all aspects in which two ore more cases
are similar.

In the rest of the article we will use the formalism of fea-
ture terms to describe both generalizations and cases. A fea-
ture term was defined as follows:

Feature Terms Given 1) a signature Σ = 〈S, F,≤〉 (where
S is a set of sort symbols; F a set of feature symbols, and
≤ is a decidable partial order on S such that ⊥ is the least
element called any) and 2) a set υ of variables, a feature
term is an expression of the form:

ψ ::= X : s[f1 = φ1, ..., fn = φn] (1)

where X (the root of the feature term) is a variable in υ,
s is a sort in S, f1, ..., fn are features in F, n ≥ 0, and
each φi is in turn, a set of feature terms and variables.
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Figure 1: A sort hierarchy for the Toxicology ontology.

Notice that when n = 0 we are defining a variable with
no features.

The partial order ≤ gives an informational order among
sorts since s1 ≤ s2 means that s1 is a super-sort of s2, i.e.
s2 is more specific than s1. Notice that this order is the
converse of ≥g: ≤ is the more-specific-than relation while
≥g is the more-general-than relation. Using the partial order
≤we can also define the least upper bound (lub) of two sorts
as the most specific super-sort common to both sorts.

In order to illustrate feature terms and the notion of
lub we will use examples of the Toxicology domain
(ntp.niehs.nih.gov/ntpweb/). The goal is to classify a
given chemical compound as positive or negative for car-
cinogenicity on both sexes of two rodent species: rats and
mice. We used feature terms to describe the molecular struc-
ture of chemical compounds (Armengol & Plaza 2005) and
also we defined an ontology based on the IUPAC nomencla-
ture for chemical compounds. Figure 1 shows the sort hi-
erarchy representing this chemical ontology. The most gen-
eral sort is organic-compound and most specific sorts are the
leafs of this hierarchy (e.g. pentane, hexane, benzene, fu-
rane, etc). Thus, when comparing two sorts, for instance
benzene and furane, organic-compound is a super-sort of
both. The least upper bound (the most specific super-sort)
of benzene and furane is the sort monocycle. Similarly, the
lub of benzene and xantene is the sort ring-system; and the
lub of methane and O-compound is organic-compound.

Figure 2 shows an example of feature term. The C-127
is a feature term of sort organic-compound with three fea-
tures main-group, radical-set and p-radicals. The values
of these features are in turn, feature terms with their par-
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Figure 2: Description of the organic compound C-127, the
5-nitro-O-anisole.

ticular features. Thus, the value of the main-group feature
is a feature term B1 of sort benzene with no features. The
feature radical-set has as value a set of three feature terms
A1, N1 and C1 of sorts amine, nitro-derivate and organic-
compound respectively. C1 has as features main-group and
radical-set. The value of main-group is the feature term
O1 of sort ether; and the value of radical-set is a feature
term M1 of sort methane. The feature p-radicals of the fea-
ture term C-127 is a set of three feature terms: p1, p2 and p3.
The feature term p1 (as p2 and p3) of sort relative-position
is described with two features: radicals and distance. The
values of radicals are the same feature terms A1 and N1 in
the feature radical-set. The value of distance is the num-
ber 2 (meaning that there is a distance of two carbon atoms
between the radicals A1 and N1). The description of the
feature terms p2 and p3 is similar to the p1 description.

Figure 3 shows the algorithm used to build the anti-
unification of two feature terms. Given two feature terms
D1 and D2 of sort s1 and s2 respectively, the algorithm cre-
ates a new feature term D of sort s. There are three possi-
ble cases: 1) when both D1 and D2 are of the same sort s,
then D will be also of the sort s; 2) numbers are generalized
to the sort number; and 3) when D1 and D2 have different
sorts, the sort of D is the least general sort of both D1 and
D2. The next step is to define the features of D. The fea-
tures of D will be the features common to D1 and D2 and
the value that each common feature f takes in D will be
the anti-unification of the feature terms that are values of f
in D1 and D2. When the value of the feature f is a set in
at least one of the feature terms, then the set-antiunification
function has to be applied.

Function AU (D1, D2)
  s1 := sort(D1)
  s2 := sort(D2)
  case 
 1) s1 = s2 : return a ft D of sort s = s1 
 2) s1 = number and s2 = number : return a ft D of sort s = number
 3) otherwise return a ft D of sort s = lub(s1, s2)
 end case 
common := common-features (D1, D2)
for each f in common do 
        v1 = D1.f

            v2 = D2.f
        if (v1 is a set) or (v2 is a set) then 

D.f := set-antiunification (v1, v2) 
            D.f := AU (v1, v2) 
        end if 
end for 

Figure 3: The anti-unification algorithm. D.f stands for the
value that D holds in the feature f .

Let the sets V1 and V2 be the values of f inD1 andD2 re-
spectively. The anti-unification of V1 and V2 has to produce
as result a set S of cardinality min{card(V1), card(V2)}.
Each element in S is the anti-unification of an element
(feature term) in V1 and an element of V2. Specifically,
AU(V1, V2) finds a set of values S such that:

• card(S) = min{card(V1), card(V2)}
• each si ∈ S is the anti-unification of two values vj ∈ V1

and vk ∈ V2. The AU algorithm is applied to each pos-
sible pair (vj , vk) obtaining a set G with V1 × V2 feature
terms

• AU(V1, V2) is the set of the most specific card(S) ele-
ments in G. The selection of these elements has to be
made taking into account that there are incompatible pairs
of values. For instance, let us suppose that the most spe-
cific feature term in G has been obtained from the anti-
unification of the pair (vi, vh) (vi ∈ V1 and vh ∈ V2).
In such situation, all the gp ∈ G obtained from the anti-
unification of vi or vh have to be rejected since they are
incompatible with (vi, vh).

To illustrate this algorithm we will show the anti-
unification of the chemical compounds C-127 (Fig. 2) and
C-084 (Fig. 4). AU(C-127, C-084) is a feature term of sort
organic-compound. The set of features common to C-127
and C-084 is {main-group, radical-set, p-radicals}. For
each one of these common features, their values will be anti-
unified recursively. Since the value of the feature main-
group is benzene in both C-127 and C-084, the value of
main-group in AU(C-127, C-084) is also benzene.

The value of the feature radical-set is the set V1 =
{A1, N1, C1} in C-127 and the set V2 = {A2, A3, C2}
in C-084. Thus, AU(V1, V2) will be a set containing the
three most specific feature terms. Table 1 shows the possi-
ble anti-unifications of all combinations of pairs of values
(one from V1 and the other from V2). The column labeled
as AU(vi, vh) shows the anti-unification of the sorts of the
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Figure 4: The chemical compound C-084, the 2,4 - diamino
anisole.

AU(vi, vh) vi ∈ V1 vh ∈ V2

g1 : amine A1 : amine A2 : amine
g2 : amine A1 : amine A3 : amine
g3 : organic-comp A1 : amine C2 : organic-com
g4 : N-compound N1 : nitro-derivate A2 : amine
g5 : N-compound N1 : nitro-derivate A3 : amine
g6 : organic-comp N1 : nitro-derivate C2 : organic-com
g7 : organic-comp C1 : organic-comp A2 : amine
g8 : organic-comp C1 : organic-comp A3 : amine
g9 : organic-comp C1 : organic-comp C2 : organic-com
main-group = O2 : ether

radical-set = M2 : methane

Table 1: Set Grs containing all possible pairs of values of
the feature radical-set, V1 and V2, and their anti-unification
(AU).

two values of the pair (vi, vh). The set AU(V1, V2) has to
contain the three most specific gp ∈ Grs.

The most specific feature term obtained from the pairs
(A1, A2) and (A1, A3) is of sort amine. Notice that both
pairs are incompatible, since both use A1 ∈ V1. Thus, the
first element of AU(V1, V2) is a feature term of sort amine
with no features. Let us assume that g1 = AU(A1, A2)
is included in AU(V1, V2). This means that pairs g2, g3, g4
and g7 are incompatible with g1 and, therefore, they cannot
be included in the set AU(V1, V2). The next most specific
feature term is g5 = AU(N1, A3), a feature term of sort N-
compound without features. Finally, the next most specific
feature term is g9, a feature term of sort organic-compound
that is the anti-unification of the feature terms C1 and C2
with the features main-group and radical-set. Therefore,
AU(V1, V2) = {g1, g5, g9}.

The feature p-radicals has as value the set V3 =
{p1, p2, p3} in C-127 and the set V2 = {p4, p5, p6} in C-
084. Table 2 shows the set Gpr of all the possible combi-

AU(vi, vh) vi ∈ V1 vh ∈ V2

g′
1 : relative-position p1 p4

radicals = amine, N-compound
distance = 2
g′
2 : relative-position p1 p5

radicals = amine, organic-comp
distance = number
g′
3 : relative-position p1 p6

radicals = amine, organic-comp
distance = number
g′
4 : relative-position p2 p4

radicals = amine, organic-comp
distance = number
g′
5 : relative-position p2 p5

radicals = amine, organic-comp
distance = number
g′
6 : relative-position p2 p6

radicals = amine, organic-comp
distance = 1
g′
7 : relative-position p3 p4

radicals = organic-compound
organic-compound

distance = number
g′
8 : relative-position p3 p5

radicals = organic-compound
N-compound

distance = 3
g′
9 : relative-position p3 p6

radicals = organic-compound
N-compound

distance = number

Table 2: Set Gpr containing all the possible combinations
among the values of the feature p-radicals, V3 and V4, and
their anti-unification (AU).
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Figure 5: Anti-unification feature term of the chemical com-
pounds C-127 and C-084.

nations of the values in V3 and V4 and their anti-unfications.
The column labeled as AU(vi, vk) shows the complete fea-
ture term anti-unification of the values. The most spe-
cific feature terms are g′1, g

′
6 and g′9 (they are not incom-

patible among them since they are the result of the anti-
unification of different values from V3 and V4). Therefore,
AU(V3, V4) = {g′1, g′6, g′9}. Figure 5 shows the complete
anti-unification feature term of the compounds C-127 and
C-084.

We have shown the anti-unification of two feature terms
for simplicity sake, but anti-unification can be applied to a
set of feature terms obtaining a new feature term with what
is shared by all the cases of the set.

Using anti-unification for explanation
This section presents the way in which descriptions resulting
from the anti-unification of a set of cases can be used to
provide explanation of the classification of a new problem
in CBR systems. Let CB be a case base containing cases
classified in one of the solution classes S = {S1, ..., Sm}.
Let us suppose that p is a new problem to be solved and
C = {c1, ..., ck} the set of the k cases more similar to c.
There are two possible situations:

• all the cases in C are in one class Si

• the cases in C are in several classes

Concerning the first situation, most of CBR methods clas-
sify p as belonging to Si and give as explanation of this
classification the k cases in C. Our approach is that the ex-
planation of why p is in Si is given by what c shares with
all the retrieved cases. In other words, the anti-unification
AU(c1...ck, p) is an explanation of why the cases in C have
been considered as the more similar to p, since it is a de-
scription of all that is shared among the retrieved cases and
the new problem. As an example, consider Fig. 6 where the
problem is the chemical compound C-068 and the k-NN al-
gorithm with k = 3 retrieves as most similar the compounds

Cl                       Cl

Cl      C       C     Cl

Cl                       Cl

C-068 C-027
Cl                       Cl
         C       C     
Cl                       Cl

C-000
Cl             Cl
         C      
Cl             Cl

Cl                       
         C       C       Cl    
Cl                       

C-074

saturated

Cl

Cl

Cl

anti-unificationsimilar casesproblem

Figure 6: The k = 3 compounds that the k-NN algorithm
retrieves as the most similar to C-068. The right part shows
the anti-unification of the three most similar cases.

C-074, C-027, C-028. Since the three retrieved cases are
carcinogenic for mice, C-068 will also be classified as car-
cinogenic for mice. The explanation of this classification
(right part of Fig. 6) is that all the compounds are saturated
hydrocarbons with (at least) three chlorine (Cl) radicals.

However, very often the second situation above with mul-
tiple possible solution classes occurs. For simplicity we will
our approach considering that some cases inC belong to one
solution class (say S+) and some others belong to another
class (say S−), but our explanation scheme is also applica-
ble to situations with more than two classes.

LetC+ ⊆ C the subset of cases in class S+, andC− ⊆ C
the subset of cases in class S− (C = C+ ∪ C−). In addi-
tion to the particular classification of p by using the majority
rule or some other aggregation criterion, the user should un-
derstand why the cases in C have been considered similar
to p. As we justified in the first situation above, the anti-
unification is a good explanation when all the cases in P be-
long to the same solution class but this is not the situation
now. The explanation scheme we propose for this situation
is composed of three descriptions:

• AU∗: the anti-unification of p with all the cases in C.
This description shows what aspects of the problem are
shared by all the retrieved cases, i.e. the k retrieved cases
are similar to p because they have in common what is de-
scribed in AU∗.

• AU+: the anti-unification of p with the cases in C+. This
description shows what has p in common with the cases
in C+.

• AU−: the anti-unification of p with the cases in C−. This
description shows what has p in common with the cases
in C−.

This explanation scheme supports the user in the under-
standing of the classification of a problem p. Figure 7 shows
the intuitive idea of our approach. The problem p is on the
border of the two solution classes. This means that it is sim-
ilar both to some cases belonging to S+ and to some other
cases belonging to S−. In fact, in the situation shown in
figure 7 (p similar to 4 cases of the class S+ and to 3 cases
of the class S−) the only reason to classify p in S+ is that
there is only one more case in C+ than in C−. With the
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Figure 7: The sets of retrieved cases used to build the three
anti-unification terms used in the explanation schema.

explanation scheme we propose, the similarities among p
and the cases of each class are explicitly given to the user,
who can decide the final classification of p. Thus, A∗ is
the anti-unification of all the cases considered as the most
similar to p, i.e. is a description containing all the com-
monalities of the similar cases. When this description is too
general (e.g. most of the features hold the most general sort
as value), the meaning is that the cases have low similar-
ity. Conversely, when A∗ is a description with some fea-
tures holding some specific value, this means that the cases
share something more than only the general structure. For
instance, the AU∗ of the chemical compounds 6- hydroxy-
naphtalene and the 2- amino, 3- methylfuran (shown in Fig.
8) is a feature term that describes a molecule that is a ring
system (since the 2- amino, 3- methylfuran is a monocycle
and the 6- hydroxynaphtalene is a polycycle) holding one
radical with no specific sort, since the lub of the alcohol
(OH) and both the amine (NH2) and the methane (CH3) is
organic-compound. Therefore, for this example the AU∗ is
not very informative. Instead, the explanation of the classifi-
cation of the chemical compound C-068 (Fig 6) gives more
information since explains that all the compounds are satu-
rated hydrocarbons with three chlorine radicals.

O

NH2 CH3

OH

organic-compound

AU* =     main-group = ring-system

    radical-set = organic-compound

Figure 8: Molecular structure of the 2- amino, 3- methylfu-
ran (left) and 6- hydroxynaphtalene (right), and their anti-
unification.

The AU+ shows the commonalities among the problem
p and the retrieved cases belonging to C+. This allows the
user to focus on those aspects that could be relevant to clas-
sify p as belonging to C+. As before, the more specific is
AU+ the more information gives for classifying p. Notice
that AU+ could be as general as AU∗; in fact, it is possible
that both feature terms are equal. This situation means that
p has not too many similar aspects with the cases of C+ that
differ from those p shares with C−. A similar situation may
occur with AU−.

Let us to illustrate the complete explanation scheme with
an example on the Toxicology domain. In our example the
goal is to assess the carcinogenicity of the chemical com-
pound C-356 for male rats shown in Fig. 9, that also shows
the set C formed by five chemical compounds that have
been assessed as the most similar cases to C-356. The set
C can be partitioned in two subsets, namely C+ contain-
ing those compounds that are positive for carcinogenesis,
and C− containing those compounds that are negative for
carcinogenesis; specifically, C− = {C-242, C-171} and
C+ = {C-084, C-127, C-142}.

Following our approach, the explanation scheme for
chemical compound C-356 is as follows:

• The description AU∗ is the chemical structure shown in
the left of Figure 10; i.e. the compounds in C and C-
356 have in common that they are all benzenes with at
least three radicals: one of these radicals is a functional
group derived from the oxygen (i.e. an alcohol, an ether or
an acid) called O-compound in the figure; another radical
(called rad1 in the figure) is in the position next to the
functional group (chemically this means that both radicals
are in disposition ortho). Finally, there is a third radical
(called rad2 in the figure) that is in no specific position.

• The description AU− is the chemical structure shown in
Figure 10, and shows that C-356 and the chemical com-
pounds in C− have in common that they are benzenes
with three radicals: one radical derived from an oxygen
(O-compound), a radical rad1 with another radical (rad3
in the figure) in position ortho with the O-compound, and
finally a third radical (rad2) with no specific position.

• The description AU+ is the chemical structure in Figure
10, and shows that C-356 and the chemical compounds
in C+ have in common that they are benzenes with three
radicals: one of the radicals is derived from an oxygen
(O-compound), another radical is an amine (NH2) in po-
sition ortho with the O-compound, and the third radical
(rad1) is at distance 3 of the O-compound (chemically this
means that both radicals are in disposition para).

Using the majority rule, the compound C-356 will be
classified in the class C+ (positive carcinogenesis) because
card(C+) = 3 and card(C−) = 2. The explanation
scheme shows to the user the feature term AU∗ that states
that all the retrieved compounds are benzenes with three rad-
icals, one of them an O-compound in ortho position with
respect another radical. Also, the feature term AU− states
that all the compounds with negative carcinogenesis (those
in C−) are also benzenes with three radicals. One of the
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rad1

O-compound

position?       rad2

AU*

rad1     rad3

O-compound

position?       rad2

AU -

rad1

O- compound

NH2

AU +

Figure 10: AU∗ is the chemical structure common to all
the compounds in Fig. 9. AU− is the chemical structure
common to C-356 and the negative compounds (i.e. C-242
and C-171). AU+ is the chemical structure common to C-
356 and the positive compounds (i.e. C-084, C-127 and C-
142).

radicals is an O-compound in position ortho with another
radical that has, in turn, a radical. From both feature terms
AU− and AU∗ the user may infer that the position ortho
among the radical O-compound and the radical rad1 is only
important when rad1 has radicals since in such situation all
the compounds in C− are negative for carcinogenesis.

On the other hand, as states the feature term AU+, the
compounds in C+ are also benzenes with three radicals.
One of these radicals is an O-compound that is in position
ortho with a radical amine (NH2) and in position para with
another radical. By comparing both terms AU+ and AU−

the user may conclude that both the kind of radical in po-
sition ortho with the O-compound and the position of the
third radical are important to classify a compound as posi-
tive. In other words, from the descriptions AU− and AU+

the user is able to observe that the presence of the amine
may hypothetically be a key factor in the classification of a
compound as positive for carcinogenesis. Once the symbolic
similarity description gives a key factor (such as the amine
in our example), the user can proceed to search the available
literature for any empirical confirmation of this hypothesis.
In this particular example, a cursory search in the Internet
shown that there is empirical evidence supporting the hy-
pothesis of amine presence in aromatic groups (such as ben-
zene) being correlated with carcinogenicity (Sorensen 2001;
Ambs & Neumann 1996).

Finally, in situations where more than two classes are
present in the retrieval set, our explanation scheme is sim-
ply to build one anti-unification description for each one
of them. For instance, if cases in the retrieve set belong
4 classes the explanation scheme consists on the following

symbolic descriptions: AU∗, AU1, AU2, AU3, and AU4.

Discussion
The anti-unification is the least general generalization of a
set of cases. This means that it is described using the same
features than the cases and that it is a description completely
understood by the user. A very common explanation of the
result of a CBR system is to give the set of cases C more
similar to the problem p. The main shortcoming of this kind
of explanation is that when the cases have a complex struc-
ture or when the solution has needed of some adaptation,
the user can have some difficulties in understanding the so-
lution of the problem at hand (Doyle, Tsymbal, & Cunning-
ham 2003; McSherry 2004). Instead, using the explanation
scheme we propose, the anti-unification AU∗ gives a global
justification of why the cases in C has been considered as
the most similar and also gives a different description (i.e.
AU+ and AU−) to justify the similarity of the problem p
to each class, i.e. at first sight the user can understand why
the problem could be classified as belonging to a class. No-
tice that this explanation scheme supports the user in taking
the final decision to classify a problem when the cases more
similar to p belong to different classes, but this explanation
is independent on the classification produced by the CBR
system.

The anti-unification is a generalization but is not a dis-
criminant generalization for a class, i.e. it can cover not only
the examples used to generalize but also some unseen exam-
ples of a different class. As Fig. 11 shows, the AU− is the
generalization of the problem p and the cases in C−, nev-
ertheless it can also cover some cases with positive carcino-
genicity. The reason the anti-unification is not discriminant
is that AU− is built without using counter-examples, i.e. no
case in C+ is used.

Therefore, the anti-unification gives only an explanation
for the problem at hand focusing on what is shared and de-
scribing all that is shared. However, it is not a discriminant
description that distinguishes cases inC+ from cases inC−.
For this purpose counterexamples should be used to obtain
a generalization, say G+ for C+, such that G+ covers ev-
ery case in C+ and none in C−. Notice that G+ ≥g AU

+,
and therefore does not contain all that is common to p and
C+. In fact, using a standard top-down induction technique
to build G+ we would usually obtain the smallest discrim-
inant generalization. Although this approach is useful for
inductive learning, from our point of view a lot of useful in-
formation about what is shared is lost. This is the reason to
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Figure 11: This example shows that the generalizations built
by anti-unification are not discriminant descriptions.

use anti-unification for explanations instead of discriminant
generalizations as those that can be built, foe example, using
a decision tree induction technique.

Related Work
A common form of explanation in CBR is to show the user
the case that has been considered as the most similar to the
problem at hand. Nevertheless, there is a lot of work focus-
ing on the appropriateness of this explanation (Cunningham,
Doyle, & Loughrey 2003; McSherry 2004). Cunningham et
al. performed some experiments on classification tasks in
order to evaluate the importance of giving an explanation on
the user acceptance of the result. They compared the accep-
tance of the results of two systems: a CBR and a rule-based
system. The experiment showed that the results of the CBR
with explanations were more convincing than those of the
rule-based system.

McSherry (McSherry 2004) argues that the most similar
case (in addition to the features that have been taken as rel-
evant for selecting that case) also has features that could act
as arguments against that case. For this reason, McSherry
proposes that the explanation of a CBR system has to ex-
plicitly distinguish between the case features is favor of an
outcome and the case features against it. In this way, the
user could decide about the final solution of the problem. A
similar idea is that proposed by (McCarthy et al. 2004) that
use the differences among cases to support the user in under-
standing why some cases do not satisfy some requirements.

Our approach is based on generate an explanation scheme
from the similarities among a problem and a set of cases.
As the approaches of McSherry and McCarthy et al., the
explanation scheme of our approach is also directed to the
user. We make two assumptions: 1) a set C of the most
similar cases has been generated from a CBR method, and
2) the cases in C can belong to different classes. From
this set of cases, the explanation scheme shows the sym-
bolic similarity of the problem with all the cases retrieved
(AU∗) and also with the retrieved cases of each class
(AU1, AU2, . . . , AUk). This means that the user can an-
alyze the similarities and, by comparing the descriptions
AU∗, AU1, AU2, . . . , AUk, can determine by herself the

importance of the similarities and the differences among the
descriptions. The difference of our approach with that of
McSherry is that we explain the result using a set of simi-
lar cases whereas McSherry explains it using the similarities
and differences within the most similar case compared to the
problem at hand.

Other approaches, such that of Leake (Leake 1994) and
Cassens (Cassens 2004), consider that the form of the ex-
planation should be different depending on the user goals.
These approaches are based on the idea that the explana-
tion of the result cannot be based taking into account only
one case or a small set of cases. Leake (Leake 1994) see
the process of explanation construction as a form of goal-
driven learning where the goals are those facts that need to
be explained and the process to achieve them gives the ex-
planation as result. Cassens (Cassens 2004) uses the Activ-
ity Theory to systematically analyze the evolution of an user
in using a system, i.e. how the user model is changing. The
idea is that in using a system the user can change his ex-
pectations about it and, in consequence, the explanation of
the results would also have to change. In our approach we
are considering classification tasks, therefore the user goals
are always the same: to classify a new problem. This means
that the explanation has to be convincing enough to justify
the classification and we assume that the kind of explanation
has always the same form, i.e. it does not change along the
time.

In this paper we used the notion of symbolic similarity to
produce explanations on the performance of CBR systems.
In addition, to show the retrieved cases to the user, our pro-
posal also shows the most specific generalizations covering
the retrieved cases and the new problem.

Since CBR systems perform lazy learning, and lazy learn-
ing builds local approximations of the target concepts, we
can view the explanations in this framework. For instance,
the retrieved cases in C+ are an extensional description
of the local approximation to the carcinogenicity concept,
while the most specific generalizationAU+ is an intensional
description of the local approximation to the carcinogenic-
ity concept. Thus, our approach complements the classi-
cal explanation in CBR based on extensional descriptions
of the local approximation with several intensional descrip-
tions (AU∗, AU+, andAU−) that allow the user to focus on
what is shared (and not shared) among the new problem and
the retrieved cases.

The idea of symbolic similarity was introduced in (Ar-
mengol & Plaza 2003) but was there used to build a discrim-
inant generalization. In this approach, a symbolic similarity
description is considered as a local approximation of a class
description. This local approximation is obtained using the
most relevant features of the new problem; then cases that
do not satisfy this approximation were discarded. The result
is a symbolic description that is satisfied only by cases that
belong to one of the classes; thus, that description can be
considered as a partial description of the class. This sym-
bolic description can then be used to explain why a problem
has been classified into a class and the cases covered by that
description form the retrieved set that can be shown also to
the user as endorsing the system prediction.



Conclusions and Future Work

In this paper we focused on the problem of how to explain
the user the classification given by a CBR system. In par-
ticular, we assumed that the outcome of the CBR is a set
of the k cases considered as the most similar (under some
specific criteria) to the problem at hand. These k cases can
belong to different classes, therefore the system has to ex-
plain to the user both a) why these cases have been consid-
ered as the most similar to the problem (even they belong
to different classes), and b) why the problem could be clas-
sified in each one of these classes. Our approach allows to
give an explanation scheme composed by several general de-
scriptions, each one explaining different aspects of the out-
come. Thus, one of the descriptions (A∗) shows the features
shared by the problem and all the retrieved cases; therefore,
the user can understand why these k cases have been con-
sidered as the most similar. Each one of the other descrip-
tions (AU1, AU2, . . . , AUk) shows the similarities among
the new problem and the subset of cases belonging to each
class. These descriptions show the user the features that the
problem shares with the cases of a class. We saw that using
this explanation scheme the user can easily understand why
these cases have been retrieved and also (as in the example
we described) can detect which parts of these descriptions
are relevant to discriminate among the classes. In addition,
the analysis of the explanation scheme can support the user
in doing an oriented search in the literature.

There are several lines of research spawning from the ap-
proach presented here that we plan to pursue. Concerning
the toxicology domain, current ML and statistical techniques
have shown limited a proficiency in prediction (Helma &
Kramer 2003); the explanation scheme using symbolic sim-
ilarity that we provide seem to be helpful in improving our
understanding of this domain.

Another line of future research is the use of the sym-
bolic similarity descriptions in a CBR system for purposes of
self-assessment. We are interested in developing confidence
measures that could allow a CBR system to reliably assess
its confidence in each specific prediction. The symbolic sim-
ilarity descriptions we use will cover in general positive and
negative cases with respect to a solution class, and this fact
can be used to estimate a degree of confidence in a predicted
solution. There are several ways in which this assessment
can be made and experiments in several data sets are needed
to determine their usefulness.

Finally, symbolic similarity descriptions could be used to
determine in an adaptive way the granularity of the local ap-
proximations; for instance, in a CBR system using k-nearest
neighbor symbolic similarity descriptions could be used to
determine for each specific problem which value of k offers
a better confidence in the predicted solution.
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