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Abstract

While similarity and retrieval in case-based reasoning
(CBR) have received a lot of attention in the literature,
other aspects of CBR, such as case reuse are less un-
derstood. Specifically, we focus on one of such, less
understood, problems: knowledge transfer. The issue
we intend to elucidate can be expressed as follows:
what knowledge present in a source case is transferred
to a target problem in case-based inference? This pa-
per presents a preliminary formal model of knowledge
transfer and relates it to the classical notion of analogy.

Introduction

Case-based reasoning (Aamodt and Plaza 1994) is a prob-
lem solving methodology based on the principle that “simi-
lar problems have similar solutions”. In CBR, a problem is
solved by first retrieving one or several relevant cases from
a case-base, and then reusing the knowledge in the retrieved
case (or cases) to solve the new problem. The retrieval stage
in CBR has received a lot of attention in the literature. How-
ever, other aspects of CBR have received less attention and
are less well understood; specifically, what knowledge can
be reused from a previous case (source) to solve a new (tar-
get) case? There is no generally agreed upon model of this
process, which we will call the knowledge transfer process.

This paper presents a preliminary model of knowledge
transfer in case-based inference (CBI). Case-based inference
concerns “‘exploiting experience in the form of previously
observed cases in order to predict the outcome of a new situ-
ation” (Hiillermeier 2007). In this paper, we intend to model
the process of pure knowledge transfer, without intending to
model the complete case reuse process, nor trying to encom-
pass the whole variety of approaches to reuse in case-based
reasoning, like rule-based adaptation. The issue we intend
to elucidate can be expressed as follows: what knowledge
present in the source case is transferred to a target problem
in case-based inference?

In our approach, we do take into account the notion
of similarity; nevertheless we downplay the importance of
measuring degrees of similarity, and we focus on a more
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symbolic notion of similarity. In our approach, it is more
important to reason about what is shared among cases than
the degree to which two cases share some of their content.

In this paper we model knowledge transfer based on the
notions of refinement, subsumption, partial unification and
amalgam, defined over a generalization space. This model
is applicable to any representation formalism for which a
relevant generalization space can be defined.

Finally, after presenting our model of knowledge trans-
fer, we discuss the relation of the classical notion of analogy
with case-based inference, and how our model of knowledge
transfer neatly provides a formalization of the the relation
between analogy and CBI.

The remainder of this paper is organized as follows. First
we will introduce the notion of generalization space, neces-
sary to present our model. Then we will present our formal
model of knowledge transfer, and finally relate it with the
idea of analogy. After discussing relevant related work, we
close the paper with conclusions and future work.

Background

In this paper we will make the assumption that cases are
terms in some generalization space. We define a generaliza-
tion space as a partially ordered set (£, C), where £ is a lan-
guage, and L is a subsumption between the terms of the lan-
guage L. We say that a term ¢; subsumes another term o
(11 £ 1) when 1) is more general (or equal) than 1, I Ad-
ditionally, we assume that £ contains the infimum element
L (or “any”), and the supremum element T (or “none”) with
respect to the subsumption order.

Given the subsumption relation, for any two terms v; and
1o we can define their unification, (1)1 U 12), which is the
most general specialization of two given terms:

viUys = P (i1 CyY A 2 E9) A
B Cv: v EY A Y2 TY)
That is to say, the unifier’s content is the addition of the con-
tent of the two original terms. However, not every pair of
terms may be unified: if two terms have contradictory infor-

mation then they have no unifier ¢; LI ¢ = T —which is
equivalent to say that their unifier is “none”.

'In machine learning terms, A C B means that A is more gen-
eral than B, while in description logics it has the opposite meaning,
since it is seen as “set inclusion” of their interpretations.



Figure 1: A generalization refinement operator -y, and a spe-
cialization operator p.

The dual operation to unification is that of anti-
unification, that is defined as the least general generaliza-
tion of two terms, representing the most specific term that
subsumes both. If two terms have nothing in common, then
11 My = L. Thus, anti-unification encapsulates in a sin-
gle description all that is shared by two given terms, and is
defined as follows:

MUYy = Y WCyY1 A Y Ta) A

B T P T A Y Cah)

Notice that both anti-unification and unification might not
be unique. Let us now summarize the basic notions of re-
finement operator over partially ordered sets and introduce
the concepts relevant for this paper —see (van der Laag and
Nienhuys-Cheng 1998) for a more in-depth analysis. Refine-
ment operators are defined as follows:

Definition 1 A downward refinement operator p over
partially-ordered set (L,C) is a function such that p(1))

{Y' € LY T'} forallyp € L.

Definition 2 An upward refinement operator 7y over a
partially-ordered set (L, C) is a function such that p(v) C

{' € LY E Y} forally € L.

In other words, upward refinement operators generate ele-
ments of £ which are more general, whereas downward re-
finement operators generate elements of £ which are more
specific, as illustrated by Figure 1. Typically, the symbol
v is used to symbolize upward refinement operators, and p
to symbolize either a downward refinement operator; when
specified we will use p as a refinement operator in general.
Refinement operators can be used to navigate the space
of terms using search strategies, and are widely used in In-
ductive Logic Programming. For instance, if we have a term
representing “a German minivan”, a generalization refine-
ment operator would return generalizations like ““a European
minivan”, or “a German vehicle”. If we apply the gener-
alization operator again to “a European minivan”, we can
get terms like “a minivan”, or “a European vehicle”. A spe-
cialization refinement operator would perform the opposite
task, and given a term like “a German minivan”, would re-
turn more specific terms like “a Mercedes minivan”, or “a
red German minivan”. Moreover, in practice it is preferable
to have refinement operators that do not perform large gen-
eralization or specialization leaps, i.e. that make the smallest
possible change in a term when generalizing or specializing.
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A Model of Knowledge Transfer

A classical scenario in CBR is where knowledge transfer
takes place from one retrieved case to a new problem. It is
common to express a case as a problem/solution pair (p, s).
In this scenario, solving a problem p’ means finding or con-
structing a solution s’ by adapting the solution of the re-
trieved case (p, ).

In our framework we take a more general approach, where
we see a problem and a solution to be two parts of the same
description. Thus, we will represent a case as a single term.
In this model, an unsolved problem is a partially defined
term that needs completion. We will assume a case is an el-
ement in a generalization space. Therefore, in our model, a
(source) case is a complete description, expressed as a term
15, while a problem (or target case) to be solved is an in-
complete description, expressed also as a term 1.

The task of solving v; in our model consists of two steps:
(1) (case-based inference) finding a complete description 1)}
by transferring information from retrieved cases 1, ...¢y to
1, and (2) (adaptation) later performing any additional do-
main specific adaptations required to turn ¢} into a valid so-
lution for the domain at hand.

The model presented in this section focuses exclusively
on the process of knowledge transfer, rather than on the
whole reuse process. Therefore, the outcome of the knowl-
edge transfer process is not a valid solution, but the result of
transferring knowledge from the source to the target, which
might still need to be adapted by using some domain spe-
cific rules, or any other reuse procedure. For that reason, we
will refer to the result of knowledge transfer as a conjec-
ture. Thus, we say that a conjecture is formed by transferring
knowledge from source cases to a target problem —or, in
other words, conjectures are the outcome of case-based in-
ference. Some conjectures might constitute solutions, while
some others might require adaptation.

There are multiple scenarios that define different knowl-
edge transfer tasks:

e Transfer may be from a single or multiple retrieved cases.

e The problem description vy can be understood as a hard
requirement (¢); C ;) or not (i.e. 1); might just express
some preferences over the final solution ;).

For the sake of clarity, in this paper we will only provide
a formalization of the single case with hard requirements
scenario. However, we will provide insights into how the
other situations can be easily modeled in our framework.

Before providing a formalization of knowledge transfer,
we will introduce the notions of amalgam and partial unifi-
cation, that are at the core of our model.

Amalgams

The notion of amalgam can be conceived of as a general-
ization of the notion of unification over terms. The unifica-
tion of two terms (or descriptions) is a new term, the unifier,
which contains all the information in these two terms. Thus,
if aterm ¢ is a unifier of two other terms (¢ = 1, L1)y), then
all that is true for one of these terms is also true for ¢. For
instance, if 1), describes “a red vehicle” and 1), describes



Figure 2: Illustration of the idea of amalgam between two
terms v, and .

“a German minivan” then their unification ¢ is the descrip-
tion “a red German minivan.” Two terms are not unifiable
when they possess contradictory information; for instance
“a red French vehicle” is not unifiable with “a red German
minivan” since being French and German at the same time
is not possible for vehicles. The strict definition of unifica-
tion means that any two descriptions with only one item with
contradictory information cannot be unified.

An amalgam of two terms (or descriptions) is a new term
that contains parts from these two terms. For instance, an
amalgam of “a red French vehicle” and “a German minivan”
is “ared German minivan”; clearly there are always multiple
possibilities for amalgams, since “a red French minivan” is
another example of amalgam. Thus, all unifications of two
terms are amalgams, but not all their amalgams are unifi-
cations. The notion of amalgam, as a form of partial unifi-
cation, was formally defined in (Ontaiién and Plaza 2010),
where its relationship with the idea of merging operator is
also discussed. For the purposes of this paper, we will intro-
duce only the necessary concepts.

Definition 3 (Amalgam) The set of amalgams of two terms
1o and )y, is the set of terms such that:

Vo YU, = {¢p€LVFag,ap€L:
 EYe N oy Ethy A ¢ =agUap}

where Lt =L —{T}

Thus, an amalgam of two terms ), and v, is a term that
has been formed by unifying two terms «, and ay, such that
aq C 1, and ap C 9h, —i.e. an amalgam is a term resulting
from combining some of the information in v, with some of
the information from v, as illustrated in Figure 2. Formally,
a Y 1y, denotes the set of all possible amalgams; however,
whenever it does not lead to confusion, we will use ¥, Y
to denote one specific amalgam of 1), and .

The terms o, and «;, are called the transfers of an amal-
gam v, Y 1. «, represents all the information from ),
which is transferred to the amalgam, and «; is all the infor-
mation from 1), which is transferred into the amalgam. As
we will see later, this idea of transfer is akin to the idea of
transferring knowledge from the source to target in CBR,
and also in computational analogy (Falkenhainer, Forbus,
and Gentner 1989).

Intuitively, an amalgam is complete when all which can
be transferred from both terms into the amalgam has been
transferred, i.e. if we wanted to transfer more information,
o, and oy, would not have a unifier.
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Figure 3: A schema illustrating the preservation degree p(¢))
of an amalgam ).

Definition 4 (Complete Amalgam) An amalgam ¢ =
a Y Uy, with transfers o, and oy, is complete when

Vo, aplag T ol Chg Ay C oy Ty = o, U, =T

that is to say, there are no transfers o/, and ag (that are more
specific than transfers o, and o) that have a unifier.

For the purposes of case reuse, we introduce the notion of
asymmetric amalgam, where one term is fixed while only the
other term is generalized in order to compute an amalgam.

Definition 5 (Asymmetric Amalgam) The asymmetric

amalgams ) \7 Wy of two terms s (called source) and )y
(called target) is the set of terms such that:

wsﬁ—(}wt:&beﬁﬂﬂaseﬁzasgws A ¢ =asUi}

In an asymmetric amalgam, the target term is transferred
completely into the amalgam, while the source term is gen-
eralized. The result is a form of partial unification that con-
serves all the information in v; while relaxing 5 by gener-
alization and then unifying one of those more general terms
with v, itself. Finally, when an asymmetric amalgam is com-
plete then all knowledge in ¢ that is consistent with 1), is
transferred to the solution ;.

Definition 6 (Preservation Degree) Given an amalgam
P € Y, Y 1, which is a unification ¥ = a, U ay of two
terms such that o, T Y, and oy T 1y, the preservation
degree p for v is:

ML a,) + ML ap)
AL =5 o) + AL = )

p(¢a7 Qg ¢b7 O[b) =

where \(1) —2 1") is the minimal number of times a refine-
ment operator has to be used to reach 1)’ from ¢ —i.e. the
distance between 1) and 1)’ in the generalization space.

As described in (Ontafién and Plaza 2012), (¢ - YP')isa
good measure of the amount of information that )" has and
1) does not (assuming all refinements add the same amount
of information). Thus, p (see Figure 3) is the ratio of in-
formation preserved in the amalgam ¢ with respect to the



information present in the original terms v, and ;. The
information preserved is measured by the addition of the in-
formation contained in the two amalgamable terms ¢, and
oy, yielding the amalgam . When nothing is preserved p is
0 since ¢» = L, while p is 1 when ¢ = 9, LI .

As shown in Figure 3, the preservation degree is high
when 1, and 1, had to be generalized very little in order
to obtain the amalgam ). In other words, if the A-distances
between v, and «, and between v, and «y, are low, preser-
vation is high. If ¥, and v, had to be greatly generalized
before finding amalgamable generalizations, then the preser-
vation degree of the resulting amalgam will be low.

Knowledge Transfer with Hard Requirements

Let us define the task of knowledge transfer for single case
reuse with hard requirements as follows.

Given A case base A = (¢1,...1,,) and a target descrip-
tion

Find A complete case 1)} such that ¢, T 1} (a conjecture)

Clearly, if there is some 1; € A such that v; C ; then ¢,
is a solution, and the conjecture can be built simply by uni-
fying query and solution: v, L ¥; = 1);. This specific situa-
tion is called in CBR literature “solution copy with variable
substitution” (Kolodner 1993). Also, notice that determining
whether a case is complete or not corresponds to the intuitive
notion of whether the case represents a properly specified
problem and solution, and is domain dependent.

In general, when there is no case such that ¢y C ;, uni-
fication is not enough, and knowledge transfer requires the
use of amalgams, and in particular of the asymmetric amal-
gam. Knowledge transfer from a source s with hard re-
quirements produces hard conjectures, defined as follows:

Definition 7 (Hard Transfer) A hard transfer « for target
Wy from a source Vg is a term o C g such that a U, # T,
i.e. a generalization of s that unifies with ;. Thus, the
set of hard transfers for target 1y from a source g is:

G(s, ) ={a e Lla T Naly, # T}
Definition 8 (Hard Conjecture) Given a hard transfer o €

_
G(1s,t), a conjecture for target 1y is a term in g Y 1y
where « is the transfer. The set of hard conjectures K for

target 1y from a source Vg is K (g, 1) = s 7 Yy

In order to illustrate our model with an example let us con-
sider the example of room design —introduced in (Ontaién
and Plaza 2010). In this example, the goal is to design a
room (decide which furniture to have and where to place it)
in order to satisfy some goals (e.g. to have an adequate work
space). The case base consists of a collection of already de-
signed work rooms with different spatial configurations, and
the problem is a new room with a collection of restrictions
(e.g. where the door or windows are located). We can see,
first of all, that there is no clear distinction between prob-
lem and solution. A case is just a complete room design,
whereas a problem is just a partially designed room. Figure
4 illustrates our model showing the following elements: a
target problem consisting of an incomplete room design (in
this case we specified the location of door and windows, and
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Figure 4: Exemplification of the concepts of source, target,
transfer and conjecture in a room design domain.

also that we want a specific metallic cabinet in the north-east
corner of the room); a source case consisting of a complete
room design of a similar room; a transfer, consisting of the
pieces of furniture, and some spatial relations among them
(like that the chair goes in front of the table, the table near
the window, etc); and finally the conjecture, corresponding
to the unification of the transfer and the target problem. In
this example, the ‘wood cabinet’ from the source has been
generalized to ‘cabinet’ in the transfer, and then unified with
the ‘metallic cabinet’ in the target. We show one possible
conjecture, but notice that many different conjectures could
be formed here, depending on the specific way in which we
formalize the generalization space of room designs.

Although reuse from multiple cases is outside of the scope
of this paper, it is easy to generalize the notion of transfer to
multiple cases, since the amalgam operation can be easily
defined amongst a set of terms rather than just two.

The result of CBI is a conjecture in the sense that it is a
plausible solution for ;. Notice that, (1) a conjecture may
be an incomplete solution, and (2) a conjecture is not as-
sured to be correct. Moreover, since there may be more than
one conjecture, (3) the issue of which conjecture should be
selected has also to be specified. Let us review them in turn.

Conjecture Incompleteness

The purpose of knowledge transfer in case reuse is to trans-
fer to the target as much knowledge as possible (consistent
with the target). This “as much as possible” is satisfied if we
take as transfer a term « that is one of the most specific gen-
eralizations of the source that are unifiable with the target.
Let I'(s, 1¢) be the set most specific terms in G (15, ¢r)
that satisfy this condition, then we need @ € T'(¢)s, ¢ ). Nev-
ertheless, some information is lost in the generalization path

(S AN «, which corresponded to the remainder (Ontaiién
and Plaza 2012). Specifically, the remainder (1, ) of a
term 1) and a generalization o [ ¢ is a term ¢ such that
a U ¢ = 1 (and there is no ¢’ C ¢ such that a LI ¢/ = 7).
That which is lost from the source case will be called source
differential in our model.



Definition 9 (Source Differential) The source differential
Yp of a source term s with respect to a transfer o €
G (s, 14) is the remainder r(¢s, ).

Therefore, we assumed the source s to be a consistent
and complete case in a case base, but since now the source
can be seen as having two parts with respect to the target,
namely ¢, = o U r(¢s, @), and only one of this parts (c) is
transferred to the target, we can not assume, in general that
the solution for the new case (a U 74) is complete.

Depending on the task a CBR system is performing, this
partial solution may be enough. Classical analogy systems
take this approach: the goal is to transfer knowledge from
source to target —there is no notion of an externally en-
forced task that demands some kind of completeness to solu-
tions. When a partial solution is not enough, there is usually
some form of completeness test that checks possible solu-
tions proposed in the Reuse process. Such a completeness
test rejects partial solutions, to which typically the CBR sys-
tem backtracks to consider other conjectures not yet tested.

Conjecture Correctness

A conjecture 1, Ll may be complete, but even so this might
be a correct solution or not with respect to ;. If we see ¥y
as a set of requirements that the complete solved target case
must satisfy, then if a conjecture v, U « is complete, then
the conjecture v, LI «v is correct. Although this supplemen-
tary assumptions makes sense in theory (if ¢/, expresses the
“requirements” to be satisfied), often CBR systems operate
in domains where it is not feasible to assure that 1), is com-
plete; it is more reasonable to assume that ¢, is a partial
requirement and the final acceptability or correctness is left
to be assessed by the Revise process.

Therefore, knowledge transfer in case reuse produces a
solution that is consistent, possibly partial, and not assured
to be correct; i.e. produces a conjecture. Since there are mul-
tiple knowledge transfers that can produce multiple conjec-
tures, we turn now into the issue of assessing, comparing,
and ranking conjectures.

Conjecture Ordering

Multiplicity of complete conjectures for a given source-
target pair (¢s,¢1) may have two causes. The first cause is
that T'(¢)s, ¢4 ) is not unique. The second cause is that, even
when I'(¢5, ¢4 ) is unique, more than one source is taken into
account: a set of k precedent cases P, = (¢1,...,¢y) pro-
duce a set of transfers ¥(Py,) = Uy U. ..Uy, which in turn
generates a set of conjectures.

Conjectures in K g (P, 1+) may be complete, but from a
practical point of view it is useful to rank them according
to their estimated plausibility, their degree of completeness,
or any other heuristic that can be used in a particular appli-
cation domain. Typically, the Retrieve phase estimates rele-
vance of precedent cases with some similarity measure, so
we can use the similarity degrees (s; > ... > s;) of the k
retrieved cases Py, = (41, ...,1y) to induce a partial order
on the set of transfers: (U(Py),>) = (¥ > ... > Py).
Thus, the conjectures coming from transfers originating in
more similar precedent cases (or those transferring more
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knowledge from more similar cases, in the case of multi-
case reuse) are preferred to those from less similar cases.
Since conjectures are in general partial solutions, using
some measure that estimates the degree of completeness of
conjectures may also be used for ranking conjectures. Do-
main knowledge can be used to estimates conjecture com-
pleteness, but if not available we can use the measure of
Preservation Degree (Definition 6) for this purpose.

Definition 10 The preservation degree ordering of a set of
hard conjectures (K g (Px, 1), <) is as follows:

V), 0" € Ki(Py, ) :
w < W g P(¢s,a»¢t,¢t) < p(d}sva/thawt)

This ordering can be combined with the similarity based
ordering to establish a combined partial order on conjec-
tures. We turn now to examine how this model is related
to the classical view that case-based inference is analogy.

Knowledge Transfer in Analogy

We turn now to discuss how the classic concept of analog-
ical reasoning (Falkenhainer, Forbus, and Gentner 1989) is
related to our model of knowledge transfer. Analogy is typ-
ically defined as the process of transferring knowledge or
inferences from a particular domain (source) to another par-
ticular domain (target).

John Stuart Mill (Shelley 2003) argued that analogy is
simply a special case of induction. That is to say, analogy
between two situations A and B can be interpreted as hav-
ing two steps. In a first step we perform an inductive leap.
Assume that A and B are similar (we write A ~ B), and
assume that there is some knowledge o in A not in B (ex-
pressed as A — «). We proceed by induction finding A B
(that information shared between A and B), and we assume
AT B is the cause of o« —i.e. AT1B — «. Then, in a second
step, the inductive assumption A M B — « is used to derive
that B — « (i.e. that « can also be derived from B).

This view of inductive analogy can be defined as follows
in a generalization space.

Definition 11 Given two terms 5,1y € L (called source
and target respectively) a formula 5 # T is derived by anal-
ogy whenever:

1. Ja:a T g AalZ (s M) (auis true in source only)
2. B = alUy (knowledge « is transferred to target)

where « is the knowledge transferred from source to target.

Since o [Z 1, M 1)y we cannot (deductively) derive that
« is true in ;. Therefore, this analogical reasoning requires
an inductive step, which can be seen as a defeasible or con-
jectural inference. This “inductive analogy” model is illus-
trated in Figure 5. The solid lines depict sound inference, i.e.
the subsumption relationships among terms (15, 1; and «).
Analogy makes some conjectural inferences shown as dot-
ted lines. Specifically, if « is not inconsistent with 1, (i.e.
a Ly # T) then possibly both situations may also have «
in common; this is represented as the term ¢, = o L), that
is conjectured to be true. Now, assuming ¢,, is true, and v,
is true, we can then conjecture that 5 = 1; Ll «v is true (i.e.
that o can be “transferred to” ;).



o v

¢(y - (1/}5 M wt) Ua
s Yo =p

Figure 5: Subsumption relations among the terms involved
in analogy s f) B.
t

This conjectural inference can be seen in two ways: induc-
tion or knowledge transfer, that nonetheless are equivalent.
In the knowledge transfer approach, we derive /3 by conjec-
turing «v is also true in the target (i.e. we derive « LI 1)y); this
is to say, we use the idea of asymmetric amalgam to derive
[ by transferring « to ;. In the inductive model of analogy
we conjecture that the implicit generalization should also in-
clude « as being true (that is we move from s [ 1; to ¢q ).
Later we infer from this conjecture that «v is true in the target
(since it is assumed that also share this) and therefore (de-
ductively) « is true in the target. Figure 5 shows how both
views arrive at the same conjecture.

Discussion

This paper has presented a preliminary model of knowledge
transfer in case-based inference based on the idea of par-
tial unification. Specifically, we have focused on the situa-
tion where cases are represented as terms in a generalization
space. In our model, case reuse is seen as having two steps:
a first step (case-based inference) where knowledge is trans-
ferred from one or several source cases to the target case
(called a conjecture), and a second step (adaptation) where
the conjecture might need to be adapted. This paper has fo-
cused on a model of the first step.

Our model of knowledge transfer offers insights on the
relation between case reuse and analogical reasoning. Previ-
ous work on relating CBR with analogy has focused on su-
perficial aspects such as CBR being typically intra-domain,
where as analogy is inter-domain (Seifert 1989). In our
model, we can see that analogical reasoning is related to
the knowledge transfer step of case reuse rather than with
the second (adaptation) step. An interesting line of future
work is the relation of knowledge transfer with conceptual
blending (Fauconnier 2001). We have seen that analogy can
be likened to an asymmetric amalgam, where as conceptual
blending could be seen as a form of symmetric amalgam.

Our work is related to existing general models of case
reuse, like (Bergmann and Wilke 1998). However, such
models focus on the adaptation step, and typically oversim-
plify the process of knowledge transfer (transfer is seen as
a mere “solution copy” from source to target). We believe
that this oversimplification of the knowledge transfer prob-
lem is at the root of the difficulty of finding general models
of multi-case reuse. The work presented in this paper is a
step towards that direction, since we envision it can easily
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cope with transferring knowledge from multiple sources.

Also related is the work on case-based inference
(Hiillermeier 2007), but they focus on classification and re-
gression tasks where the outcome is a form of similarity-
based inference. The difference with our work is that we
have focused on how complex solutions and conjectures
can be formed by aggregating (transferring) knowledge from
one or multiple source cases to a partial target case.

Part of our long term goal is understanding case reuse and
its relation to other forms of reasoning. We envision case-
based inference as a form of conjectural or defeasible in-
ference, like other forms of non-monotonic reasoning (in-
duction, abduction and hypothetical reasoning). The model
presented in this paper is one step towards this goal. As fu-
ture work, we want to formalize the process of knowledge
transfer from multiple source cases, and develop case reuse
methods based on the idea of knowledge transfer.
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