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Abstract. A desired capability of automatic problem solvers is how
they can explain the results. Such explanations should justify that the
solution proposed by the problem solver arises from the known domain
knowledge. In this paper we discuss how the explanations can be used in
CBR methods in order to justify the results in classification tasks and
also for solving new problems.

1 Introduction

A desired capability of automatic problem solver is how they can explain the
results they produce. Such explanation should justify that the solution proposed
by the problem solver arises from the known domain knowledge. There are several
ways to explain the results depending on the kind of problem solver and the
representation it uses. For instance, problem solvers using rules can explain the
result by showing the rules used to reach the solution whereas the explanation of
problems solvers based on cases could be the set of cases supporting the solution.
Showing the reasoning chain or the set of cases supports the user in the detection
of failures such as the use of an incorrect rule, the lack of one or more rules, or
the use of an inappropriate similarity measure assessment among the cases.

Leake [10] distinguishes three key issues on explanations: what to explain,
when to explain, and how to generate explanations. In this paper we will consider
classification problems where the explanation has to justify the membership of
a new problem in a solution class, and the generation of such explanation has
to be made at the end of each new problem solving process. In particular, we
want to analyze both how the explanations are generated and how they can be
reused for solving new problems.

There is a family of machine learning methods, called explanation-based learn-
ing that give an explanation of the solution. Then this explanation is generalized
and it can be further used for solving new problems. This kind of explanations
does not take benefit of the previous experience since they are build from scratch.
The best explanation is chosen using probability or plausibility and without tak-
ing into account changes in the information that has motivated the explanation.
Leake [11] contrasts this kind of explanations, that he calls based on deductive
proves with the explanations based on plausibility. This kind of explanations,
commonly used on case-based reasoning, works under the assumption that sim-
ilar situations have similar explanations. Thus, there is a set of explanation



patterns able to explain anomalous situations and when a similar anomaly is de-
tected in the current situation, the associated explanation pattern can be used
to explain it. Therefore, the similarity assessment among situations is a key issue
for the generation of appropriate explanations.

In the next sections we briefly describe both explanation-based learning
(EBL) and case-based reasoning (CBR) and the role that explanations can play
in both kind of methods. Then, we discuss some aspects of the justification pro-
vided by the LID method [2] comparing it with both EBL and CBR. LID is a
lazy learning method that justifies the classification of a new problem by means
of a structure containing the most relevant features allowing the classification of
the new problem.

2 Related Work

In this section we revise existing approaches in Machine Learning and Case-based
Reasoning that use the concept of explanation.

2.1 Explanation-based Learning

The main idea of explanation-based learning methods (also called analytical
methods or deductive learning methods) is to use domain knowledge and to apply
logical deduction to solve a problem. The basis of the EBL methods is the
explanation-based generalization (EBG) method proposed by Mitchell et al. [14].
Given a domain theory, a description of the goal concept, an operationality
criterion and a training example, the EBG method tries to improve the domain
theory in order to obtain a more efficient (operational) definition of the goal
concept.

EBL has two main steps (Fig. 1): 1) to build an explanation justifying why
the input example is a positive instance of the goal; and 2) generalizing the ex-
planation as much as possible while the explanation holds. The explanation is
the problem solving trace (that usually is represented like a tree), therefore it
is generated after each problem solving episode. This trace is formed by all the
nodes (domain facts) that have been (successfully or not) used to prove that the
new example is a positive instance of the goal. The explanation is generated in
a deductive way, so the generalization of this justification will be correct since
deductive methods are truth-preserving. The second step, the explanation gen-
eralization, is commonly performed by replacing constants by variables in such
a way that the explanation is still valid. Finally, from the generalized explana-
tion new rules can be extracted, which are stored as part of the domain theory
and they can be used for solving further problems. Usually the new rule has
as left-hand side the generalized tree leaves and the rigth-hand side is the goal
concept.

The main advantage of the EBL methods is that the explanations they pro-
duce are correct since they are deductively constructed. Therefore, in principle,
when an explanation can be applied to a new situation, we can assure that such
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Fig. 1. Main concepts in explanation-based learning.

explanation is appropriate. Nevertheless, this is only true when the domain the-
ory is complete and sound and this is not always the case. Frequently, complex
problems have not a complete theory and, even so, it could be very difficult to
formalize appropriately. As a consequence, EBL produces two kinds of problems
[7]: theory revision and theory reformulation. Theory revision problem is a con-
sequence of the available domain theory. Theory reformulation is to warrant the
learned knowledge is really useful. Both problems are out of the socpe of this
paper.

Although the initial domain theory was complete, correct and sound the the-
ory reformulation is still a problem of EBL methods. As we explained, EBL
generate new domain rules for each new solved problems. The systematic incor-
poration of the learned knowledge degrades the theory producing on one hand
the growth of the domain theory size, which in turn, increases the time for find-
ing an appropriate rule. Moreover, the new rules may be either not applicable
or applicable to very specific situations. On the other hand, learned rules are
more complex than the initial ones, and, consequently, the cost of matching the
conditions to check their applicability is higher. The conclusion is that EBL does
not warrant the problem solving efficiency because the control knowleged has a
hidden cost (that of the matching).

A possible solution for the reformulation problem could be to store only
those rules useful for solving further problems. The utility of the new learned
knowledge was studied by Minton et al [13] who determined that the following
three factors contribute to the theory degradation: low application frequency,
high matching rules and low benefit.

2.2 Case-based Reasoning

Case-based reasoning methods [9] are based on the retrieval of past experiences
to solve a new problem. Figure 2 shows the steps of the CBR [1]. Given a new
case and a case base the first step is the retrieval of a subset of cases similar in
some aspect to the new case. From this subset of cases the next step is to decide
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how to adapt the solution of them to the new case. This suggested solution can
be revised to provide the final solution and also to retain the new case and the
solution for further use.

Key points of the CBR methods are how to assess the similarity between
cases in order to retrieve appropriate precedents and how to adapt old solutions
to the new case. Commonly, cases are indexed in the case base by means of
indexes that reflect the relevance of some case features. Nevertheless, as Leake
points out in [11], the relevance of a case feature depends on the context. This
means that, given a new case, the subset of retrieved cases will depend on the
context since the relevant features should be different. Moreover, the adaptation
of the solutions will also depend on the retrieved cases. In both situations, the
explanation of the taken decisions supports the confidence in the final solution.

There are several CBR methods that explain their reasoning. CHEF [8] is a
case-based planner that uses its own experience to develop new cooking recipes
that accomplish some user-decided goals. CHEF contains all the necessary back-
ground knowledge and also a simulator able to perform the proposed recipe.
CHEF detects the points where the new plan does not performs as is expected
and tries to explain the reasons of the failures.

SWALE [17] is a program for story understanding that detects anomalous
facts and uses CBR to explain anomalies. The explanation process is based on
the retrieval and application of cases that store previous explanations called
explanation patterns (XP). It caracterizes an anomalous situation in terms of a
set of index and ask wich XP explains situations similar. A creative system needs
a set of questions of explanations to keep information, rules for selecting which
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Fig. 3. Schema of the problem space P and the similarity space P(A, B) of two cases
A and B. P contains all possible similitude terms (σ) of cases A and B. Antiunification
A uB is the similitude term that contains all that is common to A and B.

questions to apply in a given situation and rules to transform them. SWALE need
a high amount of domain knowledge in the form of relations between concepts
and explanation patterns. New explanations are achieved by directly enter them
o by learning from wrong applications of other explanations.

The main difference between CHEF and SWALE is that CHEF selects only
one past recipe and tries to adapt it. Instead, SWALE retrieves several stories
and builds an explanation for each one of them trying to justify the similarity to
the new case. Then, it has to select the best explanation. In fact, SWALE uses
a CBR method to find appropriate explanations.

3 Explanation and structural similarity

As we seen in previous section, CBR approaches are based on finding the most
similar (or relevant) cases for a particular problem. Commonly, the similarity
among cases is estimated using metrics and considering that cases are represented
as attribute-value pairs. Nevertheless, cases can also be represented as structures
and in such situation the kind of similarity to be applied has to take into account
the structural similarity between two cases [5, 6, 3].

Another approach to assess structural similarity is to consider the shared
structure between two cases [16]. For this discussion, we will consider the problem
space P as the collection of all possible descriptions case (ie. without the case
solutions) in a given language and their generalizations. Morover, consider Figure
3 showing the “similarity space” P(Ai, Aj) between two cases: case Ai with
solution SAi

and case Aj with solution SAj
. The similarity space P(Ai, Aj) is

a subset of the problem space P formed by the collection of terms generalizing
the problem descriptions of Ai and Aj . That is to say, a term σ ∈ P(Ai, Aj)
satisfies both σ v Ai (σ subsumes or is more general than Ai) and σ v Aj .
In particular, the antiunification Ai uAj (or most specific generalization) is the
term that contains all that is common or shared between Ai and Aj ; other terms
σ ∈ P(Ai, Aj) contain only some commonalities between Ai and Aj . Plaza [16]
proposed to retrieve cases (for a case base B for a problem P by computing the
similitude terms Σ(P,B) = {σi|P uAi ∧Ai ∈ B}. Then the similitude terms σi



are ranked using an information entropy measure and the cases with top-ranking
σi are retrieved.

However, the taking into account all similarities (i.e. using antiunification)
is not necessary, in fact other similitude terms σi may be better for selecting
the most relevant cases. In general, we may conceive implementing the retrieval
phase of CBR as a search process in the problem space P; this process aims at
finding the “best” similarity term σiP

for a problem P . The similarity term is
the best in the sense that σiP

retrieves the cases more similar to P , i.e. is a
generalization of P and the cases Ai . . . Ak that would be the best precedents
for solving P

Lazy Induction of Descriptions (LID) is a CBR technique that uses this prob-
lem space search approach. Given a problem P , LID follows a heuristic top-down
approach search in P. Top-down search in P means that LID follows a general
to specific strategy in the generalizations of P . LID starts with the most general
generalization, i.e. the empty term σ = ⊥. At each step, LID uses a heuristic
measure to add a new feature (a new predicate) to the current generalization
(the similitude term σ). Thus, the search process of LID specializes the gener-
alized description until a termination criterion is met; at that point the cases
subsumed by σ are those retrieved as those more relevant to P .

At each step of the search process LID has a similitude term σ and the
associated discriminatory set D(σ) = {Ai ∈ B|σ v Ai} ie. the cases subsumed
by the similarity term. Therefore LID has to determine whether this is good
enough set of cases to be retrieved or if it is better to specialize σ and reduce
D to a subset of more relevant cases. Clearly, finding the “best” similarity term
depends crucially on the heuristic used to select the feature (predicate) that
specializes σ.

Since LID is a CBR technique for classification tasks, the heuristic used is
an information theoretic one, the López de Mántaras (LM) distance [12]. The
LM distance assesses how similar two partitions are, in the sense that the lesser
the distance the more similar they are. A feature fi with value range [vi

1 . . . vni
]

induces a partition over the case base B, where each partition set contains the
cases Aj with the same value vi

j for the feature fi. LID computes the distance
between this partition and the correct partition, i.e. the partition over the case
base B given by the solutions classes.

When LID solves a problem P provides as outcome the solution class Si, a
similitude term σ and a set of similar cases D; the meaning of the outcome is as
follows: σ is the explanation of why P is of class Si and this solution is endorsed
by the cases D. In other words, class Si is the solution for P because it shares
the description σ with the cases in D that are also of class Si. Thus, σ explicitly
shows the important aspects shared by the problem P and the retrieved cases
D.

Since σ is a generalization, but subsumes only a subset of the cases in class
Si, it only characterizes partially Si, while induction methods typically try to
build generalizations that completely characterize each class. In fact LID will



build a new explanation, a new partial generalization, for each new problem to
be solved. The next section explores how to exploit these explanations further.

4 Caching LID

C-LID (Caching LID) [4] is a lazy learning technique for CBR that caches the
explanations build in solving past problems with the purpose of reusing them to
solve future problems. In fact, the main issue of lazy learning is that it builds a
local approximation of the target concept (local since it is around the problem
P ); induction (or eager learning) aims at building global approximations of the
target concept, that should be therefore useful to solve any future problem.
Specifically, LID builds a symbolic similarity description (an explanation) that
is the local approximation used to solve a problem P .

The underlying notion of C-LID is that of reusing past local approximations
(explanations) to improve the classification of new problems in CBR. C-LID is
defined on top of LID by defining two policies: the caching policy and the reuse
policy. The caching policy determines which similitude terms (explanations) are
to be retained. The reuse policy determines when and how the cached expla-
nations are used to solve new problems. Thus when a problem P is solved as
classified in class Si with explanation σ the caching policy decides whether σ is
retained or discarded. If σ is retained it is cached into the set of patterns (local
approximations) for class Si. Typically, a cache policy of C-LID is to keep only
those similitude terms that perfectly classify the subsumed cases (i.e. those simil-
itude terms whose cases in the discriminatory set D belong all to a unique class).
This policy has the rationale that it is worth caching those similitude terms that
are good approximations. Also other, less restrictive, policies are possible, like
be caching all similitude terms that have a clear majority class among the cases
in D. This policy retains more patterns (and thus increase their scope) but they
increase the uncertainty when they are reused.

The reuse policy decides when and how the patterns (the cached explana-
tions) are reused to solve new problems. We performed experiments using several
policies in order to compare the accuracy of them. The first policy is the follow-
ing: 1) A new problem P is solved using LID; 2) if LID cannot univocally classify
P then the patterns are used. A different policy is to prefer the patterns, i.e. 1)
If P satisfies patterns that classify it in one solution class Si, then P is classified
as belonging to Si; otherwise P is solved using LID. Finally, there is a third reuse
policy consisting on solving P using both LID and the patterns. In such situation
P is classified as belonging to the solution class proposed by the majority of LID
and patterns. We run experiments on several databases of the UCI repository
and the results are inconclusive with respect to the best policy to be used. In
fact, the best strategy depends on domain characteristics.



5 Justification-based Multiagent Learning

In addition to explaining the solution found, an explanation can have other uses.
In fact, when a CBR system builds an explanation J of why it has found Sk to be
the correct solution for a problem P , the explanation J is the justification of the
answer of the system, i.e. the system “believes” that Sk is the correct solution
for P because of J . This interpretation of an explanation as a justification can
be used in multiagent systems to improve collaborative problem solving.

Consider a committee of CBR agents in which each CBR agent owns a pri-
vate case base. This committee of agents works in the following way: when a
new problem P has to be solved, each individual agent solves it and makes its
individual prediction, then each agent casts a vote for the predicted solution.
Then, the most voted solution will be considered the solution to the problem.
As the individual case bases of the agents are private, the agents do not know the
areas of expertise of the rest of agents. Therefore, when the committee is solving
a problem, if there are some agent members that are not very knowledgeable
in the area of the problem space needed to solve the current problem the other
agents in the system will not notice it. This can cause that some of the agents
cast unreliable votes. Justifications can help solving that problem.

The problem in the presented system is that the agents do not know if the
other agents are casting votes that are reliable or not. However, if each agent
can generate a justification of the solution found the other agents could see if the
justification is strong or if the agent has given a very weak justification and its
vote can be ignored. The voting process among the committee using justifications
can be performed in the following way [15]:

1. Given a new problem P to solve, each agent AGi in the committee builds its
individual prediction and generates a justification record 〈Ji, Si〉 that is sent
to the rest of agents in the system (meaning that the agent AGi believes
that the correct solution class is Si and the justification is Ji).

2. Each agent AGj examines the justification records 〈Ji, Si〉 built by each
other agent against its local case base Cj . This examination is performed by
searching cases that are counterexamples of the justification and also cases
that endorse the justification (a case c is a counterexample of a justification
if c is subsumed by Ji but belongs to a different solution class than Si, and
a case c endorses the justification if c is subsumed by Ji and belongs to Si).

3. Then, a confidence value for each justification record 〈Ji, Si〉 is computed as
a function of the number of endorsing cases and counterexamples that each
agent has found for each justification. Specifically, the confidence value of a
justification is a function of the sum of all the counterexamples found by all
the agents and of the sum of all the endorsing cases found by all the agents
(the more endorsing cases, the higher the confidence will be and the more
counterexamples, the smaller the confidence).

4. Finally, the confidence values can be used as weights in a weighted voting
scheme were each agent votes for its individually predicted solution class,
but its vote is weighted by the confidence computed by the rest of agents.



This voting scheme is much more robust, and if an agent AGi has not enough
cases in the area of the problem space needed to solve the problem P and the
solution found is not properly endorsed by a strong justification, the other agents
will assign a low confidence value to AGi and its vote will not influence very much
in the final decision of the solution. Notice, that this is a dynamic scheme where
the agent prediction weights are computed for each specific problem.

6 Conclusions

In this paper we show how the explanation concept could be introduced in a
CBR method. Thus, we briefly introduced LID, a CBR method capable of giving
a justification of the result. This justification, called similitude term, contains the
relevant aspects shared by the new problem and a subset of precedents belonging
to one solution class. So, the similitude term can be seen as a local approximation
of the target concept (i.e. the solution class). In C-LID a lazy learning technique
build on top of LID, we used the similitude terms for solving further problems.
C-LID needs two policies: a caching policy and a reuse policy. The idea of both
policies is to select similitude terms (patterns) that could be useful to solve new
problems and then to decide when use them.

We have also seen that explanations are not only useful to be provided to
a human expert, but can also be a tool to improve problem solving. We have
presented a multiagent setting that can take advantage of the ability of CBR
agents to generate explanations (used as justifications of the solutions found for
problems). Moreover, we strongly believe that explanations can have many other
useful uses in multiagent systems, where the performance of an agent is usually
dependant on information provided by other agents and thus it would be highly
desirable that any information coming from others is properly justified.
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