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Abstract. This paper presents an approach that integrates notions and
techniques from two distinct fields of study —namely inductive learning
and argumentation in multiagent systems (MAS). We will first discuss
inductive learning and the role argumentation plays in multiagent induc-
tive learning. Then we focus on how inductive learning can be used to
realize argumentation in MAS based on empirical grounds. We present
a MAS framework for empirical argumentation, A-MAIL, and then we
show how this is applied to a particular task where two agents argue in
order to reach agreement on a particular topic. Finally, an experimen-
tal evaluation of the approach is presented evaluating the quality of the
agreements achieved by the empirical argumentation process.
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1 Introduction

This paper presents an approach that integrates notions and techniques from
two distinct fields of study —namely inductive learning and argumentation in
multiagent systems (MAS). We will first discuss inductive learning and the role
argumentation may play in multiagent inductive learning, and later how induc-
tive learning can be used to realize argumentation in MAS based on empirical
grounds.



Multiagent inductive learning (MAIL) is the study of multiagent systems
where individual agents have the ability to perform inductive learning, i.e. where
agents are able to learn general descriptions from particular examples. Induction
is a form of empirical-based inference, where what is true (or what is believed by
the agent) is derived from the experience of that agent in a particular domain
(such experience is usually represented with “cases” or “examples”). Notice that
inductive inference is not deductive, and specifically it is not truth-preserving1,
and therefore it captures a form of empirical knowledge that can be called into
question by new empirical data and thus needs to be revised.

The challenge of multiagent inductive learning is that several agents will
inductively infer empirical knowledge that in principle may not be the same,
since that knowledge is dependent on each individual in two ways: the concrete
empirical data an agent has encountered and the specific inductive method an
agent employs.

Communication among agents is necessary in order to reach shared and
agreed-upon empirical knowledge that is based on, and consistent with, all the
empirical data available to a collection of agents. Agents could simply communi-
cate all the data to the other agents, and then each agent could just use induction
individually. However, data redistribution might have a high cost, or might not
even be feasible in some domains due to organizational or privacy issues. In this
paper we propose an argumentation-based communication process where agents
can propose, compare and challenge the empirical knowledge of other agents,
with the goal of achieving a more accurate, shared, and agreed-upon body of
empirical knowledge without having to share all of their empirical data.

From the point of view of argumentation in MAS, inductive learning provides
a basis for automating, in empirical domains, a collection of activities necessary
for implementing artificial agents that support argumentation: how to generate
arguments, how to attack and defend arguments, and how to change an agent’s
beliefs as a result of the arguments exchanged. Logic-based approaches to argu-
mentation like DeLP [?] amend classical deductive logic to support defeasible
reasoning. Our approach takes a different path, assuming agents that learn their
knowledge (by using induction over empirical data) instead of assuming agents
have been programmed (by giving them a rule-based knowledge base). Therefore,
we need to specify empirical methods that are able to perform the required activ-
ities of argumentation (generating arguments and attacks, comparing arguments
and revising an agent’s beliefs).

This paper presents a MAS framework for empirical argumentation called A-
MAIL, which implements those activities on the basis of the inductive inference
techniques developed in the field of machine learning. The main idea behind A-
MAIL is the following: given two agents with inductive learning capabilities, they
can use induction to generate hypotheses from examples. These hypotheses can
be used as arguments in a computational argumentation framework. Argumen-
tation helps the agents reach an agreement over the induced knowledge, thus

1 Inductive inference is not truth-preserving, since new and unseen examples may
contradict past generalizations, albeit it is falsity-preserving.



reaching hypotheses that are consistent with the data known to both agents.
Effectively, A-MAIL integrates inductive learning and computational argumen-
tation to let groups of agents perform multiagent induction. This means that
agents can reach hypotheses consistent with the data known to a set of agents
without having to share all this data.

The structure of the paper starts by introducing the needed notions of in-
ductive learning (Section ??). Then, Section ?? presents our empirical argumen-
tation framework, A-MAIL, while Section ?? shows the utility of the framework
in the task of concept convergence (in which two agents argue with the goal
of achieving an agreement on a particular topic); an experimental evaluation of
the approach is presented evaluating the quality of the agreements achieved by
argumentation. The paper closes with sections on related work and conclusions.

2 Concept Induction

Inductive learning, and in particular concept learning, is the process by which
given an extensional definition of a concept C (a collection of examples of C and
a collection of examples that are not C) an intensional definition (or generaliza-
tion) of a concept C can be found. Formally, an induction domain is characterized
as pair 〈E ,G〉 where E is the language describing examples or instances and G is
the language for describing generalizations; usually E ⊂ G is assumed, but this
is not necessary. A language is understood as the set of well formed formulas
built from a domain vocabulary or ontology O. The relation between languages
E and G is established by the subsumption relation (v); we say a generalization
g ∈ G subsumes (or covers) an example e ∈ E , g @ e, whenever e satisfies the
properties described by g [?]. Different approaches to induction work with differ-
ent languages, from propositional languages (attribute value vectors) to subsets
of predicate logic (like Inductive Logic Programming that uses a sublanguage of
Horn logic).

Given a collection of examples E = {e1, ..., eM} described in a language
E , an extensional definition of a concept C is a function C : E −→ {+,−},
that determines the subset E+ of (positive) examples of C, and the subset E−

of counterexamples (or negative examples) of C. An inductive concept learning
method is a function I : P(E)×C −→ G such that, given a collection of examples
and a target concept C, yields an intensional definition h ∈ G; generally one
single formula in G is not sufficient to describe an intensional definition so it is
usually described as a disjunction of generalizations C = h1 ∨ ... ∨ hn.

Definition 1. An intensional definition C of a concept C is a disjunct C =
h1 ∨ ... ∨ hn, such that ∀ej ∈ E+∃hi : hi v ej and ∀ej ∈ E−∀hi : hi 6v ej
That is to say, that each positive example of C is subsumed by at least one
generalization hi, and no counterexample of C is subsumed by any hi.

For simplicity, we will shorten the previous expression as follows: C v E+ ∧
C 6v E−. Moreover, in the remainder of this paper we will refer to each hi as a
generalization or as a hypothesis.
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Fig. 1. Schema for two agents where a concept name (C) is shared while intensional
descriptions are, in general, not equivalent (C1 6∼= C2).

2.1 Inductive agents with empirical beliefs

In this paper we will focus on argumentation between two agents (say A1 and
A2) that are interested in learning an intensional definition for a particular con-
cept based on the experience of both agents. Each agent will have certain beliefs
according to what they have learnt. Thus, we will now explore how differences
between these two agents relate to induction and argumentation. First, we will
assume each agent has its own set of examples from which they may learn by
induction (say E1 and E2) and they are both in principle unrelated although
expressed in the same language E . Furthermore, each agent may use, in princi-
ple, different induction techniques but they obtain generalizations in the same
language G. Thus, for any particular concept C two agents will have intensional
descriptions C1 and C2 that are, in general, not equal or equivalent. Figure ??
depicts these relationships between two agents beliefs (C1 and C2) about what
C is based on their empirical data E1 and E2.

Finally, since Definition ?? is too restrictive for practical purposes, machine
learning approaches allow the intensional definitions to subsume less than 100%
of positive examples by defining a confidence measure. The goal of induction is
then, given as a target the function C : E −→ {+,−}, to find a new function
C, which is a good approximation of C, in the sense of yielding a small error in
determining when an example is a positive or negative example of C.

In the remainder of this paper we will use a confidence measure that assesses
the confidence of each individual hypothesis h in an intensional definition.

Definition 2. The individual confidence of a hypothesis h for an agent Ai:

Bi(h) =
|{e ∈ E+

i |h v e}|+ 1
|{e ∈ Ei|h v e}|+ 2

Bi(h) is the ratio of positive examples correctly covered by h over the total
number examples covered by h; moreover, we add 1 to the numerator and 2 to
the denominator following the Laplace probability estimation procedure (which



prevents estimations too close to 0 or 1 when very few examples are covered).
Other confidence measures could be used, our framework only requires that the
confidence measure reflects how much the set of examples known to an agent
endorses a hypothesis h.

Finally, a threshold τ is established, and only hypotheses with confidence
Bi(h) > τ are accepted as valid outcomes of the inductive process.

Definition 3. A hypothesis h is τ -acceptable for an agent Ai if Bi(h) ≥ τ ,
where 0 ≤ τ ≤ 1.

Thus, intensional definitions (C1 and C2) consist of a disjunction of hypothe-
ses, each of them being τ -acceptable. In the rest of this paper we will say that a
hypothesis is consistent with a set of examples, if the hypothesis is τ -acceptable
with respect to that set of examples.

3 An Empirical Approach to MAS Argumentation

This section will focus on how to integrate argumentation with inductive agents
in scenarios where the goal is to achieve an agreement between two agents on
the basis of their empirical knowledge. Here the empirical adjective refers to
the observations of the real world that each agent has had access to and that is
embodied in the set of examples E1 and E2 represented using a language E .

Argumentation in Multiagent Inductive Learning (A-MAIL) is a framework
where argumentation is used as a communication mechanism for agents that
want to perform collaborative inductive tasks such as concept convergence (see
Section ??). We do not claim, however, that A-MAIL is a new “argumentation
framework” in the sense of Dung [?], it is intended as a framework to that
integrates argumentation processes and inductive processes in MAS.

According to Dung, an argumentation framework AF = 〈A,R〉 is composed
by a set of arguments A and an attack relation R among the arguments. A-MAIL
is not a general logic framework and, although certainly we will define what
we mean as arguments and attack relations, we take an empirical approach
to argumentation. Thus, the main difference from Dung’s framework is that,
since arguments are generated from examples, our approach necessarily defines
a specific relation between arguments and examples, which is not part of the
usual interpretations of Dung’s framework2.

3.1 The A-MAIL Framework

A-MAIL is a framework that allows groups of agents to perform collaborative
induction tasks. A typical collaborative induction task is multiagent induction,
2 Some approaches may consider “counter-examples” as a kind of arguments. This is

certainly true, but in our approach there is a constitutive relation between examples
and arguments (the “empirical” approach) that is different from merely accepting
counter-examples as arguments.



where a group of agents wants to find an intensional definition of a concept and
where each agents has a different set of positive and negative examples of that
concept. A simple way to solve this problem is by sharing all the examples and
then just using induction in a centralized way. However, that solution might not
be feasible in some scenarios. Imagine, for instance, that a group of physicians
needed to share the data concerning all of their patients to a centralized location
in order to draw inductive inferences from that data. Another approach could
be use ensemble learning [?] techniques, where each agent would learn a local
intensional definition, and then those definitions can be combined at problem
solving time using some sort of voting mechanism. A-MAIL is an alternative ap-
proach where agents first use induction individually, and then use computational
argumentation to argue about the individually induced hypothesis. Nevertheless,
in this paper we focus on scenarios with only two agents; extending A-MAIL for
more than two agents is part of our future work.

The main idea behind A-MAIL is that the arguments to be used in an argu-
mentation process can be generated from examples by inductive learning meth-
ods. Agents using A-MAIL use induction to generate an initial set of hypotheses
explaining the data known to them, and then communicate those hypotheses to
other agents, starting an argumentation process where arguments and counter-
arguments (also generated by induction) are exchanged until an agreement is
reached. While sharing arguments and counterarguments, the agents learn new
information from the data known to the other agents, and may need to revise
their beliefs accordingly; once the argumentation process is over, the agents will
have agreed on a set of hypotheses that are consistent with the data known to
each other (including the exchanged in the process).

Summarily, there are three main processes in the A-MAIL framework: 1) gen-
eration of arguments from examples using inductive learning, 2) computational
argumentation using the previously generated arguments, and 3) belief revision,
for revising the hypotheses generated by induction in front of new arguments
received from other agents. Let us address each one of them in turn.

3.2 Arguments and Counterarguments

We first define the kinds of arguments employed in A-MAIL and their attack
relation. There are two kinds of arguments in A-MAIL:

Example Argument: α = 〈e, C〉 is a pair where an example e ∈ E is related
to a concept C ∈ {C,¬C}, where C = C if e is a positive example of C, and
C = ¬C otherwise.

Hypothesis Argument: α = 〈h,C〉 is a pair where h is a τ -acceptable hy-
pothesis and C ∈ {C,¬C}. An argument 〈h,C〉 states that h is a hypothesis
of C, while 〈h,¬C〉 states that h is a hypothesis of ¬C, i.e. that examples
covered by h do not belong to C.

Since hypotheses in arguments are generated by induction, they have an
associated degree of confidence for an individual agent:



Definition 4. The confidence of a hypothesis argument α = 〈h,C〉 for an agent
Ai is:

Bi(α) =


|{e∈E+

i |hve}|+1

|{e∈Ei|hve}|+2 if C = C

|{e∈E−i |hve}|+1

|{e∈Ei|hve}|+2 if C = ¬C

Consequently, we can use the threshold τ to impose that only arguments
with a strong confidence are acceptable in the argumentation process.

Definition 5. An argument α generated by an agent Ai is τ -acceptable iff α is
a hypothesis argument and Bi(α) > τ , or if α is an example argument.

From now on, only τ -acceptable arguments will be considered within the A-
MAIL framework. Moreover, notice that we require arguments to be τ -acceptable
for the agent who generates them. An argument generated by one agents might
not be τ -acceptable for another agent.

Next we define the attack relation between arguments:

Definition 6. An attack relation (α� β) between two τ -acceptable arguments
α, β holds when:

1. 〈h1, Ĉ〉� 〈h2, C〉 ⇐⇒ Ĉ = ¬C ∧ h2 @ h1, or
2. 〈e, C〉� 〈h, Ĉ〉 ⇐⇒ C = ¬Ĉ ∧ h v e

where C, Ĉ ∈ {C,¬C}.

Notice that a hypothesis argument α = 〈h1, Ĉ〉 only attacks another argument
β = 〈h2, C〉 if h2 @ h1, i.e. when α is (strictly) more specific than β. This is
required since it implies that all the examples covered by α are also covered by
β, and thus if one supports C and the other ¬C, they must be in conflict.

Figure ?? shows some examples of arguments and attacks. Positive examples
of the concept C are marked with a positive sign, whereas negative examples are
marked with a negative sign. Hypothesis arguments are represented as triangles
covering examples; when an argument α1 subsumes another argument α2, we
draw α2 inside of the triangle representing α1. Argument α1 has a hypothesis h1

supporting C, which covers 3 positive examples and 2 negative examples, and
thus has confidence 0.57, while argument α2 has a hypothesis h2 supporting ¬C
with confidence 0.60, since h2 covers 2 negative examples and only one positive
example. Now, the attack α2 � α1 holds because α2 supports ¬C, α1 supports
C and h1 v h2. Moreover, ε3 � α2, since e3 is a positive example of C while α2

supports ¬C and covers this example (h2 v e3).
Notice that the viewpoint on the (empirical) acceptability of an argument

or of an attack depends on each individual agent, as shown in Fig ??, where
two agents Ai and Aj compare arguments α1 and α2 for hypotheses h1 and h2,
assuming τ = 0.6. From the point of view of agent Ai (the Opponent), proposing
argument α2 as an attack against argument α1 of agent Aj (the Proponent) is a



+ --++

h1

h2

e3 e4

α2 � α1

α1 = �h1, C�
α2 = �h2,¬C�

ε4 � α1

ε3 � α2
ε3 = �e3, C�

Bi(α1) =
3 + 1
5 + 2

= 0.57 Bi(α2) =
2 + 1
3 + 2

= 0.60

ε4 = �e4,¬C�

Fig. 2. An illustration of the different argument types, their confidences and attacks.

sound decision, since for Ai, α1 is not τ -acceptable, while α2 is. However, from
the point of view of the Proponent of α1, α2 is not τ -acceptable. Thus, Aj does
not accept α2 and will proceed by attacking it.

Next we will define when arguments defeat other arguments, based on the
notion of argumentation lines [?].

Definition 7. An Argumentation Line αn � αn−1 � ...� α1 is a sequence of
τ -acceptable arguments where αi attacks αi−1, and α1 is called the root.

Notice that odd-numbered arguments are generated by the agent whose hy-
pothesis is under attack (the Proponent of the root argument α1) and the even-
numbered arguments are generated by the Opponent agent attacking α1. More-
over, since hypothesis arguments can only attack other hypothesis arguments,
and example arguments can only attack hypothesis arguments, example argu-
ments can only appear as the left-most argument (e.g. αn) in an argumentation
line.

Definition 8. An α-rooted argumentation tree T is a tree where each path from
the root node α to one of the leaves constitutes an argumentation line rooted on
α. The example-free argumentation tree T f corresponding to T is a tree rooted in
α that contains the same hypothesis arguments of T and no example argument.

Therefore, a set of argumentation lines rooted in the same argument α1 can
be represented as an argumentation tree, and vice versa. Notice that example
arguments can only appear as leafs in any argumentation tree.

Figure ?? illustrates this idea, where three different argumentation lines
rooted in the same α1 are shown with their corresponding argumentation tree.
The αi arguments are provided by the Proponent agent (the one proposing the
root argument) while βi arguments are provided by the Opponent trying to
attack the Proponent’s arguments.
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h2

PROPONENT
OPONENT

+ +

Bj(α1) =
5 + 1
6 + 2

= 0.75

Bj(α2) =
1 + 1
3 + 2

= 0.40

-

Bi(α1) =
2 + 1
5 + 2

= 0.43

Bi(α2) =
3 + 1
3 + 2

= 0.8

Fig. 3. An comparison of two individual viewpoints on arguments, attacks, and ac-
ceptability.

α1

α3 α7

β2 β6

e4 e5

α7 ! β6 ! α1

e5 ! α3 ! β2 ! α1

e4 ! α3 ! β2 ! α1

Fig. 4. Multiple argumentation lines rooted in the same argument α1 can be composed
into an argumentation tree.

Definition 9. Let T be an α-rooted argumentation tree, where argument α be-
longs to an agent Ai, and let T f be the example-free argumentation tree corre-
sponding to T . Then the root argument α is warranted (or undefeated) iff all
the leaves of T f are arguments belonging to Ai; otherwise α is defeated.

In A-MAIL agents will exchange arguments and counterarguments following
some interaction protocol. The protocol might be different depending on the task
the agents are trying to achieve (be it concept convergence, multiagent induction,
or any other). Nevertheless, independently of the protocol being used, we can
define the state of the argumentation two agents Ai and Aj at an instant t as
the tuple 〈Rti, Rtj , Gt〉, consisting of:

– Rti = {〈h,C〉|h ∈ {h1, ..., hn}}, the set of arguments defending the current
intensional definition Cti = h1 ∨ ... ∨ hn of agent Ai;

– Rtj is the same for Aj .



– Gt contains the collection of arguments generated before t by either agent,
and belonging to one argumentation tree rooted in an argument in Rti ∪Rtj .

3.3 Argument Generation Through Induction

Agents need two kinds of argument generation capabilities: generating an inten-
sional definition from the individual examples known to an agent, and generating
arguments that attack arguments provided by other agents; notice that a defense
argument is simply α′ � β � α, i.e. an attack on the argument attacking a pre-
vious argument. Thus, defense need not be considered separately.

An agent Ai can generate an intensional definition of C by using any inductive
learning algorithm capable of learning concepts as a disjunction of hypothesis,
e.g. learning algorithms such as CN2[?] or FOIL[?].

Attack arguments, however, require a more sophisticated form of induction.
When an agent Ai wants to generate an argument β = 〈h2, C〉 to attach another
argument α = 〈h1, Ĉ〉, i.e. β � α, Ai has to find an inductive hypothesis h2 for
β that satisfies four conditions:

1. h2 should support the opposite concept than α: namely C = ¬Ĉ,
2. β should have a high confidence Bi(β) (at least being τ -acceptable),
3. h2 should satisfy h1 @ h2, and
4. β should not be attacked by any undefeated argument in Gt.

Currently existing inductive learning techniques cannot be applied out of the
box, mainly because they do not satisfy the last two conditions.

In previous work, we developed the Argumentation-based Bottom-up Induc-
tion (ABUI) algorithm, capable of performing such task [?]; this is the inductive
algorithm used in our experiments in Section ??. However, any algorithm which
can search the space of hypotheses looking for a hypothesis which satisfies the
four previous conditions would work in our framework.

Let L be the inductive algorithm used by an agent Ai; when the goal is to
attack an argument α = 〈h1, Ĉ〉 then L has to generate an argument β = 〈h2, C〉
such that β � α. The uses L trying to find such a hypothesis h2:

– If L returns an individually τ -acceptable h2, then β is the attacking argument
to be used.

– If L fails to find a suitable h2, then Ai looks for examples in Ei that attack
α. If any exist, then one such example e is randomly chosen to be used as
an attacking argument β = 〈e, C〉.

Otherwise, Ai is unable to generate any argument attacking α.
If a hypothesis or example argument is not enough to defeat another argu-

ment, additional arguments or examples could be sent in subsequent rounds of
the interaction protocol (as long as the protocol allows it).



3.4 Empirical Belief Revision

During argumentation, agents exchange arguments which contain new hypothe-
ses and examples. These exchanges contain empirical knowledge that agents will
integrate with their previous empirical beliefs. Consequently, their beliefs will
change in such a way that their hypotheses are consistent with the accrued
empirical evidence: we call this process empirical belief revision.

The belief revision process of an agent Ai at an instant t, with an argumen-
tation state 〈Rti, Rtj , Gt〉 starts whenever Ai receives an argument from another
agent:

1. If it is an example argument ε = 〈e, Ĉ〉 then e is added as a new example
into Ei, i.e. Ai expands its extensional definition of C.

2. Whether the received argument is an example or an hypothesis, the agent
re-evaluates the confidence of the arguments in Rti and Gt: if any of these
arguments becomes no longer τ -acceptable for Ai they removed from Rt+1

i

or Gt+1.
3. If any argument α = 〈h, Ĉ〉 in Rti became defeated, and Ai is not able to

expand the argumentation tree rooted in α to defend it, then the hypothesis
h will be removed from Ci. This means that some positive examples in Ei
will not be covered by Ci any longer. The inductive learning algorithm is
called again to generate new hypotheses h′ for the now uncovered examples.

We would like to remark that, as shown in Figure ??, all aspects of the
argumentation process (generating arguments and attacks, accepting arguments,
determining defeat, and revising beliefs) are supported on an empirical basis and,
from the point of view of MAS, implemented by autonomous decision making of
artificial agents. The activities in Figure ?? permit the MAS to be self-sufficient
in a domain of empirical enquiry, since individual agents are autonomous and
every decision is based on the empirical knowledge available to them.

The next section presents an application of this MAS framework to reach
agreements in MAS.

4 Concept Convergence

We have developed A-MAIL as part of our research line on deliberative agree-
ment3, in which 2 or more artificial agents use argumentation to reach different
forms of agreement. In this section we will present a particular task of delibera-
tive agreement called concept convergence. The task of Concept Convergence is
defined as follows: Given two or more individuals which have individually learned
non-equivalent meanings of a concept C from their individual experience, find a
shared, equivalent, agreed-upon meaning of C.

Definition 10. Concept Convergence (between 2 agents) is the task defined as
follows:
3 This is part the project Agreement Technologies: http://www.agreement-

technologies.org/
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Fig. 5. The closed loop of empirically based activities used in argumentation.

Given two agents (Ai and Aj) with individually different intensional (Ci 6∼= Ci)
and extensional definitions (E+

i 6= E+
j ) of a concept C,

Find a convergent, shared and agreed-upon intensional description (C′i ∼= C′j)
for C that is consistent with the extensional descriptions (E+

i and E+
j ) of

each individual.

For example, in the experiments reported in this paper, we used the domain
of marine sponge identification. The two agents need to agree on the definition
of the target concept C = Hadromerida, among others. While in ontology align-
ment the focus is on establishing a mapping between the ontologies of the two
agents, here we assume that the ontology is shared, i.e. both agents share the
concept name Hadromerida. Each agent may have experience in a different area
(say, one in the Atlantic, and the other in the Mediterranean), so they have
collected different samples of Hadromerida sponges, those samples constitute
their extensional definitions (which are different, since each agent has collected
sponges on their own). Now, they would like to agree on an intensional definition
C, which describes such sponges and is consistent with their individual experi-
ence. In our experiments, one such intensional definition reached by one of the
agents is: C = “all those sponges which do not have gemmules in their external
features, whose megascleres had a tylostyle smooth form and that do not have
a uniform length in their spikulate skeleton”.

Concept convergence is assessed individually by an agent Ai by computing
the individual degree of convergence among two definitions Ci and Cj , as follows:



Definition 11. The individual degree of convergence among two intensional
definitions Ci and Cj for an agent Ai is:

Ki(Ci,Cj) =
|{e ∈ Ei|Ci v e ∧ Cj v e}|
|{e ∈ Ei|Ci v e ∨ Cj v e}|

where Ki is 0 if the two definitions are totally divergent, and 1 when the two
definitions are totally convergent. The degree of convergence corresponds to the
ratio between the number examples covered by both definitions (intersection)
and the number of examples covered by at least one definition (union). The
closer the intersection is to the union, the more similar the definitions are.

Definition 12. The joint degree of convergence of two intensional definitions
Ci and Cj is:

K(Ci,Cj) = min(Ki(Ci,Cj),Kj(Cj ,Ci))

Concept convergence is defined as follows:

Definition 13. Two intensional definitions are convergent (Ci ∼=ε Cj) if K(Ci,Cj) ≥
ε, where 0 ≤ ε ≤ 1 is a the degree of convergence required.

The next section describes the protocol to achieve concept convergence.

4.1 Argumentation Protocol for Concept Convergence

The concept convergence (CC) argumentation process follows an iteration pro-
tocol composed of a series of rounds, during which two agents will argue about
the individual hypotheses that compose their intensional definitions of a concept
C. At each round t of the protocol, each agent Ai holds a particular intensional
definition Cti, and only one agent will hold a token. The holder of the token can
assert new arguments and then the token will be passed on to the other agent.
This cycle will continue until Ci ∼= Cj .

The protocol starts at round t = 0 with a value set for ε and works as follows:

1. Each agent Ai communicates to the other their current intensional definition
by sharing R0

i . The token is given to one agent at random, and the protocol
moves to 2.

2. The agents share Ki(Ci,Cj) and Kj(Cj ,Ci), their individual convergence
degrees. If Ci ∼=ε Cj the protocol ends with success; if no agent has produced
a new attack in the last two rounds then the protocol ends with failure;
otherwise it moves to 3.

3. the agent with the token, Ai, checks if belief revision has modified Cti, and
if so sends a message communicating its current intensional definition Rti.
Then, the protocol moves to 4.

4. If any argument α ∈ Rti is defeated, and Ai can generate an argument α′

to defend α, the argument α′ will be sent to the other agent. Also, if any
of the undefeated arguments β ∈ Rtj is not individually τ -acceptable for Ai,



and Ai can find an argument β′ to extend any argumentation line rooted in
β, in order to attack it, then β′ is sent to the other agent. If at least one of
these arguments was sent, a new round t+ 1 starts; the token is given to the
other agent, and the protocol moves back to 2. Otherwise, if none of these
arguments could be found, the protocol moves to 5.

5. If there is any example e ∈ E+
i such that Ctj 6v e (i.e. a positive example not

covered by the definition of Aj), Ai will send e to the other agent, stating
that the intentional definition of Aj does not cover e. A new round t + 1
starts, the token is given to the other agent, and the protocol moves to 2.

Moreover, in order to ensure termination, no argument is allowed to be sent
twice by the same agent. A-MAIL ensures that the joint degree of convergence of
the resulting concepts is at least τ if (1) the number of examples is finite, (2) the
number of hypotheses that can be generated is finite. Joint convergence degrees
higher of than τ cannot be ensured, since 100×(1−τ)% of the examples covered
by a τ -acceptable hypothesis might be negative, causing divergence. Therefore,
when ε > τ , we cannot theoretically ensure convergence. However, as we will
show in our experiments, in practical scenarios, convergence is almost always
reached. Notice that increasing τ too much in order to ensure convergence could
be detrimental, since that would impose a too strong restriction on the inductive
learning algorithms. And, although convergence would be reached, the concept
definitions might cover only a small subset of the positive examples.

Termination is assured even when both agents use different inductive algo-
rithms because of the following reason. By assumption, agents use the same finite
generalization space, and thus there is no hypothesis τ -acceptable by one agent
that could not be τ -acceptable by the other agent when both use the same ac-
ceptability condition over the same collection of examples. Thus, in the extreme,
if the agents reach the point when they have exchanged all their examples, their
τ -acceptability criteria will be identical, and thus all rules acceptable to one are
also acceptable to the other.

4.2 Experimental Evaluation

In order to empirically evaluate A-MAIL with the purpose of concept conver-
gence we used the marine sponge identification problem. Sponge classification
is interesting because the difficulties arise from the morphological plasticity of
the species, and from the incomplete knowledge of many of their biological and
cytological features. Moreover, benthology specialists are distributed around the
world and they have experience in different benthos that spawn species with dif-
ferent characteristics due to the local habitat conditions. The specific problem
we target in these experiments is that of agreeing upon a shared description of
the features that distinguish one order of sponges from the others.

To have an idea of the complexity of this problem, Figure ?? shows a de-
scription of one of the sponges collected from the Mediterranean sea used in
our experiments. As Figure ?? shows, a sponge is defined by five groups of at-
tributes: ecological features, external features, anatomy, features of its spikulate
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Fig. 6. A description of one of the sponges of the Axinellida order used in our experi-
ments.

skeleton, and features of its tracts skeleton. Specifically, we used a collection of
280 sponges belonging to three different orders of the demospongiae family: ax-
inellida, Hadromerida and astrophorida. Such sponges were collected from both
the Mediterranean sea and Atlantic ocean. In order to evaluate A-MAIL, we used
each of the three orders as target concepts for concept convergence —namely Ax-
inellida, Hadromerida and Astrophorida. In an experimental run, we split the
280 sponges randomly among the two agents and, given as target concept one
of the orders, the goal of the agents is to reach a convergent definition of such
concept. The experiments model the process that two human experts undertake
when they to discuss over which features determine whether a sponge belongs
to a particular order.

We compared the results of A-MAIL with respect to agents which do not
perform argumentation (Individual), and to the result of centralizing all the ex-
amples and performing centralized induction (Centralized). Thus, the difference
between the results of individual agents and agents using A-MAIL should provide
a measure of the benefits of A-MAIL for concept convergence, where as compar-
ing with Centralized gives a measure of the quality of the outcome. All the results
are the average of 10 executions, with ε = 0.95 and τ = 0.75.

Table ?? shows one row for each of the 3 concepts we used in our evaluation:
Axinellida, Hadromerida and Astrophorida, and setting we show for them three
values: precision (P), recall (R), and convergence degree (K). Precision measures



Centralized Individual A-MAIL

C P R P R K P R K

Axinellida 0.98 1.00 0.97 0.95 0.80 0.97 0.95 0.89

Hadromerida 0.85 0.98 0.89 0.91 0.78 0.92 0.96 0.97

Astrophorida 0.98 1.00 0.97 0.97 0.93 0.98 0.99 0.97

Table 1. Precision (P), Recall (R) and degree of convergence (K) for the intensional
definitions obtained using A-MAILversus those obtained using .

how many of the examples covered by the definition are actually positive exam-
ples; recall measures how many of the total number of positive examples in the
data set are covered by the definition; and convergence degree is as in Defini-
tion ??. The first thing we see in Table ?? is that A-MAIL is able to increase
convergence from the initial value appearing in the Individual setting. For two
concepts (the exception is Axinellida) the convergence was higher than ε = 0.95.
Total convergence was not reached for because in our experiments τ = 0.75,
allowing hypotheses to cover some negative examples and preventing overfitting.
This means that acceptable hypotheses can cover some negative examples, and
thus generate some divergence. Increasing τ could improve convergence but it
would make finding hypotheses by induction more difficult, and thus recall might
suffer. Moreover, both precision and recall are maintained or improve thanks to
argumentation, reaching values close to the ones in a Centralized setting.

Moreover, during argumentation, agents exchanged an average of 10.7 ex-
amples to argue about Axinellida, 18.5 for Hadromerida and only 4.1 for As-
trophorida. Thus, compared to a centralized approach where all the examples
would have to be exchanged, i.e. 280, only a very small fraction of examples are
exchanged.

Figure ?? shows the set of rules that one of the agents using A-MAIL obtained
in our experiments as the definition of the concept Axinellida. For instance, the
first rule states that “all the sponges with an erect and line-form growing, and
with megascleres in the spikulate skeleton which had style smooth form and
smooth ornamentation belong to the Axinellida order”. By looking at those rules,
we can clearly see that both the growing external features and the characteristics
of the megascleres are the distinctive features of the Axinellida order.

In summary, we can conclude that A-MAIL successfully achieves concept con-
vergence by integrating argumentation and inductive learning, while maintainig
or improving the quality of the intensional definition (precision and recall). This
is achieved by exchanging only a small percentage of the examples the agents
know (as opposed to the Centralized setting where all the examples are given to
a single agent, which might not be feasible in some applications).
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Fig. 7. Set of rules forming the definition of Axinellida and obtained by one of the
agents using A-MAIL in our experiments.

5 Related Work

Concerning argumentation in MAS, previous work focuses on several issues like
a) logics, protocols and languages that support argumentation, b) argument
selection and c) argument interpretation, a recent overview can be found at [?].

The idea that argumentation might be useful for machine learning was dis-
cussed in [?], but no concrete proposal has followed, since the authors goal was
propose that a defeasible logic approach to argumentation could provide a sound
formalization for both expressing and reasoning with uncertain and incomplete
information as appears in machine learning. Since the possible hypotheses can
be induced from data could be considered an argument, and then by defining
a proper attack and defeat relation, a sound hypotheses can be found. How-
ever, they did not develop the idea, or attempted the actual integration of an
argumentation framework with any particular machine learning technique. Am-
goud and Serrurier [?] elaborated on the same idea, proposing an argumentation
framework for classification. Their focus is on classifying examples based on all
the possible classification rules (in the form of arguments) rather than on a single
one learned by a machine learning method.



A related idea is that of argument-based machine learning [?], where some
examples are augmented with a justification or “supporting argument”. The idea
is that those supporting arguments are then used to constrain the search in the
hypotheses space: only those hypotheses which classify examples following the
provided justification are considered. Notice that in this approach, arguments
are used to augment the information contained in an example. A-MAIL uses ar-
guments in a different way. A-MAIL does not require examples to be augmented
with such supporting arguments; in A-MAIL the inductive process itself gener-
ates arguments. Notice, however, that both approaches could be merged, and
that A-MAIL could also be designed to exploit extra information in the form of
examples augmented with justifications. Moreover, A-MAIL is a model for mul-
tiagent induction, whereas argument-based machine learning is a framework for
centralized induction which exploits additional annotations in the examples in
the form of arguments.

The idea of using argumentation with case-based reasoning in multiagent
systems has been explored by [?] in the AMAL framework. Compared to A-
MAIL, AMAL focuses on lazy learning techniques where the goal is to argue
about the classification of particular examples, whereas A-MAIL, although uses
case bases, allows agents to argue about rules generated through inductive learn-
ing techniques. Moreover, the AMAL framework explored a related idea to A-
MAIL, namely learning from communication [?]. An approach similar to AMAL
is PADUA [?], an argumentation framework that allows agents to use exam-
ples to argue about the classification of particular problems, but they generate
association rules and do not perform concept learning.

6 Conclusions

The two main contributions of this paper are the definition of an argumentation
framework for agents with inductive learning capabilities, and the introduction
of the concept convergence task. Since our argumentation framework is based
on reasoning from examples, we introduced the idea of argument acceptability,
which measures how much empirical support an argument has, which is used to
define an attack relation among arguments. A main contribution of the paper has
been to show the feasibility of a completely automatic and autonomous approach
to argumentation in empirical tasks. All necessary processes are autonomously
performed by artificial agents: generating arguments from their experience, gen-
erating attacks to defeat or defend, changing their beliefs as a result of the
argumentation process — they are all empirically based and autonomously un-
dertook by individual agents.

The A-MAIL framework has been applied in this paper to the concept con-
vergence task. However, it can also be seen as a multi-agent induction technique
to share inductive inferences [?]. As part of our future work, we want to extend
our framework to deal with more complex inductive tasks, such achieving con-
vergence on a collection of interrelated concepts, as well as scenarios with more
than 2 agents. Additionally, we would like to explore the use of argumentation



frameworks which support weights or strengths in the arguments, in order to take
into account the confidence of each agent during the argumentation process.

Our long term goal is to study the relation and integration of inductive
inference and communication processes among groups of intelligent agents into
a coherent unified MAS framework.
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