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Abstract. This paper presents an approach that integrates notions and
techniques from two distinct fields of study —namely inductive learning
and argumentation in multiagent systems (MAS). We will first discuss
inductive learning and the role argumentation may play in multiagent
inductive learning, and then how inductive learning can be used to re-
alize an argumentation in MAS based on empirical grounds. We present
a MAS framework for empirical argumentation and then we show how
this is applied to a particular task where two agents argue in order to
reach agreement on a particular topic. Finally, an experimental evalua-
tion of the approach is presented evaluating the quality of the agreements
achieved by argumentation.
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1 Introduction

This paper presents an approach that integrates notions and techniques from
two distinct fields of study —namely inductive learning and argumentation in
multiagent systems (MAS). We will discuss first inductive learning and the role
argumentation may play in multiagent inductive learning, and later how induc-
tive learning can be used to realize an argumentation in MAS based on empirical
grounds.



Multiagent inductive learning (MAIL) is the study of multiagent systems
where individual agents have the ability to perform inductive learning, i.e. an
agent is able to learn general descriptions from particular examples. Therefore,
induction is a form of empirical-based inference, where what is true (or what is
believed by the agent) is derived from the experience of that agent in a particular
domain (such experience is usually represented with “cases” or “examples”).
Notice that inductive inference is not deductive, and specifically it is not truth-
preserving1, and therefore it captures a form of empirical knowledge that can be
called into question by new empirical data and thus needs to be revised.

The challenge of multiagent inductive learning is that several agents will in-
ductively infer empirical knowledge that in principle is not the same, since that
knowledge is dependent on each individual in two ways: the concrete empiri-
cal data an agent has encountered and the specific inductive method an agent
employs.

Therefore, empirical knowledge will be different in principle for each indi-
vidual agent, and based on a part of the empirical data (the one observed by
each individual agent). Communication among agents is necessary in order to
reach a shared and agreed-upon empirical-based generalization that is based on,
and consistent with, all the empirical data available to a collection of agents.
Instead of simply using a communication process that redistributes all data to
all agents, we propose an argumentation-based communication process where
agents can propose, compare and challenge the empirical knowledge of other
agents, with the goal of achieving a more accurate, shared, and agreed-upon
body of empirical knowledge.

From the point of view of argumentation in MAS, inductive learning provides
a basis for automating, in empirical domains, a collection of activities necessary
for implementing artificial agents that support argumentation: how to generate
arguments, how to attack and defend arguments, and how to change an agent’s
beliefs as a result of the arguments exchanged. Logic-based approaches to ar-
gumentation like DeLP [8] amend classical deductive logic to support defeasible
reasoning. Our approach takes a different path, assuming agents that learn their
knowledge (by using induction over empirical data) instead of assuming agents
have been programmed (by giving them a rule-based knowledge base). There-
fore, we need to specify empirical methods that are able to perform the required
activities of argumentation (generating arguments and attacks, comparing argu-
ments and revising an agent’s beliefs): this is the approach we will call empirical
argumentation for MAS.

This paper presents a MAS framework for empirical argumentation that pro-
poses a way to implement those activities on the basis of the inductive inference
techniques developed in the field of Machine Learning. The structure of the pa-
per starts by introducing the notions of inductive learning needed (Section 2).
Then Section 3 presents the MAS framework for empirical argumentation called
A-MAIL, while Section 4 shows the utility of the framework in the task of concept

1 Inductive inference is not truth-preserving since new experiences may contradict
past generalizations, albeit it is falsity-preserving.



convergence (in which two agents argue with the goal of achieving an agreement
on a particular topic); an experimental evaluation of the approach is presented
evaluating the quality of the agreements achieved by argumentation. The paper
closes with sections on related work and conclusions.

2 Concept Induction

Inductive learning, and in particular concept learning, is the process by which
given an extensional definition of a concept C (a collection of examples of C
and a collection of examples that are not C) then an intensional definition (or
generalization) of a concept C can be found. Formally, an induction domain
is characterized as pair 〈E ,G〉 where E is the language describing examples or
instances and G is the language for describing generalizations; usually E ⊂ G is
assumed, but this is not necessary. A language is understood as the set of well
formed formulas built from a domain vocabulary or ontology O. The relation
between languages E and G is established by the subsumption relation (v); we
say a generalization g ∈ G subsumes (or covers) an example e ∈ E , g @ e,
whenever e satisfies the properties described by g [6]. Different approaches to
induction work with different languages, from propositional languages (attribute
value vectors) to subsets of predicate logic (like Inductive Logic Programming
that uses a sublanguage of Horn logic).

Given a collection of examples E = {e1, ..., eM} described in a language
E , an extensional definition of a concept C is a function C : E −→ {+,−},
i.e. determines the subset E+ of (positive) examples of C, and the subset E−

of counterexamples (or negative examples) for C. Induction is a function I :
P(E) × C −→ G, which given a collection of examples and a target concept
yields an intensional definition C ∈ G; generally one single formula in G is not
sufficient to describe an intensional definition so it is usually described as a
disjunction of generalizations C = h1 ∨ ... ∨ hn.

Definition 1. An intensional definition C of a concept C is a disjunct C =
h1∨ ...∨hn (where hi ∈ G) such that its generalizations subsume (v) all positive
examples of C and no counterexample of C:

∀ej ∈ E+ : ∃hi : hi v ej ∧ ∀ej ∈ E− ∧ ∀hi : hi 6v ej

For simplicity, we will shorten the previous expression as follows: C v E+ ∧
C 6v E−.

As an exemplification of these notions, consider the case where C is the
concept Chair; in this scenario, the set E may consists of chairs, benches, stools,
tables and other furniture, and each specific positive example is a description
of one concrete chair and each specific negative example is a description of one
furniture item that is not a chair. Finally, and intensional description Chair of
concept Chair might be “Chair is an object with a seat, four legs and a back.”
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Fig. 1. Schema for two agents where a concept name (C) is shared while intensional
descriptions are, in general, not equivalent (Ci 6∼= Ci).

2.1 Inductive agents with empirical beliefs

Since we will focus on argumentation between two agents (say A1 and A2), and
each agent will have certain beliefs according to what they have learnt, we will
now explore how differences between these two agents relate to induction and
argumentation. First, we will assume each agent has its own set of examples
from which they may learn by induction (say E1 and E2) and they are both
in principle unrelated although expressed in the same language E . Furthermore,
each agent may use, in principle, different induction techniques but they obtain
generalizations in the same language G. Thus, for any particular concept C two
agents will have intensional descriptions C1 and C2 that are, in general, not equal
or equivalent. Fig. 1 depicts these relationships between two agents beliefs about
what C is based on their empirical data E1 and E2.

Finally, since Def. 1 is too restrictive for practical purposes, Machine Learn-
ing approaches allow the intensional definitions to subsume less than 100% of
positive examples by defining a confidence measure. The goal of induction is,
given as a target the function C : E −→ {+,−}, to find a new function C,
which is a good approximation of C, in the sense of yielding a small error in
determining when an example is a positive or negative example of C.

We will use the following confidence measure:

Definition 2. The individual confidence of a hypothesis h for an agent Ai:

Bi(h) =
|{e ∈ E+

i |h v e}|+ 1
|{e ∈ Ei|h v e}|+ 2

Bi(h) is the ratio of examples correctly covered by h over the total number
examples covered by h; moreover, we add 1 to the numerator and 2 to the
denominator following the Laplace probability estimation procedure (which pre-
vents estimations too close to 0 or 1 when very few examples are covered). Other
confidence measures could be used, our framework only requires that the confi-
dence measure reflects how much the set of examples known to an agent endorses



the hypothesis. Finally, a threshold τ is established and only hypotheses with
confidence Bi(h) > τ are accepted as valid for the inductive process.

Definition 3. A hypothesis h is τ -admissible for an agent Ai if Bi(h) ≥ τ ,
where 0 ≤ τ ≤ 1.

3 An Empirical Approach to MAS Argumentation

This section will focus on how to integrate argumentation with inductive agents
in scenarios where the goal is to achieve an agreement between two agents on
the basis of their empirical knowledge. Here the empirical adjective refers to
the observations of the real world that each agent has had access to and that is
embodied in the set of examples E1 and E2 represented using a language E .

Argumentation in Multiagent Inductive Learning (A-MAIL) is a framework
where argumentation is used as a communication mechanism for agents that
want to perform collaborative inductive tasks such as concept convergence. We
do not claim, however, that A-MAIL is a new “argumentation framework” in
the sense of Dung [4], it is intended as a framework to integrate argumentation
processes and inductive processes in MAS. According to Dung, an argumen-
tation framework AF = 〈A,R〉 is composed by a set of arguments A and an
attack relation R among the arguments. A-MAIL is not a general logic frame-
work and, although certainly we will define what we mean as arguments and
attack relations, we take an empirical approach to argumentation. Thus, the
main difference from Dung’s framework is that, since arguments are generated
from examples, our approach necessarily defines a specific relation between ar-
guments and examples, which is not part of the usual interpretations of Dung’s
framework2.

3.1 The A-MAIL Approach

Let us define both the kinds of arguments considered by A-MAIL and how argu-
ments attack each other.

There are two kinds of arguments in A-MAIL:

Example Argument: α = 〈e, C〉 is a pair where an example α.e ∈ E is related
to a concept α.C ∈ {C,¬C}, either endorsing C if α.e is a positive example
or endorsing ¬C if α.e is a counter-example of C.

Hypothesis Argument: α = 〈h,C〉 is a pair where α.h is a τ -admissible hy-
pothesis and α.C ∈ {C,¬C}. An argument 〈h,C〉 states that α.h is a hy-
pothesis of C, while 〈h,¬C〉 states that h is a hypothesis of ¬C, i.e. that
examples covered by α.h do not belong to C.

2 Some approaches may consider “counter-examples” as a kind of arguments. This is
certainly true, but in our approach there is a constitutive relation between examples
and arguments (the “empirical” approach) that is different from merely accepting
counter-examples as arguments.



Since hypotheses in arguments are generated by induction, they have an
associated degree of confidence for an individual agent:

Definition 4. The confidence of a hypothesis argument α for an agent Ai is:

Bi(α) =


|{e∈E+

i |α.hve}|+1

|{e∈Ei|α.hve}|+2 if α.C = C

|{e∈E−i |α.hve}|+1

|{e∈Ei|α.hve}|+2 if α.C = ¬C

Consequently, we can use the threshold τ to impose that only arguments
with a strong confidence are admissible in the argumentation process; however,
we require only a strong confidence on the part of the individual agent uttering
such an argument.

Definition 5. Am argument α generated by an agent Ai is τ -admissible iff it
is a hypothesis argument and Bi(α) > τ , or if it is an example argument.

From now on, only τ -admissible arguments will be considered within the A-MAIL
framework.

Now we can define the attack relation between arguments; we will use the
notation C ∈ {C,¬C} to specify the boolean valuation of a concept as true or
false, while Ĉ = ¬C is the dual boolean valuation.

Definition 6. The attack relation (α� β) between two τ -admissible arguments
α, β holds when:

1. 〈h1, Ĉ〉� 〈h2, C〉 ⇐⇒ Ĉ = ¬C ∧ h2 @ h1, or
2. 〈e, C〉� 〈h, Ĉ〉 ⇐⇒ e.C = ¬h.Ĉ ∧ h v e

where C ∈ {C,¬C}.

Notice that a hypothesis argument α only attacks another argument β if β.h @
α.h, i.e. when α is (strictly) more specific than β. This is required since it implies
that all the examples covered by α are also covered by β, and thus if one supports
C and the other ¬C, they must be in conflict.

Figure 2 shows some examples of arguments and attacks. Positive examples
of the concept C are marked with a positive sign, whereas negative examples are
marked with a negative sign. Hypothesis arguments are represented as triangles
covering examples; when an argument α1 subsumes another argument α2, we
draw α2 inside of the triangle representing α1. Argument α1 has a hypothesis
supporting C, which covers 3 positive examples and 2 negative examples, and
thus has confidence 0.57, while argument α2 has a hypothesis supporting ¬C
with confidence 0.60, since it covers 2 negative examples and only one positive
example. Now, α2 � α1 because α2 supports ¬C, α1 supports C and α1.h v
α2.h. Moreover, ε3 � α2, since e3 is a positive example of C while α2 supports
¬C and covers this example (α2.h v ε3.e).

Notice that the viewpoint on the (empirical) admissibility of an argument
or of an attack depends on each individual agent, as shown in Fig 3 where
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Fig. 2. An illustration of the different argument types, their confidences and attacks.

two agents Ai and Aj compare arguments α1 and α2 for hypotheses h1 and h2,
assuming τ = 0.75. From the point of view of agent Ai (the Opponent), proposing
argument α2 as an attack against argument α1 of agent Aj (the Proponent) is a
sound decision, since for Ai, α1 is not τ -admissible, while α2 is. However, from
the point of view of the Proponent of α1, α2 is not τ -admissible. Thus, Aj does
not accept α2 and will proceed by attacking it; on the other side, had it found
that confidence Bj(α2) was higher than Bj(α1) agent Aj would have revised its
beliefs by dismissing α1 and accepting α2, as we will explain later.

Next we will define when arguments defeat other arguments, based on the
idea of argumentation lines [8].

Definition 7. An Argumentation Line αn � αn−1 � ...� α1 is a sequence of
τ -admissible arguments where αi attacks αi−1 and α1 is called the root.

Notice that odd-numbered arguments are generated by the agent whose hy-
pothesis is under attack (the Proponent of the root argument α1) and the even-
numbered arguments are generated by the Opponent agent attacking α1. More-
over, since hypothesis arguments can only attack other hypothesis arguments,
and example arguments can only attack hypothesis arguments, example argu-
ments can only appear as the left-most argument (e.g. αn) in an argumentation
line.

Definition 8. An α-rooted argumentation tree T is a tree where each path from
the root node α to one of the leaves constitutes an argumentation line rooted on
α. The example-free argumentation tree T f corresponding to T is a tree rooted in
α that contains the same hypothesis arguments of T and no example argument.

Therefore, a set of argumentation lines rooted in the same argument α1 can
be represented as an argumentation tree, and vice versa. Notice that example
arguments can only appear as leafs in any argumentation tree.
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Fig. 3. An comparison of two individual viewpoints on arguments, attacks, and ac-
ceptability.

α1

α3 α7

β2 β6

e4 e5

α7 ! β6 ! α1

e5 ! α3 ! β2 ! α1

e4 ! α3 ! β2 ! α1

Fig. 4. Multiple argumentation lines rooted in the same argument α1 can be composed
into an argumentation tree.

Figure 4 illustrates this idea, where three different argumentation lines rooted
in the same α1 are shown with their corresponding argumentation tree. The αi
arguments are provided by the Proponent agent (the one proposing the root
argument) while βi arguments are provided by the Opponent trying to attack
the Proponent’s arguments.

Definition 9. Let an T α-rooted argumentation tree, where argument α belongs
to an agent Ai, and let T f be the example-free argumentation tree corresponding
to T . Then the root argument α is warranted (or undefeated) iff all the leaves
of T f are arguments belonging to Ai.

Now we are able to define the state of the argumentation among two agents
Ai and Aj at an instant t as the tuple 〈Rti, Rtj , Gt〉, consisting of:

– Rti = {〈h,C〉|h ∈ {h1, ..., hn}}, the set of arguments defending the current
intensional definition Cti = h1 ∨ ... ∨ hn of agent Ai;



– Rtj is the same for Aj .
– Gt contains the collection of arguments generated before t by either agent,

and belonging to one argumentation tree rooted in an argument in Rti ∪Rtj .

3.2 Argument Generation Through Induction

Agents need two kinds of argument generation capabilities: generating empirical
arguments based on the individual examples known to an agent, and generating
attack arguments that attack arguments provided by other agents; notice that a
defense argument is simply α′ � β � α, i.e. an attack on the argument attacking
a previous argument. Concerning empirical arguments, they are generated by
using induction to find an initial intensional definition C from examples; for
this reason, an agent Ai can generate an intensional definition of C by using
any inductive learning algorithm capable of learning concepts as a disjunction
of hypothesis, e.g. learning algorithms such as CN2[2] or FOIL[12].

Attack arguments, however, require a more sophisticated form of induction.
When an agent Ai wants to generate an argument β such that β � α, Ai has
to find an inductive hypothesis h for β that satisfies four conditions:

1. β.h should support the opposite concept than α: namely β.C = ¬α.C,
2. β.h should have a high confidence Bi(β) (at least being τ -admissible),
3. β.h should satisfy α.h @ β.h, and
4. β should not be attacked by any undefeated argument in Gt.

Currently existing inductive learning techniques cannot be applied out of the
box, because they do not satisfy these conditions (mainly the last two condi-
tions).

In previous work, we developed the Argumentation-based Bottom-up Induc-
tion (ABUI) algorithm, capable of performing such task [9]; this is the inductive
algorithm used in our experiments by the agents. However, any algorithm which
can search the space of hypotheses looking for a hypothesis which satisfies the
four conditions stated before would work in our framework: e.g. CN2 could be
modified in a way that the search of rules is restricted to the subspace of rules
satisfying α.h @ β.h.

Let L be the inductive algorithm used by an agent Ai; then to attack an
argument α = 〈h,C〉 for C has to generate an argument β = 〈h′, Ĉ〉 such that
β � α. The agent calls L to generate such hypothesis h′, then:

– If L returns an individually τ -admissible h′, then β is the attacking argument
to be used.

– If L fails to find an argument, then Ai looks for examples attacking α in
Ei. If any exist, then one such example is randomly chosen to be used as an
attacking argument.

Otherwise, Ai is unable to generate any argument attacking α. If an argument
or example is not enough to defeat another argument, additional arguments or
examples can be sent in subsequent rounds of the A-MAIL protocol (see below).



3.3 Empirical Belief Revision

During argumentation, agents exchange arguments which contain new hypothe-
ses and examples. These exchanges contain empirical knowledge that agents will
integrate with their previous empirical beliefs. Consequently, their beliefs will
change in such a way that their hypothesis are consistent with the accrued em-
pirical evidence: we call this process empirical belief revision. The belief revision
process of an agent Ai at an instant t, with an argumentation state 〈Rti, Rtj , Gt〉
starts whenever Ai receives an argument from another agent:

1. If it is an example argument ε then ε.e is added as a new example into Ei,
i.e. Ai expands its extensional definition of C.

2. Whether the received argument is an example or an hypothesis, the agent
re-evaluates the confidence of any argument in Rti or Gt: if any of these
arguments becomes no longer τ -admissible for Ai they removed from Rt+1

i

and Gt+1.
3. If any argument α in Rti became defeated, and Ai is not able to expand the

argumentation tree rooted in α to defend it, then the hypothesis α.h will be
removed from Ci. This means that some positive examples in Ei will not be
covered by Ci any longer. The inductive learning algorithm is called again to
generate new hypotheses that cover the now uncovered examples.

Thus, we have presented the A-MAIL approach to empirical argumentation for
MAS. Notice that, as shown in Fig. 5 all aspects of the argumentation process
(generating arguments and attacks, accepting arguments, determining defeat,
and revising beliefs) are supported on an empirical basis and, from the point of
view of MAS, implemented by autonomous decision making of artificial agents.
The activities in Fig. 5 permit the MAS to be self-sufficient in a domain of
empirical enquiry, since individual agents are autonomous and every decision is
based on the empirical knowledge available to them.

The next section presents an application of this MAS framework to reach
agreements in MAS.

4 Concept Convergence

We have developed A-MAIL as part of our research line on deliberative agree-
ment3, in which 2 or more artificial agents use argumentation to reach different
forms of agreement. In this section we will present a particular task of delibera-
tive agreement called concept convergence. The task of Concept Convergence is
defined as follows: Given two or more individuals which have individually learned
non-equivalent meanings of a concept C from their individual experience, find a
shared, equivalent, agreed-upon meaning of C.

Definition 10. Concept Convergence (between 2 agents) is the task defined as
follows:
3 This is part the project Agreement Technologies: http://www.agreement-

technologies.org/
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Fig. 5. The closed loop of empirically based activities used in argumentation.

Given two agents (Ai and Aj) that agree on the sign C denoting a concept (Ci ∼=
Cj) and with individually different intensional (Ci 6∼= Ci) and extensional
(E+

i 6= E+
j ) definitions of that concept,

Find a convergent, shared and agreed-upon intensional description (C′i ∼= C′j) for
C that is consistent for each individual with their extensional descriptions.

For example, in the experiments reported in this paper, we used the domain
of marine sponge identification. The two agents need to agree on the definition
of the target concept C = hadromerida, among others. While in ontology align-
ment the focus is on establishing a mapping between the ontologies of the two
agents, here we assume that the ontology is shared, i.e. both agents share the
concept name hadromerida. Each agent has experience in a different area (one in
the Atlantic, and the other in the Mediterranean), so they have collected differ-
ent samples of hadromerida sponges, those samples constitute their extensional
definitions (which are different, since each agent has collected sponges on their
own). Now they want to agree on an intensional definition C, which describes
such sponges. In our experiments, one such intensional definition reached by one
of the agents is: C = “all those sponges which do not have gemmules in their ex-
ternal features, whose megascleres had a tylostyle smooth form and that do not
have a uniform length in their spikulate skeleton”. In the remainder of this paper
we will present how agents can combine argumentation and inductive learning
to argue about such definitions.

Concept convergence is assessed individually by an agent Ai by computing
the individual degree of convergence among two definitions Ci and Cj as:



Definition 11. The individual degree of convergence among two intensional
definitions Ci and Cj for an agent Ai is:

Ki(Ci,Cj) =
|{e ∈ Ei|Ci v e ∧ Cj v e}|
|{e ∈ Ei|Ci v e ∨ Cj v e}|

where Ki is 0 if the two definitions are totally divergent, and 1 when the two
definitions are totally convergent. The degree of convergence corresponds to the
ratio between the number examples covered by both definitions (intersection)
and the number of examples covered by at least one definition (union). The
closer the intersection is to the union, the more similar the definitions are.

Definition 12. The joint degree of convergence of two intensional definitions
Ci and Cj is:

K(Ci,Cj) = min(Ki(Ci,Cj),Kj(Cj ,Ci))

Concept convergence is defined as follows:

Definition 13. Two intensional definitions are convergent (Ci ∼= Cj) if K(Ci,Cj) ≥
1− ε, where 0 ≤ ε ≤ 1 is a the degree of divergence allowed.

The next section describes the protocol to achieve concept convergence.

4.1 Argumentation Protocol

The CC argumentation process follows an iteration protocol composed of a series
of rounds, during which two agents will argue about the individual hypotheses
that compose their intensional definitions of a concept C. At each round t of
the protocol, each agent Ai holds a particular intensional definition Cti, and only
one agent will hold a token. The holder of the token can assert new arguments
and then the token will be passed on to the other agent. This cycle will continue
until Ci ∼= Cj .

The protocol starts at round t = 0 and works as follows:

1. Each agent Ai communicates to the other their current intensional definition
by sharing R0

i . The token is given to one agent at random, and the protocol
moves to 2.

2. The agents share their individual convergence degrees (Ki(Ci,Cj) andKj(Cj ,
Ci)). If Ci ∼= Cj the protocol ends with success; if no agent has produced
a new attack in the last two rounds then the protocol ends with failure;
otherwise it moves to 3.

3. If modified by belief revision, the agent Ai with the token, sends a mes-
sage communicating its current intensional definition Rti. Then, the protocol
moves to 4.

4. If any argument α ∈ Rti is defeated, and Ai can generate an argument α′ to
defend α, the argument will be sent to the other agent. Also, if any of the
undefeated arguments β ∈ Rtj is not individually τ -admissible for Ai, and



Ai can find an argument β′ to extend any argumentation line rotted in β,
in order to attack it, then β′ is sent to the other agent. If at least one of
these arguments was sent, a new round t+ 1 starts; the token is given to the
other agent, and the protocol moves back to 2. Otherwise, if none of these
arguments could be found, the protocol moves to 5.

5. If there is any example e ∈ E+
i such that Ctj 6v e (i.e. a positive example not

covered by the definition of Aj), Ai will send e to the other agent, stating
that the intentional definition of Aj does not cover e. A new round t + 1
starts, the token is given to the other agent, and the protocol moves to 2.

Moreover, in order to ensure termination, no argument is allowed to be sent
twice by the same agent. A-MAIL ensures that the convergence of the resulting
concepts is at least τ if (1) the number of examples is finite, (2) the number of
hypotheses that can be generated is finite. Convergence higher than τ cannot
be ensured, since 100 × (1 − τ)% of the examples covered by a τ -admissible
hypothesis might be negative, causing divergence. Even when both agents use
different inductive algorithms, convergence is assured since by assumption they
are using the same finite generalization space, and there is no hypothesis τ -
admissible by one agent that could not be τ -admissible by the other agent when
both use the same acceptability condition over the same collection of examples.

4.2 Experimental Evaluation

In order to empirically evaluate A-MAIL with the purpose of concept conver-
gence we used the marine sponge identification problem. Sponge classification
is interesting because the difficulties arise from the morphological plasticity of
the species, and from the incomplete knowledge of many of their biological and
cytological features. Moreover, benthology specialists are distributed around the
world and they have experience in different benthos that spawn species with dif-
ferent characteristics due to the local habitat conditions. The specific problem
we target in these experiments is that of agreeing upon a shared description of
the features that distinguish one order of sponges from the others.

To have an idea of the complexity of this problem, Figure 6 shows a de-
scription of one of the sponges collected from the Mediterranean sea used in
our experiments. As Figure 6 shows, a sponge is defined by five groups of at-
tributes: ecological features, external features, anatomy, features of its spikulate
skeleton, and features of its tracts skeleton. Specifically, we used a collection of
280 sponges belonging to three different orders of the demospongiae family: ax-
inellida, hadromerida and astrophorida. Such sponges were collected from both
the Mediterranean sea and Atlantic ocean. In order to evaluate A-MAIL, we used
each of the three orders as target concepts for concept convergence. In an exper-
imental run, we split the 280 sponges randomly among the two agents and, given
a target concept, the goal of the agents was to reach a convergent definition of
such concept. The experiments model the process that two human experts un-
dertake when they get together to discuss over which features determine whether
a sponge belongs to a particular order.
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Fig. 6. A description of one of the sponges of the Axinellida order used in our experi-
ments.

Centralized Individual A-MAIL

C P R P R K P R K

Axinellida 0.98 1.00 0.97 0.95 0.80 0.97 0.95 0.89

Hadromerida 0.85 0.98 0.89 0.91 0.78 0.92 0.96 0.97

Astrophorida 0.98 1.00 0.97 0.97 0.93 0.98 0.99 0.97

Table 1. Precision (P), Recall (R) and degree of convergence (K) for the intensional
definitions obtained using A-MAILversus those obtained using .

We compared the results of A-MAIL with respect to agents which do not
perform argumentation (Individual), and to the result of centralizing all the ex-
amples and performing centralized induction (Centralized). Thus, the difference
between the results of individual agents and agents using A-MAIL should provide
a measure of the benefits of A-MAIL for concept convergence, where as compar-
ing with Centralized gives a measure of the quality of the outcome. All the results
are the average of 10 executions, ε = 0.05 and τ = 0.75.

Table 1 shows one row for each of the 3 concepts we used in our evaluation:
Axinellida, Hadromerida and Astrophorida. For each setting we show three val-
ues: precision, measuring how many of the examples covered by the definition are
actually positive examples; recall, measuring how many of the total number of
positive examples in the data set are covered by the definition; and convergence,
as defined in Definition 12. The first thing we see in Table 1 is that A-MAIL is
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Fig. 7. Set of rules forming the definition of Axinellida and obtained by one of the
agents using A-MAIL in our experiments.

able to increase convergence from the initial value appearing in the Individual
setting. For all concepts except for Axinellida the convergence was higher than
0.95 (i.e. 1 − ε). Total convergence was not reached for thhat concepts because
in our experiments τ = 0.75, allowing hypotheses to cover some negative ex-
amples and preventing overfitting. This means that acceptable hypotheses can
cover some negative examples, and thus generate some divergence. Increasing τ
could improve convergence but if would make finding hypotheses by induction
more difficult, and thus recall might suffer. Moreover, even precision and recall
improve thanks to argumentation, reaching values close to the ones achieved by
a Centralized setting.

Figure 7 shows the set of rules that one of the agents in our experiments
using A-MAIL obtained as the definition of the concept Axinellida. For instance,
the first rule states that “all the sponges with an erect and line-form growing,
and with megascleres in the spikulate skeleton which had style smooth form and
smooth ornamentation belong to the Axinellida order”. By looking at those rules,
we can clearly see that both the growing external features and the characteristics
of the megascleres are the distinctive features of the Axinellida order.



In summary, we can conclude that A-MAIL successfully achieves concept con-
vergence by integrating argumentation and inductive learning, in addition to
improve the quality of the intensional definition (precision and recall). This is
achieved by exchanging only a small percentage of the examples the agents know
(as opposed to the Centralized setting where all the examples are given to a sin-
gle agent, which might not be feasible in some applications). Additionally, in
average, the execution time of A-MAIL is lower than that of a centralized strat-
egy.

5 Related Work

Concerning argumentation in MAS, previous work focuses on several issues like
a) logics, protocols and languages that support argumentation, b) argument
selection and c) argument interpretation, a recent overview can be found at [13].

The idea that argumentation might be useful for machine learning was dis-
cussed in [5], but no concrete proposal has followed, since the authors goal was
propose that a defeasible logic approach to argumentation could provide a sound
formalization for both expressing and reasoning with uncertain and incomplete
information as appears in Machine Learning. Since the possible hypotheses can
be induced from data could be considered an argument, and then by defining
a proper attack and defeat relation, a sound hypotheses can be found. How-
ever, they did not develop the idea, or attempted the actual integration of an
argumentation framework with any particular machine learning technique. Am-
goud and Serrurier [1] elaborated on the same idea, proposing an argumentation
framework for classification. Their focus is on classifying examples based on all
the possible classification rules (in the form of arguments) rather than on a single
one learned by a machine learning method.

A related idea is that of argument-based machine learning [7], where some
examples are augmented with a justification or “supporting argument”. The idea
is that those supporting arguments are then used to constrain the search in the
hypotheses space: only those hypotheses which classify examples following the
provided justification are considered. Notice that in this approach, arguments
are used to augment the information contained in an example. A-MAIL uses ar-
guments in a different way. A-MAIL does not require examples to be augmented
with such supporting arguments; in A-MAIL the inductive process itself gener-
ates arguments. Notice, however, that both approaches could be merged, and
that A-MAIL could also be designed to exploit extra information in the form of
examples augmented with justifications. Moreover, A-MAIL is a model for mul-
tiagent induction, whereas argument-based machine learning is a framework for
centralized induction which exploits additional annotations in the examples in
the form of arguments.

The idea of using argumentation with case-based reasoning in multiagent
systems has been explored by [11] in the AMAL framework. Compared to A-
MAIL, AMAL focuses on lazy learning techniques where the goal is to argue
about the classification of particular examples, whereas A-MAIL, although uses



cases and vase bases, allows agents to argue about rules generated through in-
ductive learning techniques. Moreover, the AMAL framework explored a related
idea to A-MAIL, namely learning from communication [10]. An approach similar
to AMAL is PADUA [14], an argumentation framework that allows agents to
use examples to argue about the classification of particular problems, but they
generate association rules and do not perform concept learning.

6 Conclusions

The two main contributions of this paper are the definition of an argumentation
framework for agents with inductive learning capabilities, and the introduction
of the concept convergence task. Since our argumentation framework is based
on reasoning from examples, we introduced the idea of argument admissibility,
which measures how much empirical support an argument has, which is used to
define an attack relation among arguments. A main contribution of the paper has
been to show the feasibility of a completely automatic and autonomous approach
to argumentation in empirical tasks. All necessary processes are autonomously
performed by artificial agents: generating arguments from their experience, gen-
erating attacks to defeat or defend, changing their beliefs as a result of the
argumentation process — they are all empirically based and autonomously un-
dertook by individual agents.

The A-MAIL framework has been applied in this paper to the concept con-
vergence task. However, it can also be seen as a multi-agent induction technique
to share inductive inferences [3]. As part of our future work, we want to ex-
tend our framework to deal with more complex inductive tasks, such achieving
convergence on a collection of interrelated concepts, as well as scenarios with
more than 2 agents. Our long term goal is to study the relation and integration
of inductive inference and communication processes among groups of intelligent
agents into a coherent unified MAS framework.
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