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Abstract. Cooperation and learning are two ways in which an agent can
improve its performance. Cooperative Multiagent Learning is a frame-
work to analyze the tradeoff between cooperation and learning in multi-
agent systems. We focus on multiagent systems where individual agents
are capable of solving problems and learning using CBR (Case-based
Reasoning). We present several collaboration strategies for agents that
learn and their empirical results in several experiments. Finally we an-
alyze the collaboration strategies and their results along several dimen-
sions, like number of agents, redundancy, CBR technique used, and in-
dividual decision policies.

1 Introduction

Multiagent systems offer a new paradigm to organize AI applications. Our goal
is to develop techniques to integrate lazy learning into applications that are
developed as multiagent systems. Learning is a capability that together with
autonomy is always defined as a feature needed for full-fledged agents. Lazy
learning offers the multiagent systems paradigm the capability of autonomously
learning from experience. In this paper we present a framework for collabora-
tion among agents that use Case-based Reasoning (CBR) and some experiments
illustrating the framework.

A distributed approach for lazy learning in agents that use CBR (case-based
reasoning) makes sense in different scenarios. Our purpose in this paper is to
present a multiagent system approach for distributed case bases that can sup-
port these different scenarios. A first scenario is one where cases themselves are
owned by different partners or organizations. This organizations can consider
their cases as assets and they may not be willing to give them to a centralized
“case repository” where CBR can be used. In our approach each organization
keeps their private cases while providing a CBR agent that works with them.
Moreover, the agents can collaborate with other agents if they keep the case
privacy intact an they can improve their performance by cooperating. Another
scenario involves scalability: it might be impractical to have a centralized case
base when the data is too big.



Our research focuses on the scenario of separate case bases that we want
to use in a decentralized fashion by means of a multiagent system, that is to
say a collection of CBR agents that manage individual case bases and can com-
municate (and collaborate) with other CBR agents. From the point of view of
Machine Learning (ML) our approach can be seen as researching the issues of
learning with distributed or“partitioned” data: how to learn when each learn-
ing agent is able to see only a part of the examples from which to learn. This
approach is related to the work in ML on ensembles or committees of classifiers
(we explain this relationship later in § 6). The main difference is that ensembles
work on collection of classifiers that see all data but treat them differently, while
our focus a collection of agents each having a view of part of the data (that in
the extreme case can be completely exclusive). In this paper we show several
strategies for collaboration among learning agents and later we analyze their
results in terms of ML concepts like the error in terms of bias plus variance and
the “ensemble effect”.

Form the point of view of agent systems, we focus on multiagent systems and
not on distributed applications. In distributed applications there are some over-
all goals that govern the different parts performing distributed processing, and
their coordination is decided at design time, it is not decided by the constituent
parts. In a multiagent system, agents have autonomy—i.e. they have individual
goals that determine when it is in their interest to collaborate with others, and
when not. In our approach, the agents have autonomy given by individual data
(the cases from which they learn) and individual goals (solving problems and
improving their performance), and they only collaborate when it can further
their goals.

2 Collaboration Strategies

A collaboration strategy in a MAC system establishes a coordination structure
among agents where each agent exercises individual choice while achieving an
overall effect that is positive both for the individual members and the whole
system. Specifically, a collaboration strategy involves two parts: interaction pro-
tocols and decision policies. The interaction protocols specify the admissible
pattern of message interchange among agents; e. g. a simple protocol is as fol-
lows: agent A can send a Request messsage to agent B and then agent B can
reply with an Accept message or a Reject message. Interaction protocols specify
interaction states whose meaning is shared by the agents; in our example, agent
A knows that it’s up to agent B to accept or not the request, and agent B knows
that agent A is expecting an answer (usually in a time frame specified in the
mesage as an expiration time). An interaction state then requires some agent
to make a decision and act accordingly: the decision policies are the internal,
individual procedures that agents use to take those decisions following individual
goals and interests.

In the following sections we will show several strategies for collaboration in
the framework of interaction protocols for committees of agents. Since interaction



protocols for committees are quite similar we will focus on different individual
decision policies that can be used while working in committees.

2.1 Multiagent CBR

A multiagent CBR (MAC) system M = {(Ai, Ci)}i=1...n is composed on n
agents, where each agent Ai has a case base Ci. In this framework we restrict
ourselves to analytical tasks, i.e. tasks (like classification) where the solution is
achieved by selecting from an enumerated set of solutions K = {S1 . . . SK}.

When an agent Ai asks another agent Aj help to solve a problem the in-
teraction protocol is as follows. First, Ai sends a problem description P to Aj .
Second, after Aj has tried to solve P using its case base Cj , it sends back a
message that is either :sorry (if it cannot solve P) or a solution endorsement
record (SER). A SER has the form 〈{(Sk, Ej

k)}, P, Aj〉, where the collection of
endorsing pairs (Sk, Ej

k) mean that the agent Aj has found Ej
k cases in case base

Cj endorsing solution Sk—i.e. there are a number Ej
k of cases that are relevant

(similar) for endorsing Sk as a solution for P. Each agent Aj is free to send one
or more endorsing pairs in a SER record.

2.2 Voting Scheme

The voting scheme defines the mechanism by which an agent reaches an aggre-
gate solution from a collection of SERs coming from other agents. The principle
behind the voting scheme is that the agents vote for solution classes depending
on the number of cases they found endorsing those classes. However, we do not
want that agents having a larger number of endorsing cases may have an un-
bounded number of votes regardless of the votes of the other agents. Thus, we
will define a normalization function so that each agent has one vote that can
be for a unique solution class or fractionally assigned to a number of classes
depending on the number of endorsing cases.

Formally, let At the set of agents that have submitted their SERs to agent
Ai for problem P . We will consider that Ai ∈ At and the result of Ai trying to
solve P is also reified as a SER. The vote of an agent Aj ∈ At for class Sk is

V ote(Sk, Aj) =
Ej

k

c +
∑

r=1...K Ej
r

where c is a constant that on our experiments is set to 1. It is easy to see that
an agent can cast a fractional vote that is always less than 1. Aggregating the
votes from different agents for a class Sk we have ballot

Ballott(Sk,At) =
∑

Aj∈At

V ote(Sk, Aj)

and therefore the winning solution class is



Solt(P,At) = arg max
k=1...K

Ballot(Sk,At)

i.e., the class with more votes in total. We will show now two collaboration
policies that use this voting scheme.

3 Committee Policy

In this collaboration policy the member agents of a MAC system M are viewed
as a committee. An agent Ai that has to solve a problem P, sends it to all the
other agents in M. Each agent Aj that has received P sends a solution endorse-
ment record 〈{(Sk, Ej

k)}, P, Aj〉 to Ai. The initiating agent Ai uses the voting
scheme above upon all SERs, i.e. its own SER and the SERs of all the other
agents in the multiagent system. The final solution is the class with maximum
number of votes.

The next policy, Bounded Counsel, is based on the notion that an agent Ai

tries to solve a problem P by himself and if Ai “fails” to find “good” solution
then Ai asks counsel to other agents in the MAC system M.

Let Ei
P = {(Sk, Ei

k)} the endorsement pairs the agent Ai computes to solve
problem P . For an agent Ai to decide when it “fails” we require that each agent
in M has a predicate Self-competent(P,Ei

P ). This predicate determines whether
or not the solutions endorsed in Ei

P allow the agent to conclude that there is a
good enough solution for P.

3.1 Bounded Counsel Policy

In this policy the agents member of a MAC system M try first to solve the
problems they receive by themselves. Thus, if agent Ai receives a problem P and
finds a solution that is satisfactory according to the termination check predicate,
the solution found is the final solution. However, when an agent Ai assesses that
its own solution is not reliable, the Bounded Counsel Policy tries to minimize
the number of questions asked to other agents in M. Specifically, agent Ai asks
counsel only to one agent, say agent Aj . When the answer of Aj arrives the
agent Ai uses the termination check. If the termination check is true the result
of the voting scheme at that time is the final result, otherwise Ai asks counsel
to another agent—if there is one left to ask, if not the process terminates and
the voting scheme determines the global solution.

The termination check works, at any point in time t of the Bounded Coun-
sel Policy process, upon the collection of solution endorsement records (SER)
received by the initiating agent Ai at time t. Using the same voting scheme as
before, Agent Ai has at any point in time t a plausible solution given by the
winner class of the votes cast so far. Let V t

max be the votes cast for the cur-
rent plausible solution, V t

max = Ballott(Solt(P,At),At), the termination check
is a boolean function TermCheck(V

t

max,At) that determines whether there is



3 Agents 4 Agents 5 Agents 6 Agents 7 Agents
Policy µ σ µ σ µ σ µ σ µ σ

Isolated 83.2 6.7 82.5 6.4 79.4 8.4 77.9 7.6 75.8 6.8

Bounded 87.2 6.1 86.7 6.5 85.1 6.3 85.0 7.3 84.1 7.0

Committee 88.4 6.0 88.3 5.7 88.4 5.4 88.1 6.0 87.9 5.9
Table 1. Average precision and standard deviation for a case base of 280 sponges
pertaining to three classes. All the results are obtained using a 10-fold cross validation.

enough difference between the majority votes and the rest to stop and obtain a
final solution. In the experiments reported here the termination check function
is the following

TermCheck(V t
max,At) =

V t
max

Max (1, Ballot(Sk,At)− V t
max)

≥ η

i.e. it checks whether the majority vote V t
max is η times bigger than the rest

of the ballots. After termination the global solution is the class with maximum
number of votes at that time.

3.2 Experimental setting

In order to compare the performance of these policies, we have designed an ex-
perimental suite with a case base of 280 marine sponges pertaining to three
different orders of the Demospongiae class (Astrophorida, Hadromerida and Ax-
inellida). The goal of the agents is to identify the correct biological order given
the description of a new sponge.

We have experimented with 3, 4, 5, 6 and 7 agents using LID [1] as the CBR
method. The results presented here are the result of the average of 5 10-fold
cross validation runs. Therefore, as we have 280 sponges in our case base, in
each run 252 sponges will form the training set and 28 will form the test set.

In an experimental run, training cases are randomly distributed to the agents
(without repetitions, i.e. each case will belong to only one agent case base). Thus,
if we have n agents and m examples in the training set, each agent should have
about m/n examples in its case base. Therefore increasing the number of agents
in our experiments their case-base size decreases. When all the examples in the
training set have been distributed, the test phase starts.

In the test phase, for each problem P in the test set, we randomly choose
an agent Ai and send P to Ai. Thus, every agent will only solve a subset of the
whole test set. If testing the isolated agents scenario, Ai will solve the problem
by itself without help of the other agents. And if testing any of the collaboration
policies, Ai will send P to some other agents.

We can see (Table 1) that in all the cases we obtain some gain in accuracy
compared to the isolated agents scenario. The Committee policy is always better
than the others; however this precision has a higher cost since a problem is
always solved by every agent. If we look at Bounded Counsel policy we can see it



is much better than the isolated agents, and slightly worse than the Committee
policy—but it is a cheaper policy since less agents are involved.

A small detriment of the system’s performance is observable when we increase
the number of agents. This is due to the fact that the agents have a more
reduced number of training cases in their case bases. A smaller case base has the
effect of obtaining less reliable individual solutions. However, the global effect
of reducing accuracy appears on Bounded Counsel but not on the Committee
policy. Thus, the Committee policy is quite robust to the effect of diminishing
reliability individual solutions due to smaller case bases. This result is reasonable
since the Committee policy always uses the information available from all agents.
A more detailed analysis can be found in [10]

The Bounded Counsel policy then only makes sense if we have some cost
associated to the number of agents involved in solving a problem that we want to
minimize. However, we did some further work to improve Bounded Counsel policy
resulting in an increase of accuracy that achieves that of the Committee with
a minimum number of agents involved. Although we will not pursue this here,
the proactive learning approach explained in [7] uses induction in every agent to
learn a decision tree of voting situations; the individually induced decision tree
is used by the agent to decide whether or not to ask counsel to a new agent.

4 Bartering collaboration strategies

We have seen that agents perform better as a committee than working individu-
ally when they have a partial view of data. We can view an individual case base
as a sample of examples from all examples seen by the whole multiagent system.
However, in the experiments we have shown so far these individual samples were
unbiased, i. e. the probability of any agent having an example of a particular so-
lution class was equal for all agents. Nonetheless, there may be situations where
the examples seen by each agent can be skewed due to external factors, and this
may result in agents having a biased case base: i.e. having a sample of examples
where instances of some class are more (or less) frequent than they are in reality.

This bias implies that individual agents have a less representative sample of
the whole set of examples seen by a MAC. Experimental studies showed that
the committee collaboration strategy decreased accuracy when the agents have
biased case bases compared to the situation where their case bases are unbiased.
In the following section we will formally define the notion of case base bias
and show a collaboration strategy based on bartering cases that can improve
the performance of a MAC when individual agents implement decision policies
whose goal is to diminish their individual case base bias.

4.1 Individual Case Base Bias

Let be di = {d1
i , . . . , d

K
i } the individual distribution of cases for an agent Ai,

where dj
i is the number of cases with solution Sj ∈ K in the the case base of Ai.



Now, we can estimate the overall distribution of cases D = {D1, . . . , DK} where
Di is the estimated probability of the class Si, Dj =

∑n
i=1 dj

i/
∑n

i=1

∑K
l=1 dl

i.
To measure how far is the case base Ci of a given agent Ai of being a rep-

resentative sample of the overall distribution we will define the Individual Case
Base (ICB) bias, as the square distance between the distribution of cases D and
the (normalized) individual distribution of cases obtained from di:

ICB(Ci) =
K∑

l=1

(
Dl − dl

i∑K
j=1 dj

i

)2

Figure 1 shows the cosinus distance between an individual distribution and
the overall distribution.The square distance in simply the distance among the
normalized vectors shown in Fig. 1

Overall
Distribution
Estimation

Individual
Distribution

α

Ci

ICB bias(Ci) measures α

Fig. 1. Individual case base bias,

4.2 Case Bartering Mechanism

To reach an agreement for bartering between two agents, there must be an
offering agent Ai that sends an offer to another agent Aj . Then Aj has to evaluate
whether the offer of interchanging cases with Ai is interesting, and accept or
reject the offer. If the offer is accepted, we say that Ai and Aj have reached a
bartering agreement, and they will interchange the cases in the offer.

Formally an offer is a tuple o = 〈Ai, Aj , Sk1 , Sk2〉 where Ai is the offering
agent, Aj is the receiver of the offer, and Sk1 and Sk2 are two solution classes,
meaning that the agent Ai will send one of its cases (or a copy of it) with solution
Sk2 and Aj will send one of its cases (or a copy of it) with solution Sk1 .

The interaction protocol in bartering is explained in [8] but essentially pro-
vides an agreed-upon pattern for offering, accepting, and performing barter ac-
tions. An agent both generates new bartering offers and assesses bartering offers



Class A

Class B

Class C

Fig. 2. Artificial problem used to visualize the effects of Case Bartering.

received from other agents. Received bartering offers are accepted if the result
of the interchange diminishes the agent’s ICB. Similarly, an agent generates new
bartering offers that if accepted will diminish the agent’s ICB—notice, however
that this effect occurs only when the corresponding agent also accepts the offer,
which implies the ICB value of that agent will also diminish.

In the experiments we performed, the bartering ends when no participating
agent is willing to generate any further offer, and the final state of the multiagent
system is one where:

– all the individual agents have diminished their respective ICB bias values,
and

– the accuracy of the committee has increased to proficient levels (as high as
the levels shown in §3).

The conclusion of these experiments show that the individual decision mak-
ing (based on the bias estimate) leads to an overall performance increment (the
committee accuracy). Moreover, it shows that the ICB measure is a good esti-
mate of the problems involved with the date, since ”solving” the bias problem
(diminishing the case base bias) has the result of solving the performance prob-
lem (the accuracy levels are restored to the higher levels we expected).

In order to have an insight of the effect of bartering in the agent’s case bases,
we have designed a small classification problem for which agent’s case bases can
be visualized. The artificial problem is shown in Figure 2. Each instance of the
artificial problem has only two real attributes, that correspond to the x and y
coordinates in the two dimensional space shown, and can belong to one of three
classes (A, B or C). The goal is to guess the right class of a new point given its
coordinates.

Figure 3 shows the initial cases bases of five agents for the artificial problem.
Notice that the case bases given to the agents are highly biased. For instance,
the first agent (leftmost) has almost no cases of the class B in its case base,
and the second agent has almost only cases of class A. With a high probability,
the first agent will predict class A for most of the problems for which the right
solution is class B. Therefore, the classification accuracy of this agent will be
very low.



Fig. 3. Artificial problem case bases for 5 agents before applying Case Bartering.

Fig. 4. Effect of the Case Bartering process in the artificial problem case bases of 5
agents.

Finally, to see the effect of bartering, Figure 4 shows the case bases for the
same agents as Figure 3 but after applying the Case Bartering process. Notice
in Fig. 4 that all the agents have obtained cases of the classes for which they
had few cases before applying Case Bartering. For instance, we can see how the
first agent (leftmost) has obtained a lot of cases of class B, by loosing some of
its cases of class A. The second agent has also obtained some cases of classes B
and C in exchange of losing some cases of class A.

Summarizing, each agent has obtained an individual case base that is more
representative of the real problem than before applying the Case Bartering pro-
cess while following an individual, self-interested decision making process.

5 The dimensions of multiagent learning

5.1 Bias plus variance analysis

Bias plus Variance decomposition of the error [6] is a useful tool to provide an
insight of learning methods. Bias plus variance analysis breaks the expected error
as the sum of three non-negative values:

– Intrinsic target noise: this is the expected error of the Bayes optimal classifier
(lower bound on the expected error of any classifier).

– Squared bias: measures how closely the learning algorithm’s prediction matches
the target (averaged over all possible training sets of a given size).

– Variance: this is the variance of the algorithm’s prediction for the different
training sets of a given size.
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Fig. 5. Bias plus variance decomposition of the classification error for a system with
5 agents both solving problems individually and using the Committee collaboration
policy.

Since the first value (noise) can not be measured, the bias plus variance
decomposition estimates the values of squared bias and variance. In order to
estimate these values we are using the model presented in [6]. Figure 5 shows
the bias plus variance decomposition of the error for a system composed of 5
agents using Nearest Neighbor. The left hand side of Figure 5 shows the bias
plus variance decomposition of the error when the agents solve the problems
individually, and the right hand side shows the decomposition when agents use
the committee collaboration policy to solve problems. Three different scenarios
are presented for each one: unbiased, representing a situation where the agents
have unbiased case bases; biased, representing a situation where the agents have
biased case bases; bartering, where the agents have biased case bases and they
use case bartering.

Comparing the Committee collaboration policy with the individual solution
of problems, we see that the error reduction obtained with the Committee is
only due to a reduction in the variance component. This result is expected since
a general result of machine learning tells that we can reduce the classification
error of any classifier by averaging the prediction of several classifiers when they
make uncorrelated errors due to a reduction in the variance term [4].

Comparing the unbiased and the biased scenarios, we can see that the effect
of the ICB bias in the classification error is reflected in both bias and variance
components. The variance is the one that suffers a greater increase, but bias is
also increased.

If the agents apply case bartering they can greatly reduce both components
of error—as we can see comparing the biased and the bartering scenarios. Com-
paring the bartering scenario with the unbiased scenario, we can also see that
case bartering can make agents in the biased scenario to achieve greater accura-
cies that agents in the unbiased scenario. Looking with more detail, we see that
in the bartering scenario the bias term is slightly smaller than the bias term in
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Fig. 6. Accuracy achieved by random bartering among 3 agents and 5 agents.

the unbiased scenario. This is due to the increased size of individual case bases1

because (as noted in [11]) when the individual training sets are smaller the bias
tends to increase. The variance term is also slightly smaller in the bartering
scenario than in the unbiased scenario.

Sumarizing, the Committee collaboration policy is able to reduce the variance
component of the error. Case Bartering can make a system with biased case bases
to achieve grater accuracies than a system with unbiased case bases because
of two reasons: 1) as the ICB bias is reduced, the accuracy of a system with
unbiased case bases is recovered, and 2) as the size of individual case bases is
slighly increased, the bias term of error is reduced and thus the accuracy can be
greater than in the unbiased scenario.

5.2 The effect of individual policies

One dimension that is interesting to assess is the effect of a specific individ-
ual decision policy inside a given collaboration strategy. In this section we shall
examine the effect of the policy of diminishing ICB inside the bartering collab-
oration strategy.

For this purpose, we have set up an experiment to assess the difference be-
tween using the ICB policy and using a “base” (uninformed) decision policy,
both with the same initial average ICB value. In the “base” experiments, the
individual agents just barter cases randomly: every agent randomly chooses a
percentage α of cases in her case base and sends each one to another agent (also
chosen at random). In this experiments, α = 0.15 means every agents selects
at random 15% of the cases in her case base, and randomly sends each one to
another agent, α = 1 means the agent sends all of her cases (one to each agent),
and α = 2 means the agent sends all of her cases twice.

1 Bartering here is realized with copies of cases, and the result is an increment on
the total number of cases in the case bases of the agents. The difference between
bartering with or without copy is analyzed in § 5.4



Fig. 7. Accuracy achieved by Committee using Nearest Neighbor and LID for values
of R (redundancy) from 0% to 100%.

Figure 6 shows the accuracy of the Committee for different α values on two
MAC systems with 3 and 5 agents. First, notice that random bartering improves
the accuracy—and the more cases are bartered (the greater the α) the higher
is the accuracy for the Committee. This experiment give us the baseline utility
of bartering cases in the biased scenario. However, the second thing to notice is
that does not increase the accuracy as much as bartering with the ICB policy.
Figure 6 shows that for the same quantity of bartered cases the accuracy of the
Committee is higher with the ICB policy. Moreover, notice that even when the
random bartering keeps exchanging more cases (increasing α) it takes a great
quantity to approach the accuracy of the ICB policy. The conclusion, thus, is
that the ICB policy is capable of selecting the cases that are useful to barter
among agents.

The process of random bartering introduces a lot of redundancy in the mul-
tiagent system data (a great number of repeated cases in individual case bases).
This is the dimension we analyze in the next section.

5.3 Redundancy

When we described the experiments in the Committee collaboration framework
an assumption we made was that each case in our experimental dataset was
adjudicated to one particular agent case base. In other words, there was no copy
of any case, so redundancy in the dataset was zero. The reason we performed the
experiments on the Committee under the no redundancy assumption is simply
that this is the worst individual scenario (since the individual agent accuracy is
lower with smaller case bases), and see how much the committee collaboration
strategy could improve from there.

Let us define the redundancy R of a MAC system as follows:

R =
(
∑n

i=1 |Ci|)−M

(n− 1)M
· 100



where |Ci| is the number of cases in agent’s Ai case base, n is the number of
agents in the MAC system, and M is the total number of cases. Redundancy is
zero when there is no duplicate of a case, and R = 100 when every agent has all
(M) cases.

To analyze the effect of redundancy on a MAC system we perform a suite
of experiments shown in Fig. 7 with agents using Nearest Neighbor and LID as
CBR techniques. The experiments set up a Committee with a certain value of R
in the individual case bases. We show in Fig. 7 the accuracy of the Committee
for different R values, and we also plot there the individual (average) accuracy
for the same R values. The accuracy plot named “Base” in Fig. 7 is that of
a single agent having all cases (i.e. a single-agent scenario). We notice that as
redundancy increases the accuracy of the individual agent, as expected, grows
until reaching the “Base” accuracy. Moreover, the Committee accuracy grows
faster as the redundancy increases, and it reaches or even exceeds the “Base”
accuracy; this fact (the Committee outperforming a single agent with all the
data) is due to the “ensemble effect” of multiple model learning [5] (we discuss
this further on § 6). The ensemble effect states that classifiers with uncorrelated
error perform better than any one of the individual classifiers. The ensemble
effect, in terms of bias plus variance, reduces the variance: that’s why Commit-
tee accuracy is higher than individual accuracy. On the other hand, individual
accuracy increases with redundancy because bias is reduced.The combined effect
of reducing bias and variance boosts the Committee accuracy to reach (even ex-
ceed) the “Base” accuracy (for R between 50 and 75). When redundancy is very
high (for R higher than 90) the individual agents are so similar in the content of
their case bases that to Committee strategy cannot reduce much variance, and
the accuracy drops to reach the “Base” accuracy (a Committee of agents having
all cases is identical to the “Base” scenario with a single agent having all cases).

5.4 Redundancy and bartering

Redundancy also plays a role during bartering. Usually in bartering one is ex-
changed for the other, but since cases are simply information the barter action
may involve an actual exchange of original cases or an exchange of copies of
cases. Let us define copy mode bartering as the exchange of case copies (where
bartering agents end up with both cases) and non-copy mode bartering as the
exchange of original cases (where each bartering agent deletes the offering case
and adds the receiving case). The non-copy mode clearly maintains the MAC
system redundancy R while the copy mode increases R. We performed bartering
experiments both in the copy and non-copy modes and Figures 8 and 9 show
the results with agents using the CBR techniques of Nearest Neighbor and LID,
respectively.

Comparing now the two modes, we see that in the non-copy mode the MAC
obtains lower accuracies than in the copy mode. But, on the other hand, in
the non-copy mode, the average number of cases per agent does not increase
and in the copy mode the size of the individual case bases grows. Therefore,
we can say that in the copy mode (when the agents send copies of the cases
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Fig. 8. Accuracy in bartering using Nearest Neighbor when copying cases is allowed
and disallowed.
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Fig. 9. Accuracy in bartering using LID when copying cases is allowed and disallowed.

without forgetting them) the agents obtain greater accuracies, but at the cost
of increasing the individual case base sizes. In other words, they improve the
accuracy allowing case redundancy in the contents of individual case bases (a
case may be contained in more than one individual case base), while in the non-
copy mode the agents only reallocate the cases but allowing only a single copy
of each case in the system.

In terms of bias plus variance, we can see that the copy mode helps the in-
dividual agents to improve accuracy (since they have more cases) by decreasing
the bias.This individual accuracy increment is responsible for the slight increase
in accuracy of the copy mode versus the non-copy mode. Notice that the danger
here for the Committee is that the “ensemble effect” could be reduced (since
increasing redundancy increases error correlation among classifiers). Since bar-
tering provides a strategy focused by the ICB policy to exchange just the cases
that are most needed the redundancy increases moderately and the global effect
is still positive.



6 Related Work

Several areas are related to our work: multiple model learning (where the final
solution for a problem is obtained through the aggregation of solutions of indi-
vidual predictors), case base competence assessment, and negotiation protocols.
Here we will briefly describe some relevant work in these areas that is close to
us.

A general result on multiple model learning [5] demonstrated that if uncor-
related classifiers with error rate lower than 0.5 are combined then the resulting
error rate must be lower than the one made by the individual classifiers. The
BEM (Basic Ensemble Method) is presented in [9] as a basic way to combine
continuous estimators, and since then many other methods have been proposed:
Bagging [2] or Boosting [3] are some examples. However, all these methods do
not deal with the issue of “partitioned examples” among different classifiers as
we do—they rely on aggregating results from multiple classifiers that have access
to all data. Their goal is to use a multiplicity of classifiers to increase accuracy
of existing classification methods. Our intention is to combine the decisions of
autonomous classifiers (each one corresponding to one agent), and to see how
they can cooperate to achieve a better behavior than when they work alone. A
more similar approach is the one proposed in [15], where a MAS is proposed
for pattern recognition. Each autonomous agent being a specialist recognizing
only a subset of all the patterns, and where the predictions were then combined
dynamically.

Learning from biased datasets is a well known problem, and many solutions
have been proposed. Vucetic and Obradovic [14] propose a method based on
a bootstrap algorithm to estimate class probabilities in order to improve the
classification accuracy. However, their method does not fit our needs, because
they need the entire testset available for the agents before start solving any
problem in order to make the class probabilities estimation.

Related work is that of case base competence assessment. We use a very
simple measure comparing individual with global distribution of cases; we do
not try to assess the aeras of competence of (individual) case bases - as proposed
by Smyth and McKenna [13]. This work focuses on finding groups of cases that
are competent.

In [12] Schwartz and Kraus discuss negotiation protocols for data allocation.
They propose two protocols, the sequential protocol, and the simultaneous pro-
tocol. These two protocols can be compared respectively to our Token- Passing
Case Bartering Protocol and Simultaneous Case Bartering Protocol, because in
their simultaneous protocol, the agents have to make offers for allocating some
data item without knowing the other’s offers, and in the sequential protocol, the
agents make offers in order, and each one knows which were the offers of the
previous ones.



7 Conclusions and Future Work

We have presented a framework for Cooperative Case-Based Reasoning in mul-
tiagent systems, where agents use a market mechanism (bartering) to improve
the performance both of individuals and of the whole multiagent system. The
agent autonomy is maintained, because each agent is free to take part in the
collaboration processes or not. For instance, in the bartering process, if an agent
does not want to take part, he just has to do nothing, and when the other agents
notice that there is one agent not following the protocol they will ignore it during
the remaining iterations of the bartering process.

In this work we have shown a problem arising when data is distributed over
a collection of agents, namely that each agent may have a skewed view of the
world (the individual bias). Comparing empirical results in classification tasks
we saw that both the individual and the overall performance decreases when
bias increases. The process of bartering shows that the problems derived from
distributed data over a collection of agents can be solved using a market-oriented
approach. Each agent engages in a barter only when it makes sense for its indi-
vidual purposes but the outcome is an improvement of the individual and overall
performance.

The naive way to solve the ICB bias problem could be to centralize all data
in one location or adopt a completely cooperative multiagent approach where
each agent sends its cases to other agents and they retain what they want (a
“gift economy”). However, these approaches have some problems; for instance,
having all the cases in a single case base may not be practical due to efficiency
problems. Another problem of the centralized approach is that the agents belong
to organizations that consider their case bases as assets, they are not willing to
donate their cases to a centralized case base. Case Bartering tries to interchange
cases only to the amount that is necessary and not more, to keep the redundancy
not increasing very much.

As a general conclusion, we have seen that there are avenues to pursue the
goal of learning systems, in the form of multiagent systems, where the training
data need not be centralized in one agent nor duplicated in all agents. New non-
centralized processes can be designed that are able to correct problems in that
distributed allocation of training data, for instance bartering. We have seen that
the “ensemble effect” of multi-model learning also takes place in the multiagent
setting, even in the situation where there is no redundancy.

Finally, we have focused on lazy learning techniques (CBR) because it seemed
easier to be adapted to a distributed, multiagent setting; however, the same ideas
and techniques should be able to work for multiagent systems that learn using
eager techniques like induction. We plan to investigate inductive multiagent
learning in the near future, starting with classification tasks and decision tree
techniques.
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