
Chapter 2
Computational Aspects of Concept Invention⇤

Roberto Confalonieri, Enric Plaza, and Marco Schorlemmer

Abstract In this chapter, we present a computational framework that models concept
invention. The framework is based on and extends conceptual blending. Apart from
the blending mechanism modeling the creation of new concepts, the framework
considers two extra dimensions, namely, origin and destination. For the former, we
describe how a Rich Background supports the discovery of input concepts to be
blended. For the latter, we show how arguments, promoting or demoting the values
of an audience, to which the invention is headed, can be used to evaluate the can-
didate blends created. We also address the problem of how newly invented concepts
are evaluated with respect to a Rich Background so as to decide which of them are
to be accepted into a system of familiar concepts, and how this, in turn, may affect
the previously accepted conceptualisation. As technique to tackle this problem we
explore the applicability of Paul Thagard’s computational theory of coherence, in
particular, his notion of conceptual coherence. The process model is exemplified
using two structured representation languages, namely order-sorted feature terms
and description logic.

Roberto Confalonieri
Free University of Bozen-Bolzano, Faculty of Computer Science, Dominikanerplatz 3, 39100,
Bozen-Bolzano, Italy
e-mail: Roberto.Confalonieri@unibz.it

Enric Plaza · Marco Schorlemmer
Artificial Intelligence Research Institute, Spanish National Research Council (IIIA-CSIC), Campus
UAB, c/ Can Planes s/n, 08193, Bellaterra, Catalonia (Spain)
e-mail: enric@iiia.csic.es,marco@iiia.csic.es

⇤ This chapter draws on material published in (Confalonieri et al., 2016b) and (Schorlemmer
et al., 2016).

31

32 Roberto Confalonieri, Enric Plaza, and Marco Schorlemmer

2.1 A Process Model for Concept Invention

Existing computational models for concept invention (see Section 2.7 for an over-
view) especially focus on the core mechanism of blending, that is, how blends are
created, and re-interpret the optimality principles to evaluate the blends. In this
chapter, we propose that a computational model also needs to deal with two ex-
tra dimensions to which we refer as the origin and destination of concept invention.
The origin considers from where and how input spaces are selected, whereas the
destination considers to whom the creation is headed.

A first assumption is that there is no creation ex nihilo. This is a widely held
assumption in human creativity, be it scientific or artistic; we apply this assumption
to any creative agent be it human or artificial. Specifically, combinatorial creativity
depends on the experience and expertise of the creative agent (human or artificial) in
a given domain, which in turn depends on the externally established ‘state of the art’
and prevalent assumptions, biases, and preferences on that domain. We express this
assumption by claiming that every creative process has an origin, where the notion
of origin is intended to capture and contain these individual and social preexisting
tenets and assets that can potentially be used in a creative process. Specifically, we
will model the notion of origin in a particular instance of a creative process as the
Rich Background possessed by a creative agent on a particular domain.

The second assumption is that a given creative process has usually a purpose in
creating something new. We express this assumption by saying that a creative pro-
cess has a destination. A destination is different from a goal as usually understood
in problem solving and Artificial Intelligence systems, where goals are related to the
notion of satisfaction of specified sets of requirements or properties. A destination,
in our approach, is a notion that is related, for instance in artistic domains, to the
notions of audience or genre; different audiences or genres value different sets of
properties or aspects as being worthy or even indispensable. Although we do not
assume that a creative process has a specific goal, we do assume that a creative pro-
cess is purposeful in producing an output that is destined to some ‘target’ audience,
be it jazz aficionados in music, or academic colleagues in science. Specifically, we
will model the notion of destination as the collection of values held dear by an in-
tended audience. This approach gives us enough concretion to be able to talk about
adequacy, significance, or interest of a creative outcome (if those are values held by
an audience), while having enough leeway to encompass differences in subjective or
individual appreciation or evaluation of a creative outcome by members of an actual
audience.

To this end, we propose the following process model of concept invention (Fig-
ure 2.1):

• Rich Background and Discovery: The origin consists of a Rich Background,
the set of concepts available to be blended. This set is finite but complex, di-
verse, polymathic and heterogeneous. Concepts are associated with a back-
ground, understood as the education, experience, and social circumstances of

2 Computational Aspects of Concept Invention 33

DISCOVERY EVALUATION

COHERENCE

BLENDING

ORIGIN MECHANISM DESTINATION

RICH
BACKGROUND

VALUES &
AUDIENCE

Fig. 2.1: A process model for concept invention

a (creative) individual. The Rich Background supports a discovery process that
finds pairs of concepts that can be blended.

• Blending: Conceptual blending is the mechanism according to which two con-
cepts are combined into a blended concept. Blending is here characterised in
terms of amalgams, a notion that was developed for combining cases in case-
based reasoning (Ontañón and Plaza, 2010). Conceptual blending is modeled in
terms of an amalgam-based workflow. The blending of two concepts may result
in a large number of blends, that need to be evaluated.

• Arguments, Values, Audiences and Evaluation: Values are properties expec-
ted from a good blend. Values are considered as points of view and can be of
different kinds, e.g., moral, aesthetic, etc. A destination or audience is character-
ised by a preference relation over these values.2 Arguments in favor or against
a blend are built to evaluate the generated blends. An argument can promote or
demote a value. In this way, the blends are evaluated depending on the audience
for which they are created.

• Conceptual Coherence and Evaluation: The notion of coherence developed
by Thagard (2000), when used to explain human reasoning, proposes that hu-
mans accept or reject a cognition (a percept, image, proposition, concept, etc.)
depending on how much it contributes to maximising the number of constraints,
that are imposed by situational context and other relevant cognitions. Among
the different types of coherence proposed by Thagard (2000), conceptual co-
herence can be used to evaluate conceptual blends by measuring to what extent
a blend coheres or incoheres with the Rich Background.

The rest of the chapter is organised as follows. The first four sections develop a gen-
eral model that enacts the concept invention process depicted above. In Section 2.2,
we model the notion of Rich Background and similarity-based discovery. In Sec-
tion 2.3 we characterise a blend in terms of amalgams. In Section 2.4, we propose
an argumentation framework based on values and audiences that can be used to

2 Therefore, if the values are for example {jazz,classical}, then two audiences can be defined, one
where jazz is preferred to classical, and another one, where classical is preferred to jazz. We will
formalise these notions in Section 2.4.

34 Roberto Confalonieri, Enric Plaza, and Marco Schorlemmer

evaluate conceptual blends by means of decision-criteria. Section 2.5 describes the
computational coherence theory by Thagard (2000) and how it can be used in blend
evaluation. In Section 2.6, we describe two instantiations of the process model by
using two structured representation languages, feature-terms and description logic.
Section 2.7 presents a survey of existing computational models for concept inven-
tion and how our concept invention process relates. Finally, Section 2.8 concludes
the chapter.

2.2 Rich Background and Discovery

In cognitive theories of conceptual blending, input spaces to be blended are givens
that represent how humans package some relevant information in the context in
which the blend is created.

In our process model, an input space is a concept belonging to a library of con-
cepts that we call Rich Background. Concepts can be represented by means of struc-
tured representations such as feature terms (Smolka and Aı̈t-Kaci, 1989; Carpenter,
1992) or description logics (Baader et al., 2003), as we shall see in Section 2.6. The
packaging of some relevant information corresponds to a discovery process that
takes certain properties, which the blends need to satisfy, into account. The discov-
ery takes a query as input, looks for concepts in the Rich Background, and returns
an ordered set of pairs of concepts that can be blended.

2.2.1 Rich Background

The Rich Background consists of a finite set of concepts C = {y1,y2, . . . ,yn} spe-
cified according to a language L for which a subsumption relation between formu-
las (or descriptions) of L can be defined.

Intuitively, the subsumption between formulas captures the idea of generality
or specificity between two concepts. We say that a concept y1 is subsumed by a
concept y2, denoted as y1 v y2, if all information in y1 is also in y2. The sub-
sumption relation induces a partial order on the set of all concept descriptions that
can be formed using L , i.e., the pair hL ,vi is a poset for a given set of formulas.
Additionally, L contains the elements ? and > representing the infimum element
or supremum element w.r.t. the subsumption order, respectively.

Given the subsumption relation, for any two concepts y1 and y2, we can define
the anti-unification and unification as their least general generalisation (LGG) and
most general specialisation (MGS) respectively. These operations are relevant for
defining both a similarity measure for comparing concepts, and the blend of two
concepts as an amalgam (Confalonieri et al., 2016a,b).

Definition 2.1 (Least General Generalisation). The least general generalisation of
two concepts y1 and y2, denoted as y1 uy2, is defined as the most specific concept

2 Computational Aspects of Concept Invention 35

that subsumes both:

y1 uy2 = {y | y1 v y ^y2 v y and 6 9y 0 : y 0 < y ^y1 v y 0 ^y2 v y 0}

The least general generalisation encapsulates all the information that is common
to both y1 and y2. For this reason, it is relevant for defining a similarity measure.
If two concepts have nothing in common, then y1 u y2 = ?. The complementary
operation to the least general generalisation is the most general specialisation of two
descriptions.

Definition 2.2 (Most General Specialisation). The most general specialisation of
two concepts y1 and y2, denoted as y1 ty2, is defined as the most general concept
that is subsumed by both:

y1 ty2 = {y | y v y1 ^y v y2 and 6 9y 0 : y < y 0 ^y 0 v y1 ^y 0 v y2}

If two descriptions have contradictory information, then they do not have a most
general specialisation.

The least general generalisation and the most general specification can be charac-
terised as operations over a refinement graph of descriptions. The refinement graph
is derived from the poset hL ,vi as the poset hG ,�i, where y1 � y2 denotes that
y2 is a generalisation refinement of y1 (or equivalently y1 is a specialisation refine-
ment of y2).

The refinement graph is defined by means of a generalisation refinement operator
g .

g(y) = {y 0 2 L | y v y 0}

The above definition states that g is an operation that generalises a description to a
set of descriptions. The refinement graph, then, is a directed graph whose nodes are
descriptions, and for which there is an edge from a description y1 to a description
y2, whenever y2 2 g(y1).

The refinement graph can be more or less complex depending on the representa-
tion language adopted and the type of refinement operator used.

A refinement operator g can be characterised according to some desirable prop-
erties (van der Laag and Nienhuys-Cheng, 1998). We say that g is:

• locally finite, if the number of generalisations generated for any given element
by the operator is finite, that is, 8y 2 L : g(y) is finite;

• proper, if an element is not equivalent to any of its generalisations, i.e., 8y1,y2 2
L , if y2 2 g(y1), then y1 and y2 are not equivalent;

• complete, if there are no generalisations that are not generated by the operator,
i.e., 8y1,y2 2 L it holds that if y1 v y2, then y2 2 g⇤(y1) (where g⇤(y1)
denotes the set of all elements which can be reached from y1 by means of g in
zero or a finite number of steps).

Designing a generalisation refinement operator that fulfills all the above properties
is not possible in general, because one usually has to sacrifice completeness for
finiteness, and let the computation of the operator terminate. This is the case also for

36 Roberto Confalonieri, Enric Plaza, and Marco Schorlemmer

the generalisation refinement operators that we design for the ordered-sorted feature
terms and description logic (see Section 2.6.1 and Section 2.6.2 respectively).

2.2.2 Similarity-Based Discovery

The main idea behind the similarity-based discovery is that, for each concept yi in
the Rich Background, we measure how yi and a concept yq—modeling a query—
are similar and we use this measure to rank the results. The similarity between two
descriptions can be defined by means of their LGG.

As previously stated, the least general generalisation of two descriptions y1 uy2
is a symbolic representation of the information shared by y1 and y2. It can be used
to measure the similarity between concepts in a quantitative way. The refinement
graph allows us to estimate the quantity of information of any description y . It is
the length of the (minimal) generalisation path that leads from y to the most general
term >.

Definition 2.3 (Generalisation Path). A finite sequence of descriptions hy1, . . . ,ymi
is a generalisation path y1

g�! ym between y1 and ym when for each 1  i  m,
yi+1 2 g(yi). The length of hy1, . . . ,ymi is denoted as l (y1

g�! ym).

Therefore, the length l (y1 uy2
g�! >) estimates the informational content that is

common to y1 and y2. In order to define a similarity measure, we need to compare
what is common to y1 and y2 with what is not common. To this end, we take the
lengths l (y1

g�! y1 uy2) and l (y2
g�! y1 uy2) into account (see Figure 2.2). Then

a similarity measure can be defined as follows.

Definition 2.4 (LGG-based similarity). The LGG-based similarity between two
descriptions y1 and y2, denoted by Sl (y1,y2), is:

Sl (y1,y2) =
l (y1 uy2

g�! >)

l (y1 uy2
g�! >)+l (y1

g�! y1 uy2)+l (y2
g�! y1 uy2)

The measure Sl estimates the ratio between the amount of information that is shared
and the total information content. From a computational point of view, Sl requires
to compute two things: the LGG and the three lengths defined in the above equa-
tion. The computation of the LGG depends on the language representation used (see
Section 2.6).

Given the above definitions, the discovery of concepts can be implemented by
the following discovery algorithm.

Algorithm Discovery(C ,g,yq)
ForEach (y j 2 C) Do

li = Sl (y j,yq)
T = T [̇ hy j,l ji

2 Computational Aspects of Concept Invention 37

 1 2

 1 u 2

>
�s

�1 �2

Generalisation pathRefinement graph

Generalisation paths

S�(1, 2) =
�s

�s + �1 + �2

Fig. 2.2: Illustration of the LGG-based similarity, adapted from (Ontañón and Plaza,
2012)

EndForEach
P = conceptsPairs(T)
Return P

EndAlgorithm

The algorithm accepts a Rich Background of concepts C , a query yq, and a gen-
eralisation operator g as inputs. [̇ ranks the concepts discovered according to their
similarity value l j.

The algorithm returns a ranked set of pairs of concepts. This ranking can be done
according to different strategies. One way is to build all pairs of concepts and to
rank them in a lexicographical order. The function conceptsPairs builds P , as the
set of pairs of concepts h(y j,l j),(yk,lk)i in which l j � lk (j 6= k).

2.3 Blends as Amalgams

The computational model of concept blending is based on the notion of amalgams
(Ontañón and Plaza, 2010). This notion was proposed in the context of case-based
reasoning. Amalgams have also been used to model analogy (Besold and Plaza,
2015). According to this approach, input concepts are generalised until a generic
space is found, and pairs of generalised input concepts are ‘unified’ to create blends.

Formally, the notion of amalgams can be defined in any representation lan-
guage L for which a subsumption relation v between formulas (or descriptions)
of L can be defined, together with the least general generalisation operation—
playing the role of the generic space—and a most general specialisation (see Defin-
itions 2.1 and 2.2).

38 Roberto Confalonieri, Enric Plaza, and Marco Schorlemmer

 1 2

 ̄1

 b ⌘ ̄1 t ̄2

 ̄2

 g ⌘ 1 u 2

Least General Generalisation

Most General Specialisation

Generalisation Generalisation

Fig. 2.3: A diagram of a blend yb from inputs y1 and y2

A blend of two descriptions is a new description that contains parts from these
two descriptions. For instance, an amalgam of ‘a red French sedan’ and ‘a blue
German minivan’ is ‘a red German sedan’; clearly, there are always multiple pos-
sibilities for amalgams, like ‘a blue French minivan’.

For our purposes, we define a blend of two input descriptions as follows:

Definition 2.5 (Blend as Amalgam). A description yb 2 L is a blend of two inputs
y1 and y2 (with LGG yg = y1 u y2) if there exist two generalisations ȳ1 and ȳ2
such that:

1. yg v ȳ1 v y1,
2. yg v ȳ2 v y2, and
3. yb ⌘ ȳ1 t ȳ2.

The above definition is illustrated in Figure 2.3, where the LGG of the inputs is
indicated as yg, and the blend yb is the unification of two concrete generalisations
ȳ1 and ȳ2 of the inputs. Equality (⌘) here should be understood as v-equivalence,
that is, y1 ⌘ y2 iff y1 v y2 and y2 v y1.

Usually one is interested only in maximal blends, i.e., in those blends that contain
the maximal information of their inputs. A blend yb of two inputs y1 and y2 is
maximal if there is no other blend y 0

b of y1 and y2 such that yb < y 0
b. The reason

why one is interested in maximal blends is that a maximal blend captures as much
information as possible from the inputs. Moreover, any non-maximal blend can be
obtained by generalising a maximal blend.

However, the number of blends that satisfies the above definition can still be
very large and selection criteria for filtering and ordering them are therefore needed.
Fauconnier and Turner (2002) discussed optimality principles, however, the compu-
tational realisation of these principles lacks some flexibility, especially if we think
that blend evaluation should not be limited to a merely accept or reject affair. It
should be the output of a more open discussion, and the reasons that lead to that
decision need to be made explicit.

2 Computational Aspects of Concept Invention 39

To this end, we propose two alternative tools for blend evaluation. On the one
hand, by taking the notion of argument into account, we define an argument-based
decision making framework that allows us to select the best blend w.r.t. some values
and audiences. On the other hand, we explore how coherence theory can serve for
guiding the process of conceptual blending and for evaluating conceptual blends.

2.4 Arguments, Values and Audiences

An argument is a central notion in several frameworks for reasoning about defeasible
information (Dung, 1995; Pollock, 1992), decision making (Amgoud and Prade,
2009; Bonet and Geffner, 1996), practical reasoning (Atkinson et al., 2004), and
modelling different types of dialogues such as persuasion (Bench-Capon, 2003).
In most existing works on argumentation, an argument is a reason for believing a
statement, choosing an option, or doing an action. Depending on the application
domain, an argument is either considered as a purely abstract entity, or it is a logical
proof for a statement where the proof is built from a knowledge base.

In our model, arguments are reasons for accepting or rejecting a given blend.
They are built by the agent when calculating the different values associated with a
blend. Values are considered as points of view, and can have different origins, e.g.,
they can be moral, aestethic, etc.

Generally, there can be several values V = {v1, . . . ,vk}. Each value is associated
with a degree that belongs to the scale D = (0, . . . ,1], where 0 and 1 are considered
the worst and the best degree respectively.

Values play a different role depending on the target or audience towards which
the creation is headed. Audiences are characterised by the values and by preferences
among these values. Given a set of values V , there are potentially as many audiences
as there are orderings on V .

Definition 2.6 (Audience). An audience is a binary relation R ✓ V ⇥ V which
is irreflexive, asymmetric, and transitive. We say that vi is preferred to v j in the
audience R, denoted as vi �R v j, if hvi,v ji 2 R.

Definition 2.7 (Cover relation). We say that a value v j covers vi in the audience R,
denoted as vi�̇Rv j, if vi �R v j and 6 9vi0 such that vi �R vi0 �R v j.

Given a blend, an argument is generated for each value. The degree of the value
characterises the ‘polarity’ of the argument which can be pro or con a blend. Argu-
ments pro promote a blend whereas arguments con demote it. Given a set of blends
B, the tuple hB,V ,Di will be called an argumentation framework.

Definition 2.8 (Argument). Let hB,V ,Di be an argumentation framework. Then:

• An argument pro a blend b is a tuple h(v,d),bi where v 2 V , d 2 D and 0.5 
d  1

• An argument con b is a pair h(v,d),bi where v 2 V , d 2 D and 0 < d < 0.5

40 Roberto Confalonieri, Enric Plaza, and Marco Schorlemmer

A function Val returns the value v associated with an argument and a function Deg
returns d .

The blend evaluation can be formulated as a decision problem in which one has to
decide an order relation ⌫B on the set of candidate blends B. The definition of this
relation is based on the set of arguments pro and con associated with the candidate
blends. Depending on the kind of arguments that are considered and how they are
handled, different decision criteria can be defined (Amgoud and Prade, 2009):

• Unipolar decision criteria: they focus either only on arguments pro or argu-
ments con;

• Bipolar decision criteria: they take both arguments pro and con into account;
• Meta-criteria: they aggregate arguments pro and con into a meta-argument.

In what follows, we denote the set of arguments pro and con as Ap = {a1, . . . ,an}
and Ac = {a1, . . . ,am} respectively. Besides, we assume to have the following func-
tions: Mp : B ! 2Ap and Mc : B ! 2Ac that return the set of arguments pro and
the set of arguments con associated with a blend respectively; M : B ! 2Ap[Ac

that returns all arguments associated with a blend.
A basic decision criterion for comparing candidate blends can be defined by com-

paring the number of arguments pro associated with them.

Definition 2.9. Let b1,b2 2 B. b1 ⌫B b2 if and only if |Mp(b1)| � |Mp(b2)|.

Notice that the above criterion guarantees that any pair of blends can be compared.
When the audience is taken into account, one may think of preferring a blend

that has an argument pro whose value is preferred to the values of any argument pro
the other blends.

Definition 2.10. Let b1,b2 2 B. b1 ⌫B b2 if and only if 9a 2 Mp(b1) such that
8a 0 2 Mp(b2), Val(a) �R Val(a 0).

In the above definition, ⌫B depends on the relation �R . Since �R is a preference
relation, some of the values of the arguments can be incomparable. In this case, b1
and b2 will not be comparable, either. This definition can be relaxed, for instance,
by ignoring these arguments.

The counter-part decision criteria of Definitions 2.9-2.10 for the case of argu-
ments con can be defined in a similar way.

Definition 2.11. Let b1,b2 2 B. b1 ⌫B b2 if and only if |Mc(b1)|  |Mc(b2)|.

Definition 2.12. Let b1,b2 2 B. b1 ⌫B b2 if and only if 9a 2 Mc(b1) such that
8a 0 2 Mc(b2), Val(a) �R Val(a 0).

In the case of bipolar decision criteria, we can combine the criterion dealing with
arguments pro with the criterion dealing with arguments con.

Definition 2.13. Let b1,b2 2 B. b1 ⌫B b2 if and only if |Mp(b1)| � |Mp(b2)| and
|Mc(b1)|  |Mc(b2)|.

2 Computational Aspects of Concept Invention 41

Unfortunately, the above definition does not ensure that we can compare all the
blends.

Finally, meta-criteria for deciding which blends are preferred can be defined by
aggregating arguments pro and con into a meta-argument. Then, comparing two
blends amounts to comparing the resulting meta-arguments. A simple criterion can
be defined by aggregating the degrees of the arguments associated with a blend.

Definition 2.14. Let b1,b2 2 B. b1 ⌫B b2 if and only if

Â
a2M (b1)

Deg(a) � Â
a 02M (b2)

Deg(a 0)

This definition can be extended to take the audience into account. To this end, we
consider a rank function that maps each value of R to an integer. The rank function
is defined as follows:

RankR(v) =

8
<

:
1 if 6 9v0 s.t. v0�̇Rv
max
v0�̇Rv

{RankR(v0)}+1 otherwise

Essentially, Rank counts how many values a certain value covers. This ranking is
then used to define the following audience-based aggregation decision criterion.

Definition 2.15. Let b1,b2 2 B. b1 ⌫B b2 if and only if

Â
a2M (b1)

Deg(a)

RankR(Val(a))
� Â

a 02M (b2)

Deg(a 0)

RankR(Val(a 0))

This last definition is based on an audience-based aggregation that sums the argu-
ments’ degrees by taking the preference order over values into account. This defini-
tion also guarantees that all the blends are comparable.

2.5 Coherence Theory

Thagard addresses the problem of determining which pieces of information, such as
hypotheses, beliefs, propositions or concepts, should be accepted and which should
be rejected based on the relationships of coherence and incoherence among them.
That is, when two elements cohere, they tend to be accepted together or rejected
together, and when two elements incohere, one tends to be accepted while the other
tends to be rejected (Thagard, 2000).

This can be reformulated as a constraint satisfaction problem as follows. Pairs of
elements that cohere form positive constraints, and pairs of elements that incohere
form negative constraints. If we partition the set of pieces of information we are
dealing with into a set of accepted elements and a set of rejected elements, then a
positive constraint is satisfied if both elements of the constraint are either among the

42 Roberto Confalonieri, Enric Plaza, and Marco Schorlemmer

accepted elements or among the rejected ones; and a negative constraint is satisfied
if one element of the constraint is among the accepted ones and the other is among
the rejected ones. The coherence problem is to find the partition that maximises the
number of satisfied constraints.

Note that in general we may not be able to partition a set of elements so as to sat-
isfy all constraints, thus ending up accepting elements that incohere between them
or rejecting an element that coheres with an accepted one. The objective is to min-
imise these undesired cases. The coherence problem is known to be NP-complete,
though there exist algorithms that find good enough solutions of the coherence prob-
lem while remaining fairly efficient.

Depending on the kind of pieces of information we start from, and on the way
the coherence and incoherence between these pieces of information is determined,
we will be dealing with different kinds of coherence problems. So, in explanatory
coherence we seek to determine the acceptance or rejection of hypotheses based on
how they cohere and incohere with given evidence or with competing hypotheses;
in deductive coherence we seek to determine the acceptance or rejection of beliefs
based on how they cohere and incohere due to deductive entailment or contradic-
tion; in analogical coherence we seek to determine the acceptance or rejection of
mapping hypotheses based on how they cohere or incohere in terms of structure;
and in conceptual coherence we seek to determine the acceptance or rejection of
concepts based on how they cohere or incohere as the result of the positive or negat-
ive associations that can be established between them. Thagard discusses these and
other kinds of coherence.

Although Thagard provides a clear technical description of the coherence prob-
lem as a constraint satisfaction problem, and he enumerates concrete principles that
characterise different kinds of coherences, he does not clarify the actual nature of
the coherence and incoherence relations that arise between pieces of information,
nor does he suggest a precise formalisation of the principles he discusses. Joseph
et al. (2010) have proposed a concrete formalisation and realisation of deductive co-
herence, which they applied to tackle the problem of norm adoption in a normative
multi-agent system. Here, we will focus on the problem of conceptual coherence
and its applicability to conceptual blending as we shall see in Section 2.6.2.

2.5.1 Coherence Graphs

In this section we give precise definitions of the concepts intuitively introduced in
the previous section.

Definition 2.16. A coherence graph is an edge-weighted, undirected graph G =
hV,E,wi, where:

1. V is a finite set of nodes representing pieces of information.
2. E ✓ V (2) (where V (2) = {{u,v} | u,v 2 V}) is a finite set of edges representing

the coherence or incoherence between pieces of information.

2 Computational Aspects of Concept Invention 43

3. w : E ! [�1,1] \ {0} is an edge-weighted function that assigns a value to the
coherence between pieces of information.

Edges of coherence graphs are also called constraints.

When we partition the set V of vertices of a coherence graph (i.e., the set of
pieces of information) into a set A of accepted elements and a set R = V \ A of
rejected elements, then we can say when a constraint—an edge between vertices—
is satisfied or not by the partition.

Definition 2.17. Given a coherence graph G = hV,E,wi, and a partition (A,R) of V ,
the set of satisfied constraints C(A,R) ✓ E is given by:

C(A,R) =
n
{u,v} 2 E

��� u 2 A iff v 2 A, whenever w({u,v}) > 0
u 2 A iff v 2 R, whenever w({u,v}) < 0

o

All other constraints (i.e., those in E \C(A,R)) are said to be unsatisfied.

The coherence problem is to find the partition of vertices that satisfies as many
constraints as possible, i.e., to find the partition that maximises the coherence value
defined as follows, which makes coherence independent of the size of the coherence
graph.

Definition 2.18. Given a coherence graph G = hV,E,wi, the coherence of a partition
(A,R) of V is given by

k(G,(A,R)) =

Â
{u,v}2C(A,R)

|w({u,v})|

|E|

Notice that there may not exist a unique partition with a maximum coher-
ence value. Actually, at least two partitions have the same coherence value, since
k(G,(A,R)) = k(G,(R,A)) for any partition (A,R) of V .

2.5.2 Blend Evaluation by Means of Coherence

This section describes how coherence is used to evaluate blends. The overall idea is
to compute the coherence graph and maximising partitions for each blend, and use
the maximal coherence degree of the coherence graphs to rank the blends.

The process of evaluating blends according to conceptual coherence can be de-
scribed as follows:

1. Given two input concepts, we generate a candidate blend according to Defini-
tion 2.5.

44 Roberto Confalonieri, Enric Plaza, and Marco Schorlemmer

2. We form the coherence graph using the input concepts and the blend.3
3. We compute the coherence maximising partitions according to Definition 2.18

and we associate it to the blend.
4. We repeat this procedure for all the blends that can be generated from the mental

spaces.
5. “Good” blends are those with maximal coherence degree.

Once the maximising partitions are computed, the coherence of the blend could
be measured in terms of the coherence value of the coherence-maximising parti-
tions. The degree of the coherence graph directly measures how much a blend co-
heres with the Rich Background.

Definition 2.19. Let G = hV,E,wi be the coherence graph of a blend B and let P

be the set of partitions of G. The maximal coherence value of B of G is deg(B) =
max
P2P

{k(G,P)}.

This maximal coherence value can be used to rank blends as follows.

Definition 2.20. For each b1,b2 2 B, we say that b1 is preferred to b2 (b1 ⌫C b2) if
and only if deg(b1) � deg(b2).

The above criterion guarantees that any pair of blends can be compared.

2.6 Exemplifying the Process Model

In this section, we exemplify the process of concept invention making use of two
use-cases, modeled according to two structured representation languages, i.e., fea-
ture terms and description logic.

First, we show how a Rich Background of concepts representing computer icons
is modeled in terms of feature terms and how conceptual blending can be used
to model the creation of new computer icons. Following the process model, com-
puter icons belonging to a Rich Background of icons are retrieved using a similarity
measure (see Section 2.2); new blended icons are generated as amalgams (see Sec-
tion 2.3), and evaluated by means of the argumentation framework introduced in
Section 2.4.

Second, we exemplify how a certain form of coherence of Thagard, namely con-
ceptual coherence, can be used to evaluate how new conceptual blends cohere w.r.t.
a Rich Background of concepts. To this end, we propose a formalisation of concep-
tual coherence for concepts represented in the AL description logic, and explore
by means of an illustrative example the role coherence may play in blend evaluation.

3 This depends on the representation language used and the type of coherence considered. In Sec-
tion 2.6, we show how a coherence graph for conceptual coherence can be built from a Rich Back-
ground of AL concepts.

2 Computational Aspects of Concept Invention 45

(a) Feature term representation of a computer icon

I.
Search

HardDrive
III.

Edit
Doc

IV.
Download

Doc
Cloud

II.
Download
HardDrive

V.
Search

Document

VI.
Search

Doc
Cloud

(b) Examples of computer
icons

Fig. 2.4: Rich Background about computer icons

2.6.1 Creating Computer Icon Concepts

We assume that concept blending is the implicit process which governs the creative
behavior of icon designers who create new icons by blending existing icons and
signs. To this end, we propose a simple semiotic system for modeling computer
icons. We consider computer icons as combinations of signs (e.g., document, mag-
nifying glass, arrow, etc.) that are described in terms of meanings. Meanings convey
actions-in-the-world or types of objects and are associated to signs. Signs are related
by sign-patterns modeled as qualitative spatial relations such as on, left, etc.

2.6.1.1 A Rich Background of Computer Icons

Let the Rich Background be a collection of computer icons. We assume that com-
puter icons are described in terms of form and a meaning. The form consists of a
finite set of signs which are related by spatial relationships. Figure 2.4b(I) shows an
example of an icon in which two signs, a MAGNIFYINGGLASS and a HARDDISK,
are related by relation on. The meaning, on the other hand, is the interpretation
that is given to an icon. For instance, a possible meaning associated to the icon in
Figure 2.4b(I) is SEARCH-HARDDRIVE. We allow a sign to have different inter-
pretations depending on the icons in which it is used.

We shall model the Rich Background by means of a finite set C of feature terms
(Smolka and Aı̈t-Kaci, 1989; Carpenter, 1992), each representing a concept. Here,
feature terms are defined over a signature S = hS ,F ,�,X i, where S is finite set
of sort symbols, including > and ?, which represent the most specific and the most
general sort, respectively; F is a finite set of feature symbols; � is an order relation
inducing an inheritance hierarchy such that ? � s � >, for all s 2 S ; and X is a
denumerable set of variables. Then, a feature term y has the form:

y := x : s[f1 = Y1, . . . , fn = Yn]

46 Roberto Confalonieri, Enric Plaza, and Marco Schorlemmer

Icon

sns2s1

m2m1 mn

fsi
fs1

fmn
fm2

fmn

form

meaning

Fig. 2.5: Feature term representation of a computer icon

with n � 0, and where x 2 X is called the root variable of y (denoted as root(y)),
s 2 S is the sort of x (denoted as sort(x)), and, for all j with 1  j  n, f j 2 F are
the features of x (denoted as features(x)) and the values4 Yj of the features are finite,
non-empty sets of feature terms and/or variables (provided they are root variables
of feature terms occurring in y). When the set of values of a feature is a singleton
set, we will omit the curly brackets in our notation. We will write vars(y) to denote
the set of variables occurring in a feature term y .

We choose to model icons as concepts represented by feature terms over the
signature with the following sort hierarchy S :5

ICON
SIGN � {ARROW,MAGNIFYINGGLASS,DOCUMENT,

PEN,HARDDISK,CLOUD}
MEANING � {ACTION,OBJECTTYPE}
ACTION � {MODIFY,VIEWSEARCH,TRANSFER}
MODIFY � {EDIT,WRITE}
VIEWSEARCH � {SEARCH,FIND,ANALYSE}
TRANSFER � {UPLOAD,DOWNLOAD}
OBJECTTYPE � {INFOCONTAINER,DATACONTAINER}
INFOCONTAINER � {PAGE,DOC,FILE}
DATACONTAINER � {HARDDRIVE,CLOUD}

and features F = {form,meaning,on,below, left,right, action,objectType}.
In addition, feature terms representing icons need to have the structure repres-

ented in Figure 2.5. Root variables are of sort ICON and have at most two features
form and meaning, modelling the signs (s1, . . . ,sn) and the meaning (m1, . . . ,mn) of
these signs in the context of the icon. Each sign is again represented by means of a
feature term whose root variable is of sort s ⌫ SIGN, and each meaning by means of
feature terms whose root variable is of sort s ⌫ MEANING.

Features of sign terms (fs1 , . . . fsn in the schema above) are at most one of on, left,
right, or below, specifying the spatial relationship between signs; and at most one
of action or objectType, specifying the meaning of signs (fm1 , . . . fmn in the schema
above). The values of spatial relation features are root variables of feature terms

4 The meaning of ‘values’ in this section is different from the idea of ‘values’ in the argumentation
framework presented in Section 2.4.
5 The notation s � {s1, . . . ,sn} denotes that s1, . . . ,sn are sub-sorts of s.

2 Computational Aspects of Concept Invention 47

that are in the value of the form feature; and those of features action and objectType
are root variables of feature terms that are in the value of the meaning feature. In
addition the root variables in the value of the action feature are of sort s ⌫ ACTION,
while those of the objectType feature are of sort s ⌫ OBJECTTYPE. Figure 2.4a
shows the feature term representation of the icon in Figure 2.4b(I).

A fundamental relation between feature terms is that of subsumption (v). In-
tuitively, a feature term y1 subsumes a feature term y2 (y1 is more general than
y2), if all the information in y1 is also in y2.6 We write y1 v y2 to denote that y1
subsumes y2. We omit the formal definition of subsumption, which can be found
in (Ontañón and Plaza, 2012) for feature terms as represented here. The subsump-
tion relation induces a partial order on the set of all features terms L over a given
signature, that is, hL ,vi is a poset.

2.6.1.2 Discovery

The discovery takes a query over the meaning of an icon concept as input, looks for
concepts in the Rich Background, and returns an ordered set of pairs of concepts
that can be blended. The query is modeled as a feature term yq in which only the
meaning part of an icon is specified. For instance, a query asking for an icon with
meaning SEARCH-DOC is modeled as:

yq := x1 : ICON


meaning =

⇢
x2 : SEARCH
x3 : DOC

��
(2.1)

The matching of the query is not always a perfect match, since icon concepts
in the Rich Background can have only one part of the meaning or similar mean-
ings w.r.t. the meaning searched. To this end, the query resolution is modeled as a
similarity-based search.

As seen in Section 2.2, the similarity between two concepts can be defined using
the similarity measure Sl . From a computational point of view, Sl requires two
things to be computed: the LGG and the three lengths defined in Eq. 2.4.

The algorithms for computing Sl can be found in (Ontañón and Plaza, 2012).
They implement the generalisation refinement operator shown in Figure 2.6. It con-
sists of the following operations:

Sort generalisation, which generalises a term by substituting the sort of one of its
variables by a more general sort;

Variable elimination, which generalises a term by removing the value of one of
the features in one variable of the term (a variable is removed only when the
variable does not have any features);

6 Notice that, in Description Logics, A v B has the inverse meaning “A is subsumed by B”, since
subsumption is defined from the set inclusion of the interpretations of A and B. Also, this is the
way in which we understand v in all the chapter apart from this section, in which we adopt the
feature-term interpretation for v.

48 Roberto Confalonieri, Enric Plaza, and Marco Schorlemmer

(gs) SORT GENERALISATION:
2

4
s1 � s ^ @s2 : s1 � s2 � s ^
8x. f = y 2 f 9s1. f = s3 2 O ^
sort(y) � s3

3

5 f & x : s
f & x : s1

(gv) VARIABLE ELIMINATION:


s. f = s0 2 O ^
features(y) = /0

�
f & x : s & x. f = y & y : s0

f & x : s

(ge) VARIABLE EQUALITY ELIMINATION:

⇥
z1 62 vars(f)

⇤ f & x. f = z & y. f 0 = z
f & z. f = z & y. f 0 = z1 & z1 : sort(z)

(gr) ROOT VARIABLE EQUALITY ELIMINATION:


z1 62 vars(f) ^
root(y) = z

�
f & x. f = z
f & x. f = z1 & z1 : sort(z)

Fig. 2.6: Generalisation operators for feature terms (Ontañón and Plaza, 2012), in
which feature terms are represented in clause notation. The term form of any feature
term y := x : s[f1 = y1, . . . , fn = yn] can be rewritten into the equivalent clause form
f := x : s & x. f1 = x1 & . . . & x. fn = xn. Notice that these operators ensure that it is
possible to reach ? from any feature term in the language.

Variable equality elimination, which generalises a term by removing a variable
equality and ensuring that ? can be reached from any term.

It is worth noticing that, in case of variable equalities, it is not possible to define
a generalisation operator for feature terms that is complete and still locally finite.
However, for the purpose of defining a least general generalisation-based similarity,
an operator which ensures that ? is reachable in a finite number of steps will suffice.

Example 2.1 (LGG example). Let us consider the feature terms yq in Eq. 2.1 and y1
in Figure 2.4a. The LGG yq uy1 is:

x1 : ICON


meaning =

⇢
x2 = SEARCH
x3 = OBJECTTYPE

��

yq u y1 captures the information shared among the icon concept y1 and the query
yq. Both of them have two meanings. According to the ontology previously defined,
the most general sorts for variables x2 and x3 are SEARCH and OBJECTTYPE re-
spectively. The form feature of y1 is removed, since yq does not contain this in-
formation.

2 Computational Aspects of Concept Invention 49

The measure Sl estimates the ratio between the amount of information that is shared
and the total information content.

Example 2.2 (Similarity example). Let us consider the feature terms yq in Eq. 2.1,
y1 in Figure 2.4a and their LGG in Example 2.1. Lengths l1 = l (y1 uyq

g�! ?) = 8,
l2 = l (y1

g�! y1 u yq) = 12, and l3 = l (yq
g�! y1 u yq) = 2. Notice that l3 is

very small (two generalisations), while l2 is larger since y1 has more generalised
content. Therefore, the similarity between yq and y1 is:

Sl (y1,yq) =
8

12+2+8
= 0.36

Sl (y1,yq) expresses that these two concepts share 36% of their information.

This measure is used to retrieve and rank input concepts as shown in the follow-
ing example.

Example 2.3. Let us imagine an agent that has access to a Rich Background C =
{y1,y2,y3,y4} consisting of four of the icons depicted in Figures 2.4b(I-II-III-
IV). As previously described, y1 is a feature term representing an icon with meaning
SEARCH-HARDDISK. y2 represents an icon that consists of two sorts of type SIGN,
an ARROW and a CLOUD, whose meaning is DOWNLOAD-CLOUD. y3 represents
an icon with two sorts of type SIGN, a PEN and a DOCUMENT, whose meaning
is EDIT-DOC; finally, y4 is a feature term that consists of three sorts, ARROW,
DOCUMENT and CLOUD with the intended meaning of DOWNLOAD-DOC-CLOUD.

The agent receives as input a query asking for an icon with meaning SEARCH-
DOC, yq (Eq. 2.1). The discovery retrieves the following pairs of concepts:

{h(y1,0.36),(y3,0.36)i},{h(y1,0.36),(y2,0.27)i}

{h(y3,0.36),(y2,0.27)i},{h(y1,0.36),(y4,0.25)i}

{h(y3,0.36),(y4,0.25)i},{h(y2,0.27),(y4,0.25)i}

The agent proceeds to blend the first pair in the list. To this end, it applies the
amalgam-based blending.

2.6.1.3 Blending Computer Icons

The least general generalisation of y1 and y3 is an icon with two sorts of type
SIGN, one on the other one, and with meaning ACTION and OBJECTTYPE respect-
ively. The agent explores the space of generalisations and finds two maximal blends;
a blend yb1 describing an icon with two sorts of type MAGNIFYINGGLASS and
DOCUMENT whose meaning is SEARCH-DOC; another blend yb2 describing an
icon with sorts of type PEN and HARDDISK whose meaning is EDIT-HARDDRIVE.
Since yb2 does not satisfy the query, it is discarded, and only yb1 is kept. The cre-
ation of yb1 is illustrated in Figure 2.7.

50 Roberto Confalonieri, Enric Plaza, and Marco Schorlemmer

Fig. 2.7: A blend of feature terms y1 and y3

Fig. 2.8: A blend of feature terms y1 and y4

2 Computational Aspects of Concept Invention 51

The agent repeats the above procedure for each pair discovered. Finally, it finds
another blend, which satisfies yq, by blending the pair y1 and y4. It is a blend de-
scribing an icon with three sorts of type MAGNIFYINGGLASS, DOCUMENT, and
CLOUD whose meaning is SEARCH-DOC-CLOUD. Intuitively, this blend can be ob-
tained by generalising HARDDISK from y1 and ARROW from y4, and by keeping
the other input icons’ specifics (see Figure 2.8). We denote this blend as yb2 . The
set of blends is B = {yb1 ,yb2}. A representation of yb1 and yb2 is given in Fig-
ures 2.4b(V-VI).

2.6.1.4 Evaluating Conceptual Blends by Means of Arguments

The agent evaluates newly created concepts on the basis of some values and the
audience to which these blends are headed.

In the case of evaluating blends representing new computer icons, we can ima-
gine that the agent is equipped with values such as simplicity and unambiguity.

The main idea behind simplicity is that the agent estimates how simple an icon
is from a representation point of view. This can be done by counting the quantity of
information used in the feature term describing an icon. We can assume that simple
icons are those described with less information. Therefore, simplicity is defined
to be inversely proportional to the total number of features and sorts used in the
variables of a feature term yb.

Simplicity(yb) =
1

Â
x2vars(yb)

features(x)+ sorts(x)

Unambiguity, on the other hand, measures how many interpretations an icon has
w.r.t. the Rich Background. Since icons are polysemic—they can be interpreted in
different ways—there can be icons that contain the same sign but the sign is asso-
ciated with a different meaning. To define the unambiguity value, let us first define
the polysemic set of yb as:

Pol(yb) ={y j 2 C | 9s 2 form(y j)\ form(yb)

^meaning(y j,s) 6= meaning(yb,s)}

where form(y j) is a function that returns the value of feature form, i.e., the set
of signs used in the icon represented by feature term y j; and meaning(y j,s) is a
function that returns the sort of the variable that is the value of feature action or
objectType of the variabe of sort s, i.e., the meaning used for the sign represented
by sort s in feature term y j. Then, the unambiguity value is defined to be inversely
proportional to the cardinality of Pol.

Unambiguity(yb) =

(
1/|Pol(yb)| if |Pol(yb)| 6= 0
1 otherwise

52 Roberto Confalonieri, Enric Plaza, and Marco Schorlemmer

Example 2.4. The agent evaluates the set of blends B = {yb1 ,yb2} by means of the
values above. The blend yb1 contains 10 variables whereas yb2 contains 14. There-
fore, the simplicity value’s degrees of yb1 and yb2 are 0.1 and 0.07 respectively.
Their unambiguity, on the other hand, is 1, since the Rich Background does not
contain icons with the same signs used in yb1 and yb2 , but with a different meaning.
The arguments built by the agent are:

Simplicity Unambiguity

yb1 0.1 1
yb2 0.07 1

Therefore, both blends have an argument pro regarding their simplicity and an argu-
ment con w.r.t. their unambiguity value. It is easy to see that the blends are ranked
in different ways when using the criteria we defined. For instance, yb1 and yb2 are
equally preferred when counting their arguments pro (or con) (Definition 2.9), and
when considering both arguments pro and con (Definition 2.13).

Instead, when considering the audience Simplicity �R Unambiguity, yb1 is pre-
ferred to yb2 (Definition 2.15).

2.6.2 Coherent Conceptual Blending

The process model introduced in Section 2.1 can be instantiated in another formal
structured representation language such as Description Logics (DLs).

Description logics play an important role in conceptual blending, as witnessed
by other approaches (see Chapter 3) that make use of ontological descriptions as
formal backbones for modelling conceptual blending in a computational way.

In the following, we will focus on how a specific description logic, namely AL ,
can be used to model concepts belonging to a Rich Background, amalgam-based
blending and conceptual coherence. The main reason for choosing AL is that it
is a subset of OWL 2, the Web Ontology Language recommended by the World
Wide Web Consortium (W3C, http://www.w3.org), and supported by the
DOL metalanguage (see Chapter 3). In this way, our approach could be integrated
in the DOL-based computational blending framework presented in the next chapter
rather straightforwardly.

2.6.2.1 Rich Background in AL

In DLs, concept and role descriptions are defined inductively by means of concept
and role constructors over a finite set NC of concept names, a finite set NR of role
names, and (possibly) a finite set NI of individual names. As is common practice,
we shall write A, B for concept names, C, D for concept descriptions, r, s for role
names, and a, b, for individual names.

2 Computational Aspects of Concept Invention 53

concept description interpretation
> DI

? /0
A AI ✓ DI

¬A DI \AI

C uD CI \DI

8r.C {x 2 DI | 8y 2 DI .(x,y) 2 rI ^ y 2 CI }
9r.> {x 2 DI | 9y 2 DI .(x,y) 2 rI }

Table 2.1: Syntax and semantics of AL contructors

House v Object Resident v Person
Boat v Object Passenger v Person
Land v Medium PersonuMedium v ?
Water v Medium ObjectuMedium v ?
WateruLand v ? ObjectuPerson v ?

Fig. 2.9: The Rich Background for the House and Boat

The AL language was introduced by Schmidt-Schauß and Smolka (1991) as
a minimal language of practical interest. Concept descriptions in AL are formed
according to the syntax rules shown in the left column in Table 2.1.

The semantics of concept and role descriptions is defined in terms of an inter-
pretation I = (DI , ·I), where DI is a non-empty domain and ·I is an inter-
pretation function assigning a set AI ✓ DI to each concept name A 2 NC, a set
rI ✓ DI ⇥ DI to each role name r 2 Nr, and an element aI 2 DI for each in-
dividual name a 2 NI , which is extended to general concept and role descriptions.
Table 2.1 shows the interpretation of the constructors of the description logic AL .

The bottom concept ?, in combination with general concept inclusions (GCIs),
allows one to express disjointness of concept descriptions, e.g., C uD v ? tells that
C and D are disjoint. In AL , and generally speaking in any description logic, there
are two sets of axioms, namely, a TBox and an ABox.

The TBox, denoted as T , consists of terminological axioms that describe in-
tensional knowledge defining the main notions relevant to the domain of discourse.
The ABox, denoted as A , consists of assertional axioms that describe extensional
knowledge about individual objects of the domain.

An interpretation I is a model of a TBoxT if and only if it satisfies all axioms
in T . The basic reasoning task in AL is subsumption. Given a TBox T and two
concept descriptions C and D, we say that C is (strictly) subsumed by D w.r.t. T ,
denoted as C vT D (C <T D), iff CI ✓ DI (CI ✓ DI and CI 6= DI) for every
model I of T .

In what follows, a Rich Background in AL is a TBox, containing terminological
axioms of the form C v D, i.e., GCIs, and disjointness axioms. By L (T) we refer
to the set of all AL concept descriptions we can form with the concept and role
names occurring in T .

54 Roberto Confalonieri, Enric Plaza, and Marco Schorlemmer

To illustrate an example of Rich Background, we use the classical conceptual
blending example of the house-boat (Fauconnier and Turner, 2002; Goguen, 1999).
In Figure 2.9, we depict the set of axioms, necessary for defining the mental spaces
of the House and Boat. The precise formalisation is not critical at this point, dif-
ferent ones exist (Goguen and Harrell, 2010; Pereira, 2007), but all provide similar
distinctions.

The Rich Background for the house and boat consists of a taxonomy of concepts,
concept descriptions, and restrictions among them. For instance, Land and Water
are atomic concepts, both of type Medium, and the axiom WateruLand v ? cap-
tures the idea that any object of type Water cannot be of type Land at the same
time.

Atomic roles such as usedBy and on are used to define concept relations. The
mental spaces representing the concept of a house and boat can be modeled as fol-
lows:

House v 8usedBy.Residentu8on.Land
Boat v 8usedBy.Passengeru8on.Water

The above axioms denote that a house is an object that is only used by residents and
is located only on land. Similarly, boat is an object that is only used by passengers
and is located only on water.

In principle, the House and Boat theory could not be directly blended (they gen-
erate an inconsistency due to the disjointness axiom WateruLand v ?), but the
blended specification is still to be considered an interesting option—from a creat-
ive point of view—that needs to be assessed. We will do it by means of conceptual
coherence, as we shall see. First, we define a blend as an amalgam in the AL

language.

2.6.2.2 Blending in AL

As said earlier, the notion of blend as an amalgam can be defined in any represent-
ation language L for which a subsumption relation between formulas is defined,
therefore, also in the set of all AL concept descriptions, which can be formed with
the concept and role names occurring in an AL TBox T , with the subsumption
relation vT . The process of conceptual blending in AL can be described as fol-
lows:

1. We take a Rich Background of concepts (see Figure 2.9).
2. A mental space of an atomic concept A is modelled, for the purpose of con-

ceptual blending, by means of a subsumption A v C specifying the necessary
conditions we are focusing on.

3. The new concept to be invented is represented by the concept description that
conjoins the atomic concepts to be blended.

4. With amalgams we generalise the input spaces based on the taxonomy in our
Rich Backgroud until a satisfactory blend is generated.

2 Computational Aspects of Concept Invention 55

The definitions of most general specialisation, least general generalisation, and
amalgam in AL follow by replacing the subsumption relation (v) with subsump-
tion in AL (vT) in a straightforward way; therefore, we omit them.

The least general generalisation and the generalised descriptions, needed to com-
pute an amalgam (see Definition 2.5), are obtained by means of a generalisation
refinement operator that allows us to find generalisations of AL concept descrip-
tions.

Generalising AL descriptions

Roughly speaking, a generalisation operator takes a concept C as input and returns
a set of descriptions that are more general than C by taking a Tbox T into account.

In order to define a generalisation refinement operator for AL , we need some
auxiliary definitions.

Definition 2.21. Let T be a TBox in A L . The set of non-trivial subconcepts of
T is given as

sub(T) =
[

CvD2T

sub(C)[sub(D)

where sub is defined over the structure of concept descriptions as follows:

sub(A) = {A}
sub(?) = {?}
sub(>) = {>}

sub(¬A) = {¬A,A}
sub(C uD) = {C uD}[sub(C)[sub(D)

sub(8R.C) = {8R.C}[sub(C)

sub(9R.>) = {9R.>}

We next define the upward cover set of atomic concepts. In the following defini-
tion, the definition of sub(T) guarantees that the upward cover set is finite.

Definition 2.22. Let T be an AL TBox with concept names from NC. The upward
cover set of an atomic concept A 2 NC [{>,?} with respect to T is given as:

UpCov(A) := {C 2 sub(T) | A vT C (2.2)
and there is no C0 2 sub(T)

such that A <T C0 <T C}

We can now define our generalisation refinement operator for AL as follows.

Definition 2.23. Let T be an AL TBox. We define the generalisation refinement
operator g inductively over the structure of concept descriptions as follows:

56 Roberto Confalonieri, Enric Plaza, and Marco Schorlemmer

g(A) = UpCov(A)

g(>) = UpCov(>) = /0
g(?) = UpCov(?)

g(C uD) = {C0 uD | C0 2 g(C)}[{C uD0 | D0 2 g(D)}[{C,D}

g(8r.C) =

⇢
{8r.C0 | C0 2 g(C)} whenever g(C) 6= /0
{>} otherwise.

g(9r.>) = /0

We should note at this point that our definition of UpCov only considers the set
of subconcepts present in a Tbox T . On the one hand, this guarantees that g is fi-
nite, since at each generalisation step, the set of possible generalisations is finite.
On the other hand, however, this implies that g is not complete, since it cannot find
all possible upward covers of a concept w.r.t. subsumption in AL .7 Besides, g can
return concept descriptions that are equivalent to the concept being generalised; con-
sequently, g is not a proper generalisation operator. One possible way to avoid this
situation is to discard these generalisations. This can be achieved by an additional
semantic test that can be found in (Confalonieri et al., 2016a).

Given a generalisation refinement operator g , AL concepts are related by re-
finement paths as described next.

Definition 2.24. A finite sequence C1, . . . ,Cn of AL concepts is a concept refine-
ment path C1

g�! Cn from C1 to Cn of the generalisation refinement operator g iff
Ci+1 2 g(Ci) for all i : 1  i < n. g⇤(C) denotes the set of all concepts that can be
reached from C by means of g in a finite number of steps.

The repetitive application of the generalisation refinement operator allows us to find
a description that represents the properties that two or more AL concepts have
in common. This description is a common generalisation of AL concepts, the so-
called generic space that is used in conceptual blending.

Definition 2.25. An AL concept description G is a generic space of the AL

concept descriptions C1, . . . ,Cn if and only if G 2 g 0⇤(Ci) for all i = 1, . . . ,n.

The House-Boat Blend

The A L theories for House and Boat introduce the axioms modelling the mental
spaces for house and boat.

House v 8usedBy.Residentu8on.Land
Boat v 8usedBy.Passengeru8on.Water

7 For instance, if T contains two axioms A v B, A v C, and we generalise A (in the domain
knowledge), then g(A) = {B,C} while a possible generalisation of A w.r.t. vT is BuC.

2 Computational Aspects of Concept Invention 57

House Boat

House

House u Boat

Boat

GenericSpace

Fig. 2.10: A diagram of an amalgam from descriptions House and Boat and their
respective generalisations House and Boat. Arrows indicate the subsumption of the
target by the source of the arrow

The House and Boat theories cannot be directly blended since they generate an
inconsistency. This is due to the background ontology stating that the medium on
which an object is situated cannot be land and water at the same time (Figure 2.9).
Therefore, some parts of the House and Boat descriptions need to be generalised
in a controlled manner before these concepts can be blended. The generic space
between a house and a boat—an object that is on a medium and used-by a person—
is a lower bound in the space of generalisations that need to be explored in order to
generalise these concepts and to blend them into a house-boat. The generic space is
obtained according to Definition 2.25 by applying the refinement operator g .

Example 2.5. Let us consider the House and Boat concepts. Their generic space is:
8usedBy.Personu 8on.Medium and is obtained as follows. In the House concept,
the subconcepts 8usedBy.Resident and 8on.Land are generalised to 8usedBy.Person
and 8on.Medium respectively. In the Boat concept, the subconcepts 8usedBy.
Passenger and 8on.Water are generalised in a similar way.

From a conceptual blending point of view, the house-boat blend can be created when
the medium on which a house is situated (land) becomes the medium on which boat
is situated (water), and the resident of the house becomes the passenger of the boat.
This blend can be obtained when the input concepts house and boat are generalised
as follows:

House v 8usedBy.Residentu8on.Medium
Boat v 8usedBy.Personu8on.Water

The house-boat blend is obtained by conjoining the generalised mental spaces
House and Boat (Figure 2.10). It is easy to see that HouseuBoat is an amalgam
according to Definition 2.5.

2.6.2.3 Conceptual Coherence in AL

Thagard (2000) characterises conceptual coherence with these principles:

58 Roberto Confalonieri, Enric Plaza, and Marco Schorlemmer

Symmetry: Conceptual coherence is a symmetric relation between pairs of con-
cepts.

Association: A concept coheres with another concept if they are positively associ-
ated, i.e., if there are objects to which they both apply.

Given Concepts: The applicability of a concept to an object may be given percep-
tually or by some other reliable source.

Negative Association: A concept incoheres with another concept if they are neg-
atively associated, i.e., if an object falling under one concept tends not to fall
under the other concept.

Acceptance: The applicability of a concept to an object depends on the applicabil-
ity of other concepts.

To provide a precise account of these principles we shall formalise Association
and Negative Association between concepts expressed in AL , since these are the
principles defining coherence and incoherence. We shall assume coherence between
two concept descriptions when we have explicitly stated that one subsumes the other
(“there are objects to which both apply”); and we shall assume incoherence when
we have explicitly stated that they are disjoint (“an object falling under one concept
tends not to fall under the other concept”).

Definition 2.26. Given a Tbox T in description logic AL and a pair of concept
descriptions C,D 62 {>,?}, we will say that:

• C coheres with D if C v D 2 T , and that
• C incoheres with D if C v ¬D 2 T or C uD v ? 2 T .

In addition, coherence and incoherence between concept descriptions depend on the
concept constructors used, and we will say that, for all atomic concepts A, atomic
roles R, and concept descriptions C,D 62 {>,?}:

• ¬A incoheres with A;
• C uD coheres both with C and with D;
• 8R.C coheres (or incoheres) with 8R.D if C coheres (or incoheres) with D.8

Symmetry follows from the definition above, and Acceptance is captured by the
aim of maximising coherence in a coherence graph. For this we need to define how
a TBox determines a coherence graph, and, in order to keep the graph finite, we
express coherence and incoherence only between non-trivial concept descriptions
(i.e., excluding > and ?) that are explicitly stated in the TBox. This set can be
computed based on Definition 2.21:

sub0(T) = sub(T)\{?,>}

Definition 2.27. The coherence graph of a TBox T is the edge-weighted, undir-
ected graph G = hV,E,wi whose vertices are non-trivial subconcepts of T (i.e.,

8 Note that since AL allows only for limited existential quantification we cannot provide a general
rule for coherence between concept descriptions of the form 9R.>.

2 Computational Aspects of Concept Invention 59

8usedBy.Residentu
8on.Land

House

Resident

Passenger

Person Medium

Land

Water

Object

8on.Land

8usedBy.Resident HouseuBoat

8usedBy.Passengeru
8on.Water

Boat

8on.Water

8usedBy.Passenger

1

1

1 1

1

1

11

1 1

�1

�1
1

1

1

1 �1 �1
�1

Fig. 2.11: The coherence graph of the HouseuBoat blend, showing the main con-
cepts and their coherence relations. Blue and green coloured boxes represent con-
cepts belonging to the background ontology and to the input mental spaces respect-
ively

V = sub0(T)), whose edges link subconcepts that either cohere or incohere ac-
cording to Definition 2.26, and whose edge-weight function w is given as follows:

w({C,D}) =

(
1 if C and D cohere
�1 if C and D incohere

2.6.2.4 Evaluating the Coherence of Conceptual Blends

To exemplify how the coherence degree can be used to evaluate blends, we con-
sider the house-boat example. According to the amalgam-based process of con-
ceptual blending described in the previous section, several blends can be gener-
ated by blending the mental space of House and Boat. In particular, the concept
HouseuBoat is a valid blend.

The coherence graph blending the House and Boat directly is shown in Fig-
ure 2.11. As expected the concepts House and Boat positively cohere with the ax-
ioms representing the mental spaces and with the concept HouseuBoat, which is
representing the blend. The incoherence relation between 8on.Land and 8on.Water
is due to the fact that the concepts Water and Land incohere, since the background
ontology contains the disjointness axiom WateruLand v ?. The coherence graph
of House and Boat has a maximal coherence value of 0.84.

For the sake of our example, we generate new blends by generalising the axioms
modelling our mental spaces. For instance, by applying the generalisations seen in

60 Roberto Confalonieri, Enric Plaza, and Marco Schorlemmer

8usedBy.Residentu
8on.Medium House

8on.Medium

8usedBy.Resident HouseuBoat

8usedBy.Personu
8on.WaterBoat

8on.Water

8usedBy.Person

1

1

1

1

1

1

1 1

Fig. 2.12: The coherence graph of the HouseuBoat blend, showing the main con-
cepts and coherence relations. Generalised concepts are displayed in a darker tone

the previous section that lead to the creation of the house-boat blend, we obtain
the coherence graph in Figure 2.12.9 The coherence graph of blending House and
Boat has a maximal coherence value of 0.9. This graph yields a higher coherence
degree since generalising 8on.Land to 8on.Medium prevents the appearance of the
incoherence relation between 8on.Land and 8on.Water.

By Definition 2.20, it is easy to see that the blend HouseuBoat is preferred to
HouseuBoat since it has a maximal coherence degree that is higher.

2.7 Related Work

Several approaches of formal and computational models for concept invention have
been proposed (Eppe et al., 2015a,b; Kutz et al., 2014; Goguen and Harrell, 2006;
Veale and Donoghue, 2000; Pereira, 2005, 2007; Goguen and Harrell, 2010; Guhe
et al., 2011). Many of these models are inspired by the work of Fauconnier and
Turner (2002), but there are also other approaches emanating from analogical reas-
oning (Schwering et al., 2009) and neuroscience (Thagard, 2010).

Amalgam-based conceptual blending have been developed to blend E L
++ con-

cepts in (Confalonieri et al., 2016a). In this work, the generalisation of an E L
++

concept is achieved by means of a generalisation refinement operator. The refine-
ment operator is implemented in ASP as a step-wise transition process—similar
to the one presented in this paper— that looks for a generic space between two
(or more) concepts. The operator generalises a concept by taking the TBox know-
ledge into account. Good blends are selected by re-interpreting some optimality
principles. Blending ontologies rather than concepts has been explored in the on-
tological blending framework of Kutz et al. (2014), where blends are computed as
colimits of blending diagrams specified according to the Distributed Ontology Lan-
guage (DOL) (Mossakowski et al., 2015), a recent OMG international ontology in-
teroperability standard. In that framework, the blending process is not characterised

9 Concepts belonging to the background ontology are omitted.

2 Computational Aspects of Concept Invention 61

in terms of amalgams, nor are input concepts generalised syntactically. Rather, the
generic space is assumed to be given and mapped to the input ontologies via theory
interpretations.

The Alloy algorithm for conceptual blending by Goguen and Harrell (2006) is
based on the theory of algebraic semiotics (Goguen, 1999). Alloy has been integ-
rated in the Griot system for automated narrative generation (Goguen and Harrell,
2006; Harrell, 2007, 2005). The input spaces of the Alloy algorithm are theories
defined in the algebraic specification language OBJ (Malcolm, 2000). In the Alloy
algorithm, input spaces are assumed to be given, hence there is no discovery. The
optimality principles proposed by Fauconnier and Turner (2002) are re-interpreted
as structural optimality principles, and serve to prune the space of possible blends.

Sapper was originally developed by Veale and Keane (1997) as a computational
model of metaphor and analogy. It computes a mapping between two separate
domains—understood as graphs of concepts—that respects the relational structure
between the concepts in each domain. Sapper can be seen as a computational model
for conceptual blending, because the pairs of concepts that constitute its output can
be manipulated as blended concepts (Veale and Donoghue, 2000). Strictly speaking,
Sapper does not work with a priori given input spaces. It is the structure mapping
algorithm itself which determines the set of concepts and relations between these
concepts. In Sapper, most of the optimality principles are captured and serve to
rank and filter the correspondences that comprise the mappings computed by the
algorithm.

The research in (Pereira and Cardoso, 2002, 2003a,b) led to the development of
Divago (Pereira, 2005; Pereira and Cardoso, 2006; Pereira, 2007), probably the first
complete implementation of conceptual blending. Pereira draws the terminology
and definitions for his formal and computational model from Wiggin’s formalisa-
tion of creative systems (Wiggins, 2006). The implementation of Divago is realised
in Prolog. Divago’s architecture includes different modules. A knowledge base con-
tains different micro-theories and their instantiations. Of these, two are selected
for the blending by the user or randomly, thus, no discovery is taken into account.
A mapper then generates the generic space between the inputs, and passes it to a
blender module which generates the ‘blendoid’, i.e., a projection that defines the
space of possible blends. A factory component is used to select the best blends
among the blendoid by means of a genetic algorithm. A dedicated module imple-
ments the optimality principles. Given a blend, this module computes a measure for
each principle. These measures yield a preference value of the blend that is taken as
the fitness value of the genetic algorithm.

The combinatorial kind of creativity (Boden, 1996) that we are interested in has
been investigated from a neurological perspective by Thagard and Stewart (2011).
The major motivation of their approach is to explain and to model the Aha! or
Eureka! effect that occurs when humans make serendipitous discoveries by means
of creative thinking. The authors build their work on findings from neuroscience
and approaches to realise human thinking with neural networks (Thagard, 2010).
The key idea is to represent mental concepts as activity patterns of vectors of neur-
ons and to perform a convolution operation to combine these patterns. Activity pat-

62 Roberto Confalonieri, Enric Plaza, and Marco Schorlemmer

terns are mathematically represented as vectors of numbers that represent the firing
rate of neurons. According to Thagard and Stewart (2011), a mental concept can
then be represented as a huge but finite vector of such numbers. The blend is gener-
ated by mathematical convolution of vectors. The underlying mathematical model is
based on the so-called LIF model of neuronal activity (see e.g., Thagard (2010)). It
accounts for various details on the neuronal level, such as neuron voltage, input cur-
rent, membrane time, direction vector of neuron patterns, and synaptic connection
weights. Thagard and Stewart (2011) do not use Fauconnier and Turner’s optimality
principles to distinguish reasonable blends within the huge space of possible blends.
Instead, they combine the blend of two input spaces with another space representing
emotional reaction to assess blends. However, the authors do not provide a detailed
description of how to model the emotional input spaces computationally.

Finally, works that relate to ours are (Confalonieri et al., 2015; Kaliakatsos-
Papakostas et al., 2016). Confalonieri et al. (2015) use Lakatosian reasoning to
model dialogues in which users engage to discuss the intended meaning of an inven-
ted concept. The main difference between that effort and the current work lies in the
way in which arguments are generated and used. Here, an argument is a reason for
choosing a blend and it is generated automatically, whereas in (Confalonieri et al.,
2015) an argument is a reason to refine the meaning of a blend and is provided by
the user. In (Kaliakatsos-Papakostas et al., 2016), arguments are specified by musi-
cologists to drive the harmonic blending process.

2.8 Conclusion and Future Perspectives

In this chapter, we described a process model for concept invention that is based
on and extends the conceptual blending theory of Fauconnier and Turner (2002).
According to this process, concept invention is characterised by different sub-
processes—discovery, blending, and evaluation—that together account for concept
invention.

Apart from the blending mechanism modelling the creation of new concepts, we
focused on two extra dimensions that are typically not addressed in computational
approaches of concept blending. On the one hand, we described how a Rich Back-
ground supports the discovery of input concepts to be blended. On the other hand,
we showed how arguments promoting or demoting the values of an audience (to
which the invention is headed) can be used to evaluate candidate blends.

We also showed how the evaluation of new blended concepts can be achieved
by taking the computational theory of conceptual coherence due to Thagard (2000)
into account. In this setting, newly invented concepts are evaluated with respect to
a Rich Background conceptual knowledge so as to decide which of them are to be
accepted into a system of familiar concepts.

We described two instantiations of the process model using two structured lan-
guages, namely, feature terms and description logics. This allowed us to capture the
concept invention process in terms of well-defined operators such as least general

2 Computational Aspects of Concept Invention 63

generalisation—for computing a generic space—and most general specialisation—
for computing a blend. Pairs of input concepts are retrieved from a Rich Background
by means of a discovery process that takes a similarity measure into account. Blend-
ing is realised according to the notion of amalgam, and blend evaluation is achieved
by means of arguments, values and audience and conceptual coherence. An im-
plementation of conceptual coherence presented in this chapter using the OWL
API and Answer Set Programming is available at: https://rconfalonieri@
bitbucket.org/rconfalonieri/coinvent-coherence.git.

We exemplified the computational framework in these two languages but the
framework is general enough to be instantiated in other representation languages in
which a subsumption relation between formulas or descriptions holds.

We aim at extending the current work from different perspectives. First, here, we
presented a discovery method based on a similarity measure based on the structure
of the refinement space, but other similarity methods, considering more nuanced
aspects of the domain, are envisioned to be needed and useful. Particularly, having a
subset of the concepts in a Rich Background activated as salient but lacking a clear
second concept that can be used to yield an interesting blend is an interesting avenue
of research.

Then, generating other kinds of arguments than the ones seen in this chapter,
opens also a wide area of research related not only to computational argumentation,
but also to human level argumentation. For instance, social arguments applying to
an invented concept could be considered as an open-ended process—that is to say
a collection of arguments that can always increase, since the members of an audi-
ence may change and the values (and their social prevalence) may also change in
time. This, for instance, has also been the approach of Confalonieri et al. (2015)
when modeling blend evaluation using Lakatosian reasoning. In this way, a given
invented concept may, for instance, first be divisive and at later times reach an over-
lapping consensus in an audience (be it positive or negative). This open-endedness
also highlights the relationship between subjective and social values in a given do-
main, in the sense that a large disagreement between a traditional (consensued) set
of values of an audience and the idiosyncratic values of a creative agent should be
able to model disruptive or groundbreaking inventions.

We aim at employing a richer DL, such as S ROI Q (Horrocks et al., 2006),
enacting the concept invention process, and allowing degrees of coherence and inco-
herence relations. Usually, coherence and incoherence are not treated only in binary
terms, but it is also natural to take certain degrees of coherence or incoherence into
account. This, for instance, has also been the approach of Joseph et al. (2010) when
formalising deductive coherence.

Finally, we will need to discuss yet another important aspect of coherence theory,
namely how to interpret the two parts of a coherence-maximising partition: the set
of accepted and of rejected concepts. The information that a particular concept de-
scription falls in the set of accepted concepts or in the set of rejected concepts could
also be taken into account to decide the acceptance or rejection of newly invented
concepts; or even of already existing concepts in the Rich Background, in the light

64 Roberto Confalonieri, Enric Plaza, and Marco Schorlemmer

of newly invented concepts. This aspect might become clearer as a wider range of
concept representation languages is explored.

References

L. Amgoud and H. Prade. Using arguments for making and explaining decisions.
Artificial Intelligence, 173:413–436, 2009.

K. Atkinson, T. Bench-Capon, and P. McBurney. Justifying practical reasoning.
In Proc. of the Fourth Workshop on Computational Models of Natural Argument
(CMNA’04), pages 87–90, 2004.

F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider,
editors. The Description Logic Handbook: Theory, Implementation, and Applic-
ations. Cambridge University Press, New York, NY, USA, 2003.

T. J. M. Bench-Capon. Persuasion in practical argument using value-based argu-
mentation frameworks. Journal of Logic and Computation, 13(3):429–448, 2003.

T. R. Besold and E. Plaza. Generalize and blend: Concept blending based on gener-
alization, analogy, and amalgams. In Proceedings of the 6th International Con-
ference on Computational Creativity, ICCC15, 2015.

M. A. Boden. Creativity. In M. A. Boden, editor, Artificial Intelligence (Handbook
of Perception and Cognition), pages 267–291. Academic Press, 1996.

B. Bonet and H. Geffner. Arguing for decisions: A qualitative model of decision
making. In Proc. of the 12th Conf. on Uncertainty in Artificial Intelligence
(UAI’96), pages 98–105, 1996.

B. Carpenter. The Logic of Typed Feature Structures. Cambridge University Press,
New York, NY, USA, 1992. ISBN 0-521-41932-8.

R. Confalonieri, J. Corneli, A. Pease, E. Plaza, and M. Schorlemmer. Using ar-
gumentation to evaluate concept blends in combinatorial creativity. In Proc. of
the 6th International Conference on Computational Creativity, ICCC15, pages
174–181, 2015.

R. Confalonieri, M. Eppe, M. Schorlemmer, O. Kutz, R. Peñaloza, and E. Plaza. Up-
ward refinement operators for conceptual blending in E L

++. Annals of Math-
ematics and Artificial Intelligence, 2016a. DOI: 10.1007/s10472-016-9524-8.

R. Confalonieri, E. Plaza, and M. Schorlemmer. A process model for concept inven-
tion. In Proc. of the 7th International Conference on Computational Creativity,
ICCC16, pages 338–345, 2016b.

P. M. Dung. On the acceptability of arguments and its fundamental role in nonmono-
tonic reasoning, logic programming and n-person games. Artificial Intelligence
Journal, 77:321–357, 1995.

M. Eppe, R. Confalonieri, E. Maclean, M. A. Kaliakatsos-Papakostas, E. Cam-
bouropoulos, W. M. Schorlemmer, M. Codescu, and K. Kühnberger. Com-
putational invention of cadences and chord progressions by conceptual chord-
blending. In Q. Yang and M. Wooldridge, editors, Proceedings of the Twenty-
Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015,

2 Computational Aspects of Concept Invention 65

Buenos Aires, Argentina, July 25-31, 2015, pages 2445–2451. AAAI Press,
2015a.

M. Eppe, E. Maclean, R. Confalonieri, O. Kutz, W. M. Schorlemmer, and E. Plaza.
ASP, amalgamation, and the conceptual blending workflow. In F. Calimeri,
G. Ianni, and M. Truszczynski, editors, Proceedings of the 13th International
Conference on Logic Programming and Nonmonotonic Reasoning, LPNMR 2015,
Lexington, KY, USA, September 27-30, 2015, pages 309–316, 2015b.

G. Fauconnier and M. Turner. The Way We Think: Conceptual Blending and the
Mind’s Hidden Complexities. Basic Books, 2002. ISBN 978-0-465-08785-3.

J. Goguen. An introduction to algebraic semiotics, with application to user in-
terface design. In C. L. Nehaniv, editor, Computation for Metaphors, Analogy,
and Agents, volume 1562 of Lecture Notes in Computer Science, pages 242–291.
1999.

J. Goguen and D. F. Harrell. Style: A computational and conceptual blending-based
approach. In S. Argamon, K. Burns, and S. Dubnov, editors, The Structure of
Style: Algorithmic Approaches to Understanding Manner and Meaning, pages
291–316. Springer, 2010.

J. A. Goguen and D. F. Harrell. Foundations for active multimedia narrative: Semi-
otic spaces and structural blending. Available at https://cseweb.ucsd.
edu/˜goguen/pps/narr.pdf, 2005. Last accessed, 2016.

M. Guhe, A. Pease, A. Smaill, M. Martı́nez, M. Schmidt, H. Gust, K.-U. Kühnber-
ger, and U. Krumnack. A computational account of conceptual blending in basic
mathematics. Cognitive Systems Research, 12(3-4):249–265, 2011.

D. F. Harrell. Shades of computational evocation and meaning: The GRIOT sys-
tem and improvisational poetry generation. 6th Digital Arts and Culture Confer-
ence, 2005. URL http://groups.csail.mit.edu/icelab/sites/
default/files/pdf/Harrell-DAC2005.pdf.

D. F. Harrell. Theory and technology for computational narrative: an approach to
generative and interactive narrative with bases in algebraic semiotics and cog-
nitive linguistics. Ph.D. thesis, University of California, San Diego, 2007.

I. Horrocks, O. Kutz, and U. Sattler. The even more irresistible S ROI Q. In
P. Doherty, J. Mylopoulos, and C. A. Welty, editors, Proceedings, Tenth Inter-
national Conference on Principles of Knowledge Representation and Reasoning,
Lake District of the United Kingdom, June 2-5, 2006, pages 57–67. AAAI Press,
2006.

S. Joseph, C. Sierra, M. Schorlemmer, and P. Dellunde. Deductive coherence and
norm adoption. Logic Journal of the IGPL, 18(1):118–156, 2010.

O. Kutz, J. Bateman, F. Neuhaus, T. Mossakowski, and M. Bhatt. E pluribus unum:
Formalisation, use-Cases, and computational support for conceptual blending. In
T. R. Besold, M. Schorlemmer, and A. Smaill, editors, Computational Creativ-
ity Research: Towards Creative Machines, Thinking Machines. Atlantis/Springer,
2014.

G. Malcolm. Software Engineering with OBJ: Algebraic specification in action.
Kluwer, 2000.

66 Roberto Confalonieri, Enric Plaza, and Marco Schorlemmer

M. A. Kaliakatsos-Papakostas, R. Confalonieri, J. Corneli, A. I. Zacharakis, and
E. Cambouropoulos. An argument-based creative assistant for harmonic blend-
ing. In Proc. of the 7th International Conference on Computational Creativity,
ICCC16, pages 330–337, 2016.

T. Mossakowski, M. Codescu, F. Neuhaus, and O. Kutz. The Road to Universal
Logic—Festschrift for 50th birthday of Jean-Yves Beziau, Volume II. Studies in
Universal Logic. Birkhäuser, 2015.

S. Ontañón and E. Plaza. Similarity measures over refinement graphs. Machine
Learning, 87(1):57–92, Apr. 2012.

S. Ontañón and E. Plaza. Amalgams: A formal approach for combining multiple
case solutions. In I. Bichindaritz and S. Montani, editors, Proceedings of the
International Conference on Case Base Reasoning, volume 6176 of Lecture Notes
in Computer Science, pages 257–271. Springer, 2010. ISBN 978-3-642-14273-4.

F. C. Pereira. A Computational Model of Creativity. Ph.D. thesis, Universidade de
Coimbra, 2005.

F. C. Pereira. Creativity and Artificial Intelligence: A Conceptual Blending Ap-
proach. Mouton de Gruyter, 2007.

F. C. Pereira and A. Cardoso. The boat-house visual blending experiment. In Pro-
ceedings of the 2nd Workshop on Creative Systems: Approaches to Creativity in
AI and Cognitive Science. ECAI 2002, Lyon, France, 2002.

F. C. Pereira and A. Cardoso. Optimality principles for conceptual blending: A first
computational approach. AISB Journal, 1(4):351–370, 2003a.

F. C. Pereira and A. Cardoso. The horse-bird creature generation experiment. AISB
Journal, 1(3):257–280, 2003b.

F. C. Pereira and A. Cardoso. Experiments with free concept generation in Divago.
Knowledge-Based Systems, 19(7):459–470, 2006.

J. Pollock. How to reason defeasibly. Artificial Intelligence Journal, 57:1–42, 1992.
M. Schmidt-Schauß and G. Smolka. Attributive concept descriptions with comple-

ments. Artificial Intelligence, 48(1):1–26, Feb. 1991. ISSN 0004-3702.
M. Schorlemmer, R. Confalonieri, and E. Plaza. Coherent concept invention. In

T. R. Besold, O. Kutz, and C. Leon, editors, Proceedings of the Workshop on
Computational Creativity, Concept Invention, and General Intelligence (C3GI
2016), Bozen-Bolzano, Italy, August 20-22, 2016, volume 1767 of CEUR Work-
shop Proceedings. CEUR-WS.org, 2016.

A. Schwering, U. Krumnack, K.-U. Kühnberger, and H. Gust. Syntactic principles
of heuristic-driven theory projection. Cognitive Systems Research, 10(3):251–
269, 2009.

G. Smolka and H. Aı̈t-Kaci. Inheritance hierarchies: Semantics and unification.
Journal of Symbolic Computation, 7(3–4):343—370, 1989.

P. Thagard. Coherence in Thought and Action. The MIT Press, 2000. ISBN 978-0-
262-20131-5.

P. Thagard. The Brain and the Meaning of Life. Princeton University Press, 2010.
P. Thagard and T. C. Stewart. The AHA! experience: Creativity through emergent

binding in neural networks. Cognitive Science, 35(1):1–33, 2011.

2 Computational Aspects of Concept Invention 67

P. R. van der Laag and S.-H. Nienhuys-Cheng. Completeness and properness of
refinement operators in inductive logic programming. The Journal of Logic Pro-
gramming, 34(3):201 – 225, 1998. ISSN 0743-1066.

T. Veale and D. O. Donoghue. Computation and blending. Cognitive Linguistics,
11(3-4):253–282, 2000. DOI: 10.1515/cogl.2001.016.

T. Veale and M. Keane. The competence of sub-optimal theories of structure map-
ping on hard analogies. In International Joint Conference in Artificial Intelli-
gence, pages 232–237, 1997.

G. A. Wiggins. A preliminary framework for description, analysis and comparison
of creative systems. Knowledge-Based Systems, 19(7):449–458, 2006.

