Chapter 1
Amalgams, Colimits, and Conceptual Blending

Félix Bou, Enric Plaza, and Marco Schorlemmer

Abstract This chapter is a theoretical exploration of Joseph Goguen’s category-
theoretic model of conceptual blending and presents an alternative proposal to
model blending as amalgams, which were originally proposed as a method for
knowledge transfer in case-based reasoning. The chapter concludes with a gener-
alisation of the amalgam-based model by relating it to the notion of colimit, thus
providing a category-theoretic characterisation of amalgams that is ultimately com-
putationally realisable.

1.1 Introduction

The notion of amalgam in a lattice of generalisations was developed in the frame-
work of modelling analogical inference, and case amalgamation in case-based reas-
oning (CBR) (Ontafién and Plaza, 2010). Case amalgamation models the process
of combining two different cases into a new blended case to be used in the CBR
problem-solving process. As such, the notion of amalgam seems related to but not
identical to the notions of conceptual blending, also known as conceptual integ-
ration (Fauconnier and Turner, 1998). These related notions have in common that
there is some combination or fusion of two different sources into a new entity that
encompasses selected parts of the sources, but they differ in the assumptions on
the entities upon which they work: amalgams work on cases (expressed as terms in
some language), while conceptual blending works on mental spaces.
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Fig. 1.1: ‘Houseboat’ blend, adapted from Goguen and Harrell (2010)

Fauconnier and Turner proposed conceptual blending as the fundamental cognit-
ive operation underlying much of everyday thought and language. They model it as
a process by which people subconsciously combine particular elements and their re-
lations of originally separate input mental spaces—which do, however, share some
common structure modelled as a generic space—into a blended space, in which
new elements and relations emerge, and new inferences can be drawn. For instance,
a ‘houseboat’ or a ‘boathouse’ are not simply the intersection of the concepts of
‘house’ and ‘boat’. Instead, the concepts ‘houseboat’ and ‘boathouse’ selectively
integrate different aspects of the source concepts in order to produce two new con-
cepts, each with its own distinct internal structure (see Figure 1.1 for the ‘houseboat’
blend).

Although the cognitive, psychological and neural basis of conceptual blending
has been extensively studied (Fauconnier and Turner, 2002; Gibbs, Jr., 2000; Baron
and Osherson, 2011) and Fauconnier and Turner’s theory has been successfully ap-
plied for describing existing blends of ideas and concepts in a varied number of
fields, such as linguistics, music theory, poetics, mathematics, theory of art, polit-
ical science, discourse analysis, philosophy, anthropology, and the study of gesture
and of material culture, their theory has been used only in a more constrained way
for implementing creative computational systems. Since Fauconnier and Turner did
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not aim at computer models of cognition, they did not develop the sufficient details
for conceptual blending to be captured algorithmically.

Nevertheless, a number of researchers in the field of computational creativity
have recognised the potential value of Fauconnier and Turner’s theory for guid-
ing the implementation of creative systems, and some computational accounts of
conceptual blending have already been proposed (Veale and O’Donoghue, 2000;
Pereira, 2007; Goguen and Harrell, 2010; Thagard and Stewart, 2011). They attempt
to concretise some of Fauconnier and Turner’s insights, and the resulting systems
have shown interesting and promising results in creative domains such as interface
design, narrative style, poetry generation, or visual patterns. All of these accounts,
however, are customised realisations of conceptual blending, which are strongly
dependent on hand-crafted representations of domain-specific knowledge, and are
limited to very specific forms of blending. The major obstacle for a general account
of computational conceptual blending is currently the lack of a mathematically pre-
cise theory that is suitable for the rigorous development of creative systems based
on conceptual blending.

The only attempt so far to provide a general and mathematically precise account
of conceptual blending has been put forward by Goguen, initially as part of algeb-
raic semiotics (Goguen, 1999), and later in the context of a wider theory of con-
cepts that he named Unified Concept Theory (UCT) (Goguen, 2005a); he has also
shown its aptness for formalising information integration (Goguen, 2005b) and reas-
oning about space and time (Goguen, 2006). As it stands, Goguen’s account is still
very abstract and lacks concrete algorithmic descriptions. There are several reasons,
though, that make it an appropriate candidate theory on which to ground the formal
model we are aiming at:

* Itis an important contribution towards the unification of several formal theories
of concepts, including the geometrical conceptual spaces of Gérdenfors (2004),
the symbolic conceptual spaces of Fauconnier (1994), the information flow of
Barwise and Seligman (1997), the formal concept analysis of Ganter and Wille
(1999), and the lattice of theories of Sowa (2000). This makes it possible to
potentially draw from existing algorithms that have already been developed in
the scope of each of these frameworks.

* It covers any formal logic, even multiple logics, supporting thus the integration
and processing of concepts under various forms of syntactic and semantic het-
erogeneity. This is important, since we cannot assume conceptual spaces to be
represented in a homogeneous manner across diverse domains. Current tools for
heterogeneous specifications such as HETS (Mossakowski et al., 2007) allow
parsing, static analysis and proof management incorporating various provers
and different specification languages.

In this chapter we take the approach of generalising the original notion of amal-
gam from CBR to be used in the development of a theory of conceptual blending
that is close to, and even compatible with, Goguen’s work on blending. This means
taking a category-theoretic approach to model amalgams in the framework of con-
ceptual blending.
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By developing a formal, amalgam-based model of conceptual blending building
on Goguen'’s initial account, we aim at providing general principles that will guide
the design of computer systems capable of inventing new higher-level, more abstract
concepts and representations out of existing, more concrete concepts and interac-
tions with the environment, and to do so based on the sound reuse and exploitation of
existing computational implementations of closely related models such as those for
analogical and metaphorical reasoning (Falkenhainer et al., 1989), semantic integra-
tion (Schorlemmer and Kalfoglou, 2008), or cognitive coherence (Thagard, 2000).
With such a formal, but computationally feasible model we shall ultimately bridge
the existing gap between the theoretical foundations of conceptual blending and
their computational realisations.

Category theory, although initially designed to describe mathematical entities,
has proven to be a successful cornerstone in many computer science applications;
a trend which has attracted a lot of attention and researchers, and which has been
nicely advocated in Goguen’s manifesto paper (Goguen, 1991). One of the most
interesting advantages of categorical approaches to computational theories is pre-
cisely the fact of being independent of any particular implementation. For this very
reason, it is very appealing to search for a categorical framework where a compu-
tational theory of conceptual blending based on Fauconnier and Turner’s ideas can
be developed. In particular, Goguen developed his category-theoretic approach to
blending based on colimits, following this basic insight:

Given a species of structure, say widgets, then the result of interconnecting a system of
widgets to form a super-widget corresponds to taking the colimit of the diagram of widgets
in which the morphisms show how they are interconnected. (Goguen, 1991, Section 6)

In this chapter—after first providing some category theory preliminaries—we
shall revisit Goguen’s approach that models conceptual blending by means of a cer-
tain kind of colimit in ordered categories. Then we present our alternative proposal
to model conceptual blending as amalgams and conclude the chapter by relating
it to the notion of colimit, thus providing a category-theoretic characterisation of
amalgams that is computationally realisable.

1.2 Category Theory Preliminaries

In this section, no attempt of being completely self-contained is made, so we sug-
gest the reader supplement the information here provided, whenever necessary, with
any standard category theory textbook (e.g., (Barr and Wells, 1990; Pierce, 1991;
McLarty, 1992; Mac Lane, 1998)) or short introductions to the subject (e.g., (Diac-
onescu, 2008, Chapter 2) and (Sannella and Tarlecki, 2012, Chapter 3)).
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1.2.1 Categories and Morphisms

Definition 1.1 (Category). A category C consists of the following items:

* A collection obj(C) of objects.

* A collection hom(C) of morphisms (sometimes also called homomorphisms,
arrows or maps) satisfying that each morphism f has associated a source object
denoted by src(f), and a farget object denoted by tg(f). The expression f: A —
B is used as a shorthand for claiming that f is a morphism with source A and
target B. The collection of all such morphisms is denoted by either C(A,B) or
hom(A, B).

* For all objects A, B, C, there is a binary associative operation called composition
from hom(A, B) x hom(B,C) into hom(A,C). Composition of two morphisms
f,g is denoted by writing either

f;g (diagrammatic notation) or go f (functional notation)

to refer to the composition of morphisms f: A —Band g: B— C.
* For every object A, there is an identity morphism id4 belonging to hom(A,A)
which is a neutral element of composition. This neutrality means that

—ids; f = f (for every morphism f with source A)
— f31d4 = f (for every morphism f with target A).

Concerning notation to be used later, we point out that hom(A,-) will denote the
collection of all morphisms with source A and hom(-,A) will denote the collection
of morphisms with target A.

Example 1.1 (The categories Set and Pfn). Among the plethora of examples, there
are two well-known categories that are relevant for this chapter (see, e.g., (Calugareanu
and Purdea, 2011)).

* The category Set has sets as objects and (total) functions as morphisms (en-
dowed with the usual composition of functions).'

* The category Pfn has sets as objects and partial functions as morphisms (en-
dowed also with the usual composition of functions).

Let us point out that if A and B are finite sets with cardinality n and m, respectively,
then Set(A, B) has cardinality m" while Pfn(A, B) has cardinality (m+ 1)". In case
we have a partial function f, we will use the notation Dom(f) to refer to its set-
theoretical domain and Im(f) for its set-theoretical image.

Besides using the previously introduced notation f: A — B to refer to morph-
isms, it is common to use different kinds of graphical arrows to emphasise whether
the arrow satisfies some particular property. Thus, we will use

! It is worth noticing that, by definition of a category, the collections hom(A, B;) and hom(A», B»)
must be disjoint unless both A; = A, and By = B; hold. Thus, for technicality issues it is better to
think that a morphism in Set is given by an ordered triple (A, f,B) where f is a function from A to
B.
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* f: A — B for epimorphisms (i.e., for every hy,hy € hom(B,-), if f;h) = f;h
then hy = hy).

* f: A— Bfor monomorphisms, (i.e., for every hy,hy € hom(-,A),if hy; f =ho; f
then hy = hy).

* f: A < B only for some very special monomorphisms, i.e., those that live in a
category whose morphisms are (set-theoretic) functions preserving some struc-
ture and which correspond to inclusions.

* f: A =5 B for isomorphisms (i.e., there exists some /& € hom(B,A) such that
fih=1id4 and h; f = idp).

In the particular cases of Set and Pfn it is well-known that epimorphisms corres-
pond to being exhaustive on the target object, monomorphisms to injectivity and
isomorphisms to bijectivity. Thus, two sets are isomorphic iff they have the same
cardinality.

1.2.2 Diagrams, Cocones, and Colimits

Colimits (and also limits) in a category C are introduced via diagrams. A diagram
2 is a functor from a category J to the category C, and in such a case it is said that
2 is J-shaped. In other words, a diagram & in C consists of

« adirected graph (where nodes are objects and edges are morphisms in J),2

* a family (indexed by the set Nodes of nodes of the graph) of objects in C, i.e.,
every node X € Nodes of the graph is associated with an object in C,

* a family (indexed by the set Edges of edges of the graph) of morphisms in C
satisfying that: for an edge f € Edges between nodes X and Y, the associated
morphism has the object associated with X as source, and the object associated
with Y as target.

We are mostly interested in the case of finite diagrams, i.e., when J has a finite
number of objects and morphisms. In most such examples, instead of defining the
category J in words, we will simply draw a directed graph.

Before introducing colimits of a diagram 2 in a category C we introduce
cocones.

Definition 1.2 (Cocone). A cocone ¢ over a diagram & in a category C is an object
O in C together with a family (indexed by the nodes in the graph associated with 2)
{cx } xeNodes Of morphisms in C such that:

* cx has source (X)), for every node X;
* cx has target O, for every node X;
* D(f);cy = cx, for every edge f from node X to node Y.

2 Strictly speaking J is the free category generated over the directed graph, but for the purpose of
this chapter it is not necessary to worry about this detail.
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We refer to the pointed object O, which is called the apex of ¢, as apex(c). The
collection of all cocones over Z is denoted by Cocones(Z,-).

Notice that the third condition in Definition 1.2 is expressing a family (one for every
edge) of commutativity conditions for triangular graphs; this fact is sometimes em-
phasised using the terminology commutative cocone instead of just saying cocone.

It is rather trivial noticing that every cocone ¢ over a diagram & induces a func-
tion H, defined by

H. : hom(apex(c),-) — Cocones(Z,-)
h — h

With the notation ¢;/ we obviously refer to the family {g;%} ¢ is a morphism in > 1-€.,
{ex;h}xeNodes- These induced functions can be used to define that two cocones ¢
and 0 (over the same diagram) are isomorphic when there is some isomorphism /4 in
C such that d = H.(h).

Definition 1.3 (Colimit). A cocone ¢ over a diagram ¥ in a category C is said to be
a colimit if the function H, is a bijection. We write colim(2, C), or simply colim(2),
to refer to a colimit; and we will use colim(Z2,C) or colim(2) for the apex in the
cocone colim(Z,C).

It is worth noticing that Definition 1.3 can be rephrased as claiming that every
cocone over & is of the form c; h for some unique morphism /. This remark allows
us to rewrite the existence of a colimit as saying that: for every cocone over the same
diagram, there is exactly one solution for a univariate system, using the cocone as
parameters, of morphism equations. As an example, we illustrate this fact for the
case of a colimit of a span (a V-shaped diagram), which is also called pushout.

Definition 1.4 (Pushout). Given a diagram B L A2 C —called span or V-

shaped diagram—a pushout of this span is a colimit (see Definition 1.3), i.e., itis a

apex(c) o D o
B c B K. C
cocone p A CAT N c such that whenever p 7 g; ¢c commutes, it holds
oo
A AN
that the univariate system
cg;h =0p Cash =04 ccsh=90¢

of morphism equations has a unique solution for 4.

For each categorical construct such as cocones, colimits, pushouts and spans,
there exists also a dual notion with morphsims pointing in the opposite direction,
such as cones, limits, pullbacks and cospans. We refer the reader to the literature for
a thorough discussion of these (e.g., (Pierce, 1991)).
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It is always the case that two colimits over the same diagram are isomorphic
cocones, i.e., colimits are unique up to isomorphism. Indeed, if ¢ is a colimit,
then the collection of all colimits is exactly {c;/ | & is an ismorphism with src(h) =
apex(c)}. On the other hand, the existence of a colimit is, in general, not guaranteed;
it depends very much on the diagram 2 and the category C.

Let us now mention two facts that restrict which cocones can be a colimit. The
first fact is a trivial consequence of the injectivity of the function H.: all colim-
its ¢ have to be jointly epimorphic, which means that whenever i and &y are two
morphisms with source apex(c) and such that “cy;h; = cx;hy for every node X,
then ; = hy.3 The second fact, also obvious from Definition 1.3, is that for every
object E, the set Cocones(Z,E) (i.e., the collection of cocones over 2 with apex
E) must have the same cardinality as the set hom(apex(c), E). These two facts are,
in general, very powerful tools to recognise possible candidates as a colimit over a
diagram. In the particular cases of Set and Pfn the second fact can be used to com-
pletely determine the possible apexes of colimits (since all objects with the same
cardinal are isomorphic). Remark 1.1 describes the method for the case of Pfn.

Remark 1.1 (Cardinality trick for Pfn). Consider the natural number m of cocones
over 2 with apex {@} (i.e., a singleton set). Then, the cardinal of an object
colim(2,Pfn) has to be the only natural number n such that m = 2".

Definition 1.5. A category is said to be cocomplete in case that for all diagrams in
C there is a colimit. Analogously, complete refers to the existence of all limits; and
bicomplete refers to being both complete and cocomplete.

The categories Set and Pfn introduced in Example 1.1 are well-known to be
bicomplete. Moreover, it is also known that if all morphisms of a diagram & in
Pfn are total functions (i.e., the diagram lives inside Set) then colim(Z,Set) =
colim(2,Pfn), i.e., it does not matter whether one computes the colimit in Set or in
Pfn. Let us mention that this last remark is known to be false for the case of limits.*

3 Is is worth pointing out that when C has coproducts, the following (i) and (ii) are equivalent.
(i) {cx }xeNodes is jointly epimorphic; (ii) the single morphism @{cx } xenodes is epimorphic. This
relationship explains the intuition behind this “jointly” terminology.
4 An easy counterexample can be obtained considering the categorical product of two singleton
sets, for example, A := {*} and B := {®}. A quick way to convince oneself that the categorical
product computed in Set is different than in Pfn is to use the cardinality trick described in Re-
mark 1.1 (but dualised, in order to use it for limits instead of colimits). The fact that there are
exactly four cones in Pfn with apex {®} (i.e., a singleton) forces that the product in Pfn must have
three elements; on the other hand, using that there is exactly one cone in Set with apex {®,@} one
deduces that the product in Set must have one element.

Indeed, the content of the previous paragraph is generalised in the following well-known state-
ment (see (Poigné, 1986, p. 20)):

. L A B . .
¢ the product in Set of A and B is given by the cone < A where O is the Cartesian
A g
0
product of A and B (i.e., O := A x B), and the morphisms 74 and 7p are the “projections” from
the Cartesian product.
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1.2.3 Partial Morphisms

To finish this section about category theory preliminaries we introduce a category
that will play a role in Section 1.5, where we discuss the relationship between colim-
its and amalgams, and their role in modelling conceptual blending. Our aim with this
category is to capture the notion of partial morphism, which models the selective
projection, in conceptual blending, of parts of the input spaces into the blend space.

Definition 1.6. Let C be a category that is closed under pullbacks, i.e., the limits of
all cospans exist. The category Pfn(C) has the same objects as C, and a morphism
from an object A to an object B is the isomorphism class® of the mono spans from A
to B, which are defined to be the spans A <l< D %5 B where f is a monomorph-
ism in C. Composition of spans A L D % B and B <~ E -5 C is defined
(up to isomorphism) using the cone

;]
k | CE

apex(c)

D E

+

obtained as the pullback of D 4, B <" E . The result of the composition is by

definition the span A oS apex(c) oA partial morphism from A to B

is defined as the isomorphism class of a mono span A Jip*B. Thus, the
morphisms in Pfn(C) are nothing else than the partial morphisms.

It is well known that Pfn(Set) is (categorically) equivalent to the category Pfn
(and also equivalent to the category of pointed sets). Even more, Pfn(Set) and Pfn
are isomorphic categories: there is an obvious bijection between partial morphisms
in Set and morphisms in Pfn. Thus, Pfn(C) can be considered as a natural candidate
for generalising the category Pfn of partial functions.

. . A B
* the product in Pfn of A and B is given by thecone ~ < »~ where O := (A xB)®A®B
ca cp
o
(here @ refers, as above, to the disjoint union), the morphism ¢4 is w4 @ idy @ 0, and the
morphism cp is 75 S0 P idp.

The last statement is providing the intuition that for the product in Pfn of two sets one needs to
consider the ordered pairs in the Cartesian product, but also add those ordered pairs that are missing
one element of the pair.

! J
3 In other words, the spans A <L D2 B and A <f— D' £ B are considered equal when
LN

D
there is an isomorphism A : D — D’ such that 4 ;‘, B commutes.

7

N e

I D
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Among partial morphisms from A to B there are some outstanding ones which
we call total. They are, by definition, the isomorphism classes of mono spans

A <£< D % B where f is an isomorphism. It is obvious that the total morph-

isms form a subcategory (i.e., total morphisms are closed under composition and
the identities are total) of Pfn(C), and this subcategory is equivalent to C.

The categories Pfn(C) of partial morphisms are well known in the literature.
They were first considered in (Robinson and Rosolini, 1988) within an even more
general setting; there the authors introduce for every class .# of monomorphisms
satisfying certain constraints (see (Hayman and Heindel, 2014, Definitions 6 and
7) for a modern presentation) a category Pfn(C,.#). Our category Pfn(C) corres-
ponds to choosing .# as the class of all monomorphisms. As for now, we have
decided to avoid this more general framework for the sake of simplicity.

1.3 Conceptual Blending as Colimits

The aim of this section is to explain Goguen’s framework for conceptual blend-
ing. This framework is developed in (Goguen, 1999) (mainly in Section 5 and Ap-
pendix B), and instead of using plain categories it is based on categories enriched
with a partial order on morphisms.

(Kutz et al., 2012) and (Kutz et al., 2014) use Goguen’s categorical framework,
but without ordered categories, i.e., only plain categories are considered. The pro-
posed framework uses the category of CASL theories, which is known to be cocom-
plete (Mossakowski, 1998), and whose computation of colimits is supported in
HETS.® Besides this, the authors of (Kutz et al., 2012, 2014) also advocate for using
the distributed ontology language DOL as a metalanguage for specifying categor-
ical diagrams (i.e., families of morphisms). When computing colimits, they point out
(indeed Goguen already did) that in some case it might be interesting (for blending
purposes) to ignore some of the morphisms in the diagram, and consider them just
as auxiliary morphisms.

An important difference between (Kutz et al., 2012) and (Kutz et al., 2014) is
that in (Kutz et al., 2014) the authors only focus on input diagrams given by total
functions, while in the previous version (Kutz et al., 2012) the same authors consider
a more general setting allowing for partial morphisms. This simplification has deep
consequences, because the colimits of diagrams formed by total functions are, in
most cases, although computed in categories of partial morphisms, formed only by
total functions (see Page 10).

6 Colimits are available in HETS without problems in the homogeneous case of reasonable in-
stitutions (which include most cases: first-order logic, description logics, etc.), but things are not
so simple in the heterogeneous case; for such a case only the colimits of certain diagrams (the
‘connected thin inf-bounded’ ones) (Codescu and Mossakowski, 2008) are computed.
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1.3.1 Ordered Categories

Definition 1.7 (Ordered category). An ordered category is a category C such that

« for every two objects A and B, there is a partial order T4 p on the set hom(A, B);
* composition is monotonic with respect to C in both arguments (i.e., if f] C g;
and f> C go, then fi; 2 C g1582).

Concerning notation, it is customary to omit indices and simply use C (see second
item), i.e., C can be considered to be [ J{T4 5| A, B € 0bj(C)}.

Ordered categories are a special case of so-called 2-categories (see (Leinster,
2002; Johnstone, 2002; Lack, 2010)). Here, there is at most one 2-cell between two
1-cells (i.e., morphisms). Thus, ordered categories lie between plain 1-categories
and 2-categories. For this reason, Goguen (1999) introduces the term %-categories
to refer to ordered categories.7 Other names have also been used in the literature,
such as locally partially ordered categories, locally posetal categories, Pos-enriched
categories, order-enriched categories, etc. We refer to (Kahl, 2010) for a detailed
approach to ordered categories, without considering all the difficulties that arise
when dealing with general 2-categories.

Example 1.2. The categories Pfn(C) are ordered categories in the following sense:
consider two partial morphisms from A to B, given respectively by the isomorphism
classes of the mono spans

- i /
Ad<D % B and Adip 5B

We say that the first partial morphism is below the second one (denoted C) if there
is a morphism / : D — D’ such that

P D
N
A h B
f\—l’ /g/
D/

commutes. In such a case, & is also a monomorphism, and C is a partial order: an-
tisymmetry is obtained using the cancellativity property given by monomorphisms.
Moreover, the partial morphisms that are total are the maximal elements of the par-
tial order C just defined. We will refer to this partial order C as the extension partial
order.

Example 1.2 tells us, in particular, that Pfn(Set) is an ordered category; for this
case it holds that

7 The definition given in (Goguen, 1999, Definition 6) also states that the identity morphism id4 has
to be maximal in hom(A,A). We do not require this last condition in the definition we ultimately
decided to adopt, but this property also holds for the most natural examples of ordered categories
(see Example 1.2).
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fCg iff whenever f is defined, g is also defined and it agrees with f.
Moreover, the structure of the partial order C resembles (but is not) a lattice because:

* for every two partial morphisms f] and f, (with the same sources and targets),
there is also a partial morphism fj I f> which is the infimum in C;

* for every two partial morphisms f; and f>, if they are compatible (i.e., if there
is some g such that f; C g and f> C g) then there is also a partial morphism
f1U f> which is the supremum in C.

It is also worth noticing that the partial orders Ty p are directed-complete partial
orders (dcpo), which means that every directed subset has a supremum (which we
will denote using the symbol | ]). And the composition function can be checked to be
Scott-continuous, which means that, for every directed family {g; | i € I'} of partial
functions and every partial function f,

* {f;gi| i€} is also directed and its supremum is f;| |{g; | i € I};
o {gi;f | i€} isalso directed and its supremum is | |{g; | i € I}; f.

Notice also that Set is equivalent to the subcategory of Pfn(Set) given by total
morphisms.

1.3.2 Colimits in Ordered Categories

In the context of ordered categories there are, at least, two very natural alternative
possibilities concerning colimits (see (Kahl, 2010, Chapter 4)). One of them pro-
duces a strengthening of the plain notion of colimit, and we will refer to them as
ordered colimits. The other one accepts a more general class of diagrams, which in-
stead of considering functors considers so-called lax functors, where commutativity
is replaced with semicommutativity. The latter follows a very similar pattern than
the one given for colimits in Definition 1.3, and the respective colimits are called
lax colimits.

Definition 1.8 (Ordered colimit, see (Kahl, 2010, Definition 4.1.2)). A cocone
¢ over a diagram 2 in an ordered category C is said to be an ordered colimit
in case that the function H. introduced on Page 9 is an order-isomorphism (and
therefore also a bijection) between the partial orders (hom(apex(c),-),C) and
(Cocones(2,-),C*). The order C* considered among cocones is the one defined
component-wise, that is, given two cocones ¢ := {cx } xeNodes and 0 := {0x } xeNodes
with the same apex, it holds that

cC*D iff cx C 0y for every node X € Nodes.
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From Definition 1.8 it is obvious that, if ¢ is an ordered colimit, then: whenever
hy and hy are two morphisms with source apex(c) and ‘cx;h; C cx; hy for every node
X', then hy C hy. We will refer to such condition as being jointly semiepimorphic.®

In the particular case of the ordered category Pfn (with the extension partial order
described in Example 1.2), one can check that colimits are also ordered colimits.

Next, in order to introduce lax colimits we need to firstly introduce lax diagrams
and lax cocones. The only difference between a functor 2 : J — C and a lax functor
2 : J — C is that instead of equality one only requires

idg4) E Z(idy) and D(f):2()EZ(f:8)

The second condition is known as semicommutativity, and it is common to represent
it graphically as follows:

7(C)
/
C 2(f8)
o~

(8)
2(B)
) 2(A)

2
2

Notice that if the ordered category satisfies that the identity morphisms are maximal,
then the first condition idg(4) C Z(ida) can be rewritten as saying idg4) = Z(ida).
A lax diagram in an ordered category C is defined to be a lax functor 7 : J — C.
Here J is just a category (not necessarily an ordered category).

A lax cocone ¢ over a lax diagram & in a category C is an object O in C together
with a family (indexed by the nodes in the graph associated with 2) {cx } xenodes Of
morphisms in C such that:

* cx has source (X)), for every node X;
* cx has target O, for every node X;
* 9(f);cy C cx for every edge f from node X to node Y.

Thus, lax cocones are capturing the intuition of semicommutative cocones. As ex-
pected we will refer to the apex object as apex(c). The collection of all lax cocones
over 2 will be denoted by laxCocones(2, -).

It is rather trivial noticing that every lax cocone ¢ over a lax diagram & induces
a function’ H, defined by

H. : hom(apex(c),-) — laxCocones(2,-)
h — h

8 When there are ordered coproducts (in the sense of Definition 1.8) it is obvious that this defin-
ition also follows the same intuition explained in Section 1.2.2. That is, {¢x } xeNodes is jointly
semiepimorphic iff the single morphism @{cx }xenodes 1S SO

9 We use the same notation H, as for the case of plain categories and colimits, but this is not a
problem because the context always clarifies which one we refer to.
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Definition 1.9 (Lax colimit, see (Kahl, 2010, Definition 4.3.2)). A lax cocone ¢
over a lax diagram Z in an ordered category C is said to be a lax colimit when
the recently introduced function H, is an order-isomorphism (and hence a bijec-
tion) between the partial orders (hom(apex(c),-),C) and (laxCocones(Z,-)),C*).
The ordered C* considered among lax cocones is the one defined component-wise
(see Definition 1.8).

It is again obvious that lax colimits must be jointly semiepimorphic. Notice also
that in case of considering a diagram & (instead of an arbitrary lax diagram), the
notions of lax colimit and ordered colimit collapse (up to isomorphism) if and only
if all lax cocones are cocones. Thus, whenever semicommutativity is not trivially
reduced to commutativity, the two recently introduced notions of colimits can be
different.

1.3.3 3-Colimits

It is well-known that the cocone of an ordered colimit is unique up to isomorphism.
And the same happens for the lax cocone of a lax colimit. Goguen considers these
facts to show that they might not be adequate notions for the formalisation of con-
ceptual blending, since one expects more than one way to blend concepts. For this
reason he proposes the following alternative notion.'”

Definition 1.10 (%-Colimit, see (Goguen, 1999, Definition 12)). A lax cocone ¢
over a lax diagram & in an ordered category C is said to be a %—colimit in case that,
for every lax cocone 0 (with apex D) over &, it holds that the set

{h|H:(h)C* 0} (which is a subset of hom(apex(c), D))
has a maximum element on C.

Notice that this last definition is equivalent to just saying that the function

H. : (hom(apex(c),-),C) — (laxCocones(2,-),C*)
h — c;h

fulfills that the anti-image of principal downsets (i.e., downsets of an element) are
also principal downsets.!! This last restatement of the notion of %-colimits has the
advantage of providing an easier comparison with Definition 1.9. In particular, it
becomes obvious that if ¢ is a lax colimit over &, then it is also a %-colimit.

When the ordered category involves partial orders that are dcpos and composi-
tion is Scott-continuous, then it is worth noticing that the following statements are
equivalent:'?

10 In (Goguen, 2001, Section 3.1) the expression “lax pushouts” is used in a naive way: this has
not to be understood as a particular case of lax colimits in ordered categories.

1 The downset of an element / is the set of all g C h.

12 The assumptions just stated are only necessary to prove the implication 2 = 1; the reverse
implication always holds.
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1. The set {h | H.(h) C* 9} has a maximum element on C.
2. Theset {f |H¢(h) C°* 0} is directed, i.e., whenever H. (A1) C* 9 and H. (h2) C* 0
then there is some g such that i) C g, by C g and Hc(g) °* 0.

Notice that the first condition is the one involved in Definition 1.10, and also that
Pfn satisfies the hypotheses for such equivalence.

For the case of the diagram B fé A £> B>, Definition 1.10 provides the

notion of %-pushouts, which is Goguen’s proposal for a formalisation of blending.
We restate his proposal in Definition 1.11.

Definition 1.11 (%-Pushout). A %-pushout of a span B Aty B, is given
by a lax cocone

C

81 F3)
g
By C 2 B
f A bE3
n D o
TN
satisfying that whenever Bi C 2 By semicommutes, it holds that the uni-
N A 1
variate system
GACh guAChy g:A Ehy

of morphism equations has a maximum solution for the indeterminate A.

The formulation given in Definition 1.11 for presenting %-pushouts exhibits an
obvious relationship with the one given in Definition 1.4; the main difference is
that instead of looking for unique solutions to a family of morphism equations one
looks for the best (i.e., largest) solution to a family of morphism inequations. For the
particular inequations given in Definition 1.11, the family of morphism inequations
is the one stating that the three triangles

c-*.p chp ctp
h hy 82
A By B,
semicommute.

It is worth saying that whenever the category C has ordered coproducts (in the
sense of Definition 1.8) the system {cx;4 C 0x | X € Node} of morphism inequa-
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tions (that is, the one which appears in Definition 1.10) is equivalent to the following
single inequation: (P{cx | X € Node}); 2 C P{ox | X € Node}.

Let us assume now that ¢ is a %—colimit (with apex C) over a lax diagram & and
that 2 € hom(C, D). Then, by monotonicity it holds that c; 4 is also a lax cocone (with
apex D). Therefore, by definition of %-colimit the univariate inequational system
¢;A C* ¢; h has a maximum solution for A. In other words, the inequational system

;A Cexsh for every node X

has a maximum solution for 4. We denote such a maximum solution g. Considering
that £ is also trivially a solution to the very system, we obtain that # C g. Thus, by
monotonicity it must hold that c¢x; /s C cx; g for every node X. Therefore, g is also
the largest solution to the equational system ¢; A = ¢; h.

Thus, we have demonstrated that for every %—colimit ¢ (with object C) over a
lax diagram 2 and every h € hom(C,-), there exists maxc{g | Hc(g) = Hc(h)} that
coincides with maxc{g | Hc(g) C Hc(h)}. Thus, for every 5-colimit ¢ over a lax

diagram 2, we can define the expansion function

xpan, : hom(apex(c),-) — hom(apex(c),-)
h — xpan(h) =maxc{g | Hc(g) =H:(h)} =
maxc{g | He(g) EHe(h)}

It is obvious that H¢(h) = H.(xpan(h)). Moreover, this function xpan, is

* extensive, i.e., h C xpan,(h);
* increasing, i.e., if i1 C hy then xpan. (A1) C xpan(hy);
* idempotent, i.e., xpan_(xpan.(h)) = xpan_(h).

Consequently, every %-colimit ¢ induces a closure operator (or closure system)
(Burris and Sankappanavar, 2012, Section 1.5) on the set hom(apex(c),-).

On Page 10 we point out that colimits are jointly epimorphic. Unfortunately, in
the arbitrary case it not so clear whether this property also holds for %—colimits.
However, as is obvious from the definitions of xpan,, it holds that

if hy and hy satisfy that H.(h1) = Hc(h2), then xpan (k1) = xpan_(h2).

In other words, the following property (which resembles the definition of jointly

epimorphic) holds for %—colimits [

if iy and h; satisfy that ‘cy;h; = cx;hy for every node X°, then
xpan,(h1) = xpan(hy).

It is worth noticing that xpan_ (k) = xpan_ (h;) implies, in particular, that &, and h;
are compatible.

Goguen’s proposal is to use %-pushouts as a computational method for finding
conceptual blends (see Figure 1.1). In the easiest case (i.e., the blend of two con-
cepts), this framework assumes that we have previously chosen

* a morphism fj from the generic space G into input space /; (i.e., fi : G — I}),
and also
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e a morphism f, from the generic space G into input space I, (i.e., f>: G — ).

Furthermore, Goguen suggests to consider all %-pushouts of the span [; fel G f$ I
as candidates for blending of the two initial concepts. In the examples provided in
(Goguen, 1999)!3 this is done using ordered categories whose objects are algebraic
theories (using the formal specification language OBJ), morphisms correspond to
partial functions preserving the structure, and the partial order corresponds to being
an extension.

There are several difficulties in order to provide a computational framework to
conceptual blending following Goguen’s categorical proposal. Some of them are as
follows.

* While there are several available software packages for dealing with “algeb-
raic theory” categories and colimits (like HETS (Mossakowski et al., 2007;
Codescu et al., 2010)) this is not the case in the context of ordered categories.

* Although (Goguen, 1999) contains a first theoretical study of %-colimits, the
theoretical framework still needs to be improved before considering computa-
tional implementations. For example, can we characterise all %-pushouts in the
ordered category Pfn? What about more complex diagrams that are still in Pfn?
What about considering other well-known ordered categories? Can we get rid
of the ordered category C appealing to some particular plain category built from
C?

For this reason we propose an alternative proposal to model conceptual blending,
basing it on the notion of amalgam.

1.4 Conceptual Blending as Amalgams

An amalgam is a description that combines parts of two other descriptions as a
new coherent whole. There are notions that are related to amalgams in addition to
conceptual blending, notions such as merging operation or information fusion. They
all have in common that they deal with combining information from more than one
‘source’ into a new integrated and coherent whole; their differences reside on the
assumptions they make on the sources characteristics’ and the way in which the
combination of the sources takes place.

The notion of amalgams was developed in the context of Case-Based Reason-
ing (CBR), where new problems are solved based on previously solved problems
or cases, residing on a case base (Ontafién and Plaza, 2010). Solving a new prob-
lem often requires more than one case from the case base, so their content has to
be combined in some way to solve the new problem. The notion of amalgam of
two cases—two descriptions of problems and their solutions, or situations and their

13 1t is also worth looking at http://cseweb.ucsd.edu/~goguen/papers/blend.
html because this site has more recent examples.
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outcomes—is a proposal to formalise this process of the ways in which they can be
combined to produce a new, coherent case.

Formally, the notion of amalgams can be defined in any representation language
% for which a subsumption relation = between the terms (or descriptions) of .
can be defined. We say that a term y; subsumes another term Y, (y; C y,) when
v is more general than (or equal to) y».'*

Additionally, we assume that . contains the infimum element L (or ‘any’) and
the supremum element T (or ‘none’) with respect to the subsumption order.

Next, for any two terms Y; and Y, we can define their unification, (y; U
y»), which is the most general specialisation of two given terms, and their anti-
unification, defined as the least general generalisation of two terms, representing
the most specific term that subsumes both. Intuitively, a unifier (if it exists) is a
term that has all the information in both the original terms, and an anti-unifier is
a term that contains only all that is common between two terms. Also, notice that,
depending on .Z, anti-unifier and unifier might be unique or not.

1.4.1 Amalgams

The notion of amalgam can be conceived of as a generalisation of the notion of
unification over terms. The unification of two terms (or descriptions) y, and Y is
a new term ¢ = Y, LIy, called unifier. All that is true for y, or yj is also true
for ¢; e.g., if Y, describes ‘a red vehicle’ and y}, describes ‘a German minivan’
then their unification yields the description ‘a red German minivan.” Two terms are
not unifiable when they represent incompatible or contradictory information; for
instance ‘a red French vehicle’ is not unifiable with ‘a blue German minivan’. The
strict definition of unification means that any two descriptions with only one item
with contradictory information cannot be unified.

An amalgam of two terms (or descriptions) is a new term that contains parts from
these two terms. For instance, an amalgam of ‘a red French vehicle’ and ‘a blue
German minivan’ would be ‘a red German minivan’; clearly there are always mul-
tiple possibilities for amalgams, since ‘a blue French minivan’ is another possible
amalgam. The notion of amalgam, as a form of ‘partial unification’, was formally
introduced by Ontafién and Plaza (2010).

Definition 1.12 (Amalgam). The set of amalgams of two terms y, and ,, is the set
of terms such that:

v, Yy, ={¢p e Z\{T} |, o €L, CY, Ny Ty, N =0, Loy}

Thus, an amalgam of two terms Y, and y}, is a term that has been formed by unifying
two generalisations ¢, and 0y, whenever this unification is not inconsistent, i.e.,

14 In Machine Learning, A C B usually means that A is more general than B, unlike in description
logics, for instance, where it has the opposite meaning, since it is seen as ‘set inclusion’ of their
interpretations.
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Fig. 1.2: A diagram of an amalgam ¢ from inputs Y, and Y}, where ¥ = o, Mo,

o, U oy # T. Thus, an amalgam is a term resulting from combining some of the
information in y, with some of the information from ;. Formally, y, Y y;, denotes
the set of all possible amalgams; however, whenever it does not lead to confusion,
we will use Y, Y y, to denote one specific amalgam of y, and Y.

Ontafién and Plaza (2010) give a slightly different definition of amalgam, for
which not all generalisations are taken into account, only those that are less general
than y, My, (the anti-unification of the inputs). We rephrase this definition here
introducing the notion of bounded amalgam:

Definition 1.13 (Bounded amalgam). Let y € .Z. The set of x-bounded amalgams
of two terms Y, and y;, is the set of terms such that:

Va Yy Vo =10 € Z\{T} |3t € L xCaa CYa A XE Ty, A 9=
oo}

A particularly interesting case (the one studied by Ontafién and Plaza (2010)) is
when ¥ = y, My, the anti-unification of the inputs, as illustrated in Figure 1.2.
The intuitive reason is that the anti-unification represents what is common or shared
between the two inputs and, thus, generalising beyond y, 'y, would eliminate
compatible information that is already present in both inputs.

The terms o, and oy are called the transfers or constituents of an amalgam
W, Y y,,. They represent all the information from y, and yj,, respectively, which
is transferred to the amalgam. As we will see later, this idea of transfer is akin to
the idea of transferring knowledge from the source to target in CBR, and also in
computational analogy (Falkenhainer et al., 1989).

Usually we are interested only in maximal amalgams of two input terms, i.e.,
those amalgams that contain maximal parts of their inputs that can be unified into
a new coherent description. Formally, an amalgam ¢ € y, Y y,, is maximal if there
is no ¢’ € y, Y g, such that ¢ C ¢’. In other words, if more properties of an input
were added, the combination would be no longer consistent. The reason why we
might be interested in maximal amalgams is very simple: consider an amalgam ¢’
such that ¢’ C ¢; clearly ¢’, being more general than ¢, has less information than
¢ and thus combines less information from the inputs y, and ;. Since ¢ has more
information while being consistent, ¢’ or any amalgam that is a generalisation of ¢,
is trivially derived from ¢ by generalisation.
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1.4.2 Asymmetric Amalgams and Analogy

There is a special case of amalgams of special interest: asymmetric amalgams,
where the two input terms do not play a symmetrical role. The case of asymmet-
ric amalgams, as we will show, is related to the notion of analogy and case-based
inference, where one of the inputs (called the source) has much more information
that the other input (called the target or problem). Asymmetric amalgams can be
used to model the process by which knowledge from the source can be transfered to
the target.

Definition 1.14 (Asymmetric amalgam). The x-bounded asymmetric amalgams
—
Vs Yy, of two terms W (source) and y; (target) is the set of terms such that:

Wy?xl//t:{(])Gg\{T}lg(ZXGXZXEOCXEWS A ‘PEO!sU‘I/t}

In an asymmetric amalgam, the target term is transferred completely into the amal-
gam, while the source term is generalised. The result is a form of partial unification
that retains all the information in y; while relaxing W, by generalisation and then
unifying one of those more general terms with y; itself. As before, we would be
usually interested only in the asymmetric amalgams that are maximal.

This model of asymmetric amalgam can be used to model case-based inference
in CBR, as explained in (Ontaiién and Plaza, 2012), and analogical reasoning (Be-
sold and Plaza, 2015; Besold et al., 2015). Essentially, this model clarifies what
knowledge is transferred from source description to target, namely the transfer term
o, captures which case-based inference conjectures are applicable to (are consistent
with) the target. In the case of a maximal amalgam, ¢ represents as much inform-
ation as can be transferred from the source to the target y; such that o Ll y; is
consistent.

1.5 Relating Colimits and Amalgams

In Section 1.1 we mentioned that it is very appealing to model blending as a colimit
in some category C of conceptual spaces and their structure-preserving mappings.
When blending two input spaces, however, not everything is included into the blend
because there may be incompatibilities between the input spaces. In general, con-
ceptual blending is based on selective projections from the input spaces into the
blend (Fauconnier and Turner, 2002).

Consequently, the classical colimit construct in C is inadequate for modelling
blending. Goguen suggested %-colimits in ordered categories instead, where struc-
ture-preserving mappings between conceptual spaces are based on partial functions.
We discussed this approach thoroughly in Section 1.3.

In Definition 1.6 we introduced an alternative way in which selective projec-
tion can be modelled categorically, without getting into the subtlety of dealing with



1 Amalgams, Colimits, and Conceptual Blending 23

ordered categories. In this section we shall focus on Pfn(C)— the category of iso-
morphism classes of mono spans in C—and show that the cocone constructs in
Pfn(C) can be seen as an abstraction, into the category-theoretical setting, of am-
algams as introduced in Section 1.4.1. Furthermore, this construct might be also
suitable for modelling and computing conceptual blends, as we shall illustrate in
Chapter 2. First, however, we recall some basic notions of category theory not in-
troduced in Section 1.1 that we are going to need in this section, and we introduce
also some additional notation.

1.5.1 Preliminaries

Let C be a category and f: A — C be a morphism in C. We say that f factors
through some morphism g: B — C if there exists #: A — B such that f = h;g. If

g is a monomorphism, then  is the pullback of f along g.'> Let A i> c& B
be a diagram in C. If there is a pullback over this diagram we shall write f for the
pullback of morphism f along morphism g.

Remember from Definition 1.6 that a morphism f : A — B in Pfn(C) is, in par-
ticular, an isomorphism class of a span in C. Without loss of generality, we will

- +
represent this class with a representative span A L< A° L> B. Recall that /™ is
a monomorphism, i.e., the span is a mono span.

1.5.2 A Category-Theoretical Account of Amalgams

A poset (<Z,C) as the one considered in Section 1.4 can be seen as a category such
that objects are the elements of .#, and there is a unique morphism from ¢ to y
whenever ¢ C y. Consequently, we can propose a category-theoretical account of
the notion of amalgam as given in Definitions 1.12 and 1.13.

Let C be a category and let C be an object in C. We will say that the general-
isations of C are all monomorphisms with target C. Let f: A — C be a morphism
in C. We will say that the f-bounded generalisations of C are all monomorphisms
g: B— C such that f factors through g.

Now, let C be a category with pullbacks, and let I; 462 I, be a V-
shaped diagram in the category Pfn(C) such that a; = a, = idg. (Note that we

+ +
can see it also as a V-shaped diagram I; AR I, in C.) Recall that for

15 Following is a proof of this claim: Let m: D — A and n: D — B such that m; f = n;g. The
morphism m is also the unique morphism from D to the apex A of the pullback such that m;idy =m
and m;h = n. The first equality is trivial. For the second, we know that m; f = n;g and f = h; g,
consequently m;h; g = n;g. But g is a monomorphism, so m;h = n. And if & is any other morphism
from D to the apex A satisfying these properties we would have that k;id = m, hence k = m.
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Fig. 1.3: Representation in C of a cocone in MSpan (C) over [} Paiye TN b

I LNy I, to be a cocone over this V-shaped diagram in Pfn(C) we need
that aj;b; = ap;b,. This amounts to saying that, in the C-diagram of Figure 1.3,

b +
the pullbacks of I? /] &G are isomorphic (G° denotes the apex of these

isomorphic objects, without loss of generality), and c‘lf;bl+ = d; ;b;. This brings us
to the categorical notion of amalgam.

Definition 1.15 (Amalgam). Let af : G — I; and a; : G — L, be two morphisms

in a category C with pullbacks. An amalgam (b{,b; ) of a] and aj is a cocone
ar ar

with apex B over I? PRI eARREN Ig , where zi;r are the pullbacks of al.+ along gen-

eralisations b; : IP — I; of I; (for i € {1,2}), such that G is the common (up to

isomorphism) apex of these pullbacks (see Figure 1.3).

In the particular case when C is the poset (<Z,C) of Section 1.4 the definition
above amounts to Definition 1.12 (taking as G the infimum element _L). If we focus
on a;-bounded generalisations of /; instead, we get Definition 1.13, where G plays
the role of the element y. This is so because in this case the apex G° of the pullback
is isomorphic to G.

Definition 1.15 provides us a way to characterise conceptual blending in a man-
ner that is faithful to the description given by Fauconnier and Turner (2002) and
is independent of any particular choice of representation formalism for conceptual
spaces and of any implementation thereof. Furthermore, the definition points to a
possible way to compute blends via the classical colimit construct as implemented
in HETS.

1.6 Conclusion

The theory of conceptual blending as put forward by Fauconnier and Turner in cog-
nitive linguistics has been keenly adopted by researchers in the computing sciences
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for guiding the implementation of computational systems that aim at exhibiting cre-
ative capabilities, particularly when taking into consideration the invention of new
concepts.

As is common with these early adoptions, each system has made its own choices
of interpretation of the core elements that constitute Fauconnier and Turner’s theory.
They provide a formalisation of some fragment of theory that on the one hand at-
tempts to be as faithful as possible to the intuitions stated by Fauconnier and Turner,
and on the other hand would be feasible to implement in a computational system.

What has become evident from these early implementations of conceptual blend-
ing is that they have been designed in a very system-specific manner, without a clear
separation of system-independent issues from those that are more system-specific.
This makes it difficult to gain a deeper insight into the computational aspect of con-
ceptual blending and hence to favour the reuse of blending technology to domains
other than those envisioned by the system implementors.

In this chapter we have chosen to pursue a more domain- and system-independent
approach to the development of a formal and computational theory of blending. In
particular, we have taken the basic insight of Goguen that a blend might be ad-
equately modelled as some kind of category-theoretical colimit, and we have ex-
pounded on the details of this insight in order to fully grasp its relationship with
Fauconnier and Turner’s theory.

Goguen himself proposed the framework of ordered categories to flesh out
a mathematical account of conceptual blending, but he never fully worked out
the implications of this proposal, nor did he show—other than with some small
examples—how concrete acts of conceptual blending actually fit into his frame-
work. The intuitions seemed convincing, but a thorough analysis was still missing.
This is what we have started to do and what we have reported in this chapter.

What has become clear of our analysis is that dealing with Goguen’s framework
is much more subtle than originally expected. His notion of %-colimit as a way to
model blending is quite complicated to grasp conceptually, in pasticular as a guide
for the implementation of computational blending systems. Although the notion
of colimit is, in our view, still a powerful notion to be exploited theoretically for
the purpose of giving a precise characterisation of conceptual blending, we have
considered alternative ways to do so, for instance, exploiting the notion of colimit
in a category of spans. The advantage of such an approach is that it nicely covers
also a generalisation of the notion of amalgam, originally proposed as a method
for knowledge merging or integration in case-based reasoning. Indeed, the notion
of amalgam is very reminiscent of that of blending, and by modelling blending as
colimits in a category of spans we have become capable of bringing blending and
amalgamation to the same theoretical footing.

The theoretical exploration carried out in this chapter will guide our subsequent
work to carry out a computational realisation of blending that clearly distinguishes
the domain-independent elements of blending such as amalgamation and colimit
construction from the domain-specific realisations thereof. The uniformity provided
by our model makes it possible to relate it with the mathematical model of the
creative process proposed by Mazzola et al. (2011) and Andreatta et al. (2013). They
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propose to take the insights offered by the Yoneda lemma of category theory as a
metaphor for the process by which an open question may be solved in a creative way.
Schorlemmer et al. (2016) show by means of the Buddhist monk riddle (Koestler,
1964) that Mazzola et al.’s metaphor for the creative process can be useful to make
explicit the external structure of the concept or idea we want to creatively explore.
This metaphor likens the creative process to the task of finding a canonical diagram
that externalises the structure of a categorical object. In particular we have focussed
on the image-schematic structure in such a way that the solution to the riddle can be
found by conceptual blending, using an amalgam-based process such as the one put
forward in our model.

As future work, we intend to further explore our approach in other domains,
validating the hypothesis that a relevant collection of image schemas should be suf-
ficient to model diagrams that, via generalisation and colimit computation, yield
novel and useful blends. Moreover, we surmise that for complex situations we will
have not a blend but a web of blends, for example, situations where one or both
input mental spaces are recursively blended. Such a web of blends is called Hyper-
Blending Web (Turner, 2014). We intend to explore the span of the hypothesis that
the input concepts in such a web of blends are image schemas and their specialisa-
tions, while the blend concepts are created by generalisation and colimit computa-
tion of image schemas and previous blends in the web.
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