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Abstract

We present Conversation Protocols (CPs) as a
methodological way to conceptualize, model, and im-
CPs

can be thought of as coordination patterns that im-

plement conversations in agent-based systems.

pose a set of rules on the communicative acts uttered
by the agents participating in a conversation (what
can be said, to whom, and when). Our proposal relies
upon interagents, autonomous software agents that
mediate the interaction between each agent and the
agent society wherein this is situated. Thus, Inter-
agents employ conversation protocols for mediating

conversations among agents.

1 Introduction

Interaction among agents can take place at several
levels: content level, concerned with the informa-
tion content communicated among agents; inten-
tional level, expressing the intentions of agents’
utterances, usually as performatives of an agent
communication language (ACL); conversational
level, concerned with the conventions shared be-
tween agents when exchanging utterances; trans-
port level, concerned with mechanisms for the
transport of utterances; and connection level, con-
templating network protocols.

So far, much effort in agent research concern-
ing agent interaction has focused on the semantic
and pragmatic foundations of different agent com-
munication languages (ACLs) based on speech act
theory[4, 27, 9, 13, 2, 17]. However, new works in
speech act research, exemplified by efforts such
as KAoS[6], Dooley Graphs[23], COOLI[5] and
MAGMA[11], attempt at representing and reason-
ing about the relationships within and among con-

versations, or groups of utterances. A number of
formalisms have been proposed for modeling con-
versations: FSMs[5, 8], Dooley graphs[23], Petri
Nets[15], etc.

In this work we present Conversation Proto-
cols (CPs) as the methodological way to concep-
tualize, model, and implement conversations in
agent-based systems. Our approach proposes a
new model based on a special type of Pushdown
Transducers (PDTs) that allows to store the con-
text of ongoing conversations, and, in contrast
with other approaches, that provides a mapping
from specification to implementation. Moreover,
as a distinctive feature from other approaches, we
provide our model with a detailed analysis that
studies the properties that conversation protocols
must exhibit in order to ensure protocol compat-
ibility, and therefore the soundness of agent con-
versations.

We view conversations as the means of repre-
senting the conventions adopted by agents when
interacting through the exchange of utterances[28,
5] —“utterance suggests human speech or some
analog to speech, in which the message between
sender and addressee conveys information about
the sender”[23]. More precisely, such conventions
define the legal sequence of utterances that can
be exchanged among the agents engaged in con-
versation: what can be said, to whom and when.
Therefore, conversation protocols are coordination
patterns that constrain the sequencing of utter-
ances during a conversation.

Our proposal relies upon interagents[20, 19],
autonomous software agents that mediate the in-
teraction between each agent and the agent soci-
ety wherein it is situated. Interagents employ con-
versation protocols for mediating conversations
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2 Conceptual Model

among agents.

Interagents are responsible for posting utter-
ances of its customer! to the corresponding ad-
dressee and for collecting the utterances that
other agents address to its customer. Each intera-
gent has a collection of relevant conversation pro-
tocols (CP) used for managing its customer con-
versations. When its customer intends to start a
new conversation with another agent the intera-
gent instantiates the corresponding conversation
protocol. Once the conversation starts, the inter-
agent becomes responsible for ensuring that the
exchange of utterances conforms to the CP speci-
fication.

Before setting up any conversation the intera-
gent must perform a CP negotiation process with
the interagent of the addressee agent. The goal
of CP negotiation is to reach an agreement with
respect to the conversation protocol to be used.
Moreover, before starting a conversation, the in-
teragent performs a CP verification process. This
process checks whether the CP to be used verifies
the necessary conditions (liveliness, termination,
deadlock and race condition free) for guaranteeing
the correct evolution of an interaction. Finally,
an interagent allows its customer to hold several
conversations at the same time. This capability
for multiple conversations is important because,
although in the paper we consider only conversa-
tions with two participants (dialogues), conversa-
tions with any number of participants are built
as a collection of simultaneous CP instances. In
other words, the agent views a conversation as in-
volving n participants while its interagent views
such conversation as a collection of simultaneous
dialogues represented as multiple CP instances.

The remainder of this article is organized as fol-
lows. Section 2 introduces a conceptual model of
CPs. Next, in Section 3 the formalism underpin-
ning our model is presented. Section 4 explains
the way of instantiating CPs. Next, in Section 5
we introduce the notion of CP compatibility, in or-
der to ensure the correct exchange of utterances
during a conversation. In Section 6 we describe
two ways of negotiating the attributes of a CP
instance. Finally, Section 7 presents some con-
cluding remarks.

2 Conceptual Model

A Conversation Protocol (CP) defines a class of le-
gal sequences of utterances that can be exchanged
between two agents holding a conversation. We

1 We call customer the agent exploiting and benefiting
from the services offered by an interagent

model and implement a CP as a special type of
Pushdown Transducer (PDT), which can be seen
in turn as a combination of a Finite-State Trans-
ducer (FST) and a Pushdown Automaton (PDA):

e An FST is simply a Finite State Automaton
(FSA) that deals with two tapes. To specify
an FST, it suffices to augment the FSA no-
tation so that labels on arcs can denote pairs
of symbols[24];

e A PDA is composed of an input stream and
a control mechanism —like an FSA— along
with a stack on which data can be stored for
later recall[3, 7].

Therefore, a PDT is essentially a pushdown au-
tomaton that deals with two tapes. A PDA can
be associated to a PDT by considering the pairs
of symbols on the arcs as symbols of a PDA. The
choice of PDTs as the mechanism for modeling
CPs is motivated by several reasons: i) analo-
gously to other finite-state devices a few funda-
mental theoretical basis make PDTs very flexi-
ble, powerful and efficient [24]; ii) they have been
largely used in a variety of domains such as pat-
tern matching, speech recognition, cryptographic
techniques, data compression techniques, oper-
ating system verification, etc.; iii) they offer a
straightforward mapping from specification to im-
plementation; iv) PDTs, unlike other finite state
devices, allow us to store, and subsequently re-
trieve, the contextual information of ongoing con-
versations; and, finally, v) the use of pairs of sym-
bols to label arcs adds expressiveness to the rep-
resentation of agent conversations.

Conceptually, we decompose a CP into the fol-
lowing elements (see Figure 1): a finite state con-
trol, an input list, a pushdown list, and a finite
set of transitions.

First, the finite state control contains the set of
states representing the communication state of the
interagent’s customer during an ongoing conversa-
tion. We shall distinguish several states based on
the communicative actions that they allow: send,
when only the utterance of performatives is per-
mitted, receive, when these can be only received,
and mized, when both the utterance and reception
are feasible.

The utterances heard by an interagent during
each conversation are stored into an nput list. In
fact, this input list is logically divided into two
sublists: one for keeping the utterances’ performa-
tives, and another one for storing their predicates.
The input list is continuously traversed by the in-
teragent in search of a (p/d) pair (where p stands
for a performative, and d stands for a predicate)
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Input list
(QUESTION 1| (REQUEST 2| (REQUEST 3 [INFORM 4
:conversation c-91 :conversation ¢-87 :conversation ¢-03 :conversation c-87
:sender KQLAT :sender Akira :sender Akira :sender Auctioneer

wreceiver Akira :receiver Auctioneer
:reply-with KQLAT-1
:language LISP
:ontology Research

:in-reply-to Auctioneer-1869
reply-with Akira-256
‘language FM

:ontology FishMarket

wreceiver Jim :receiver Akira
:reply-with Akira-225
:language ACL
:ontology JIM

reply-with Auctioneer-1901
:language FM
:ontology FishMarket

:content (offer cod-21 1560))

Pushdown list

(INFORM
:sender Auctioneer

Finite State Control

(-1/13, -1/15, -1/14);pop

:receiver Akira

:reply-with Auctioneer-1869
:language FM

:ontolofy FishMarket
:content (offer cod-21 1580))

(INFORM

:sender Auctioneer

:receiver Akira

reply-with Auctioneer-1821
‘language FM

:ontolofy FishMarket

:content (buyers jack akira jar))

Fig. 1. Partial view of the CP DBP used by trading interagents in the Fishmarket.

which can produce a transition in the finite state
control. Notice that the continuous traversing the
input list differs from the one employed by classic
FSAs whose read only input tapes are traversed
from left to right (or the other way around).

Let us consider a particular CP related to an
ongoing conversation. We say that an utterance
is admitted when it is heard by the interagent and
subsequently stored into the input list. Admit-
ted utterances become accepted when they can
cause a state transition of the finite state con-
trol. Then they are removed from the input list
to be forwarded to the corresponding addressee,
and thereupon the corresponding transition in the
finite state control takes place. Notice that all ut-
terances are firstly admitted and further on they
become either accepted or not. Therefore, the in-
put list of each CP keeps admitted utterances that
have not been accepted for dispatching yet. From
now on, these criteria will be taken as the message
sending and receiving semantics used in Section.

The context of each conversation can be stored
and subsequently retrieved thanks to the use of a
pushdown list. Such context refers to utterances
previously sent or heard, which later can help, for
example, to ensure that a certain utterance is the
proper response to a previous one. For instance,
an utterance in the input list —represented in a
KQMTL-like syntax— will be processed only if its
sender, receiver and the value of the keyword :in-
reply-to match respectively the receiver, sender
and value of the keyword :reply-with of the top-
most message on the pushdown list.

Finally, each transition in the finite set of tran-
sitions of a CP indicates: i) what utterance can
be either sent or received to produce a move in the
finite state control; and ii) whether it is necessary
to store (push) or retrieve (pop) the context using
the pushdown list.

Each arc of the finite state control is labeled by
one or more transition specifications. The struc-
ture of a transition specification is shown in Fig-
ure 2: a transition from state z to state j occurs
whenever an utterance with polarity z, performa-
tive p, and predicate d 1s found in the input list
and the state of the pushdown list is Z. In such
a case, the chain of stack operations indicated by
op is processed. In order to fully specify a tran-
sition, the following definitions and criteria must
be observed:

e the polarity of an utterance u, denoted as
polarity(u), can take on one of two values:
+, to express that the utterance is sent, or
-, to indicate that the utterance is received.
Moreover, for a given CP ¢ we define its sym-
metric view ¢ as the result of inverting the
polarity of each transition;

the special symbol p/* represents utterances
formed by performative p and any predicate,
whereas the special symbol */d stands for
utterances formed by any performative and
predicate d;

label
they

when several transitions

p1/di; Zlop, .., pn/dn; Z|op,

an arc,

be

can
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. x p/d;Zlop .

Fig. 2: Transition

grouped into a compound transition as

(pr/dil .. pn/dn); Z|op;

e our model considers the following stack oper-
ations:

push pushes the utterance selected from the
input list onto the stack;

pop pops the stack by removing the topmost
utterance; and

nop leaves the stack unchanged. Usually this
operation is omitted in specifying a tran-
sition;

e when the state of the pushdown list is not
considered for a transition, it is omitted in
the transition specification. In CPs, e-moves,
i.e. moves that only depends on the current
state of finite state control and the state of
the pushdown list, are represented using the
transition specification Z|op.

For instance, Figure 1 depicts the CP employed
by the interagent used by a buyer agent to bid for
items presented by an auctioneer agent who calls
prices in descending order —the downward bid-
ding protocol (DBP). Each item is adjudicated to
the buyer that stops the descending sequence of
prices called by the auctioneer following the rules
of the DBP implemented in FM[25]. Notice that
the performatives of the utterances considered in
the figure follow the syntax of Table 1, and the
predicates within such utterances belong to the
list in Table 2. Such performatives and predicates
belong to the FM communication language and
ontology. This simple example illustrates the use
of the pushdown list: i) for saving the state of
the bidding round (round number, good in auc-
tion, list of buyers, etc.); and ii) for ensuring that
whenever a request for bidding is dispatched, the
bid conveyed to the auctioneer will be built by
recovering the last offer pushed by the trading in-
teragent onto the pushdown list.

3 Formal Definition

Now it’s time to formally capture the concep-
tual model introduced above in order to be later
able to reason about the properties that we must

demand from CPs. Therefore, formally we de-
fine a conversation protocol as an 8-tuple CP =
(@,%41,%9,T,6, qo, Zo, F) such that:

e () is a finite set of state symbols that repre-
sent the states of the finite state control.

e Y, is a finite alphabet formed by the identi-
fiers of all performatives that can be uttered
during the conversation.

e Y5 is a finite input list alphabet composed of
the identifiers of all predicates recognized by
the speakers.

e [ is the finite pushdown list alphabet.

e J is amapping from @ x{+, —}-X1 xXaxT* to
the finite subsets of () x I'* which indicates all
possible transitions that can take place dur-
ing a conversation.

e ¢p € @ is the initial state of a conversation.

e Zy € I' is the start symbol of the pushdown
list.

e F C @ is the set of final states representing
possible final states of a conversation.

CPs only contemplate a finite number of moves
from each state that must belong to one of the
following types:

Moves using the input list These moves depend
on the current state of the finite state control,
the performative/predicate pair of a message into
the input list, and the state of the pushdown list.
For instance, the move expressed by the follow-
ing transition: &(¢s, +REQUEST, bid, offer7) =
{(g9,bid7)} allows a trading interagent to convey
to the auctioneer a request for bidding received
from its customer (a buyer agent) whenever an
offer, received from the auctioneer, has been pre-
viously pushed upon the pushdown list.

e-moves These moves depend exclusively on the
current state of the finite state control and the
state of the pushdown list. e-moves are specifi-
cally employed to model and implement time-out
conditions within CPs; so that interagents can
handle expired messages and automatically re-

cover from transmission errors. For instance, the
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ID | Speech Act | Description

Q QUESTION SOLICIT the addressee to INFORM the sender of some proposition

R REQUEST SOLICIT the addressee to COMMIT to the sender concerning some action

I INFORM ASSERT + attempt to get the addressee to believe the content

C COMMIT ASSERT that sender has adopted a persistent goal to achieve something
relative to the addressee’s desires

F REFUSE ASSERT that the sender has not adopted a persistent goal to achieve something
relative to the addressees desires

Tab. 1: Types of performatives following Cohen and Levesque[9] (extracted from Parunak[23])

#Message | Predicate Parameters

1 admission buyerlogin password

2 bid [price]

3 exit

4 deny deny_code

5 accept open|closed auction_number

6 open_auction auction_number

7 open_round round_number

8 good good_ad good_type
starting_price resale_price

9 buyers {buyerlogin}*

10 goods {good_id good_type
starting_price resale_price}*

11 offer good_td price

12 sold good_id buyerlogin price

13 sanction buyerlogin fine

14 expulsion buyerlogin

15 collision price

16 withdrawn good_zd price

17 end_round round_number

18 end_auction auction_number

19 going {single|multiple} + {1,2}

20 gone

21 tie_break buyerlogin

22 closed_market

Tab. 2. Trading Predicates

following transition d(qo,e,e,bidZ) = {(¢s,7)}
could allow a trading interagent to roll back to
a previous state.

It should be noted that we are only interested
in deterministic CPs (DCP): a CP is said to be
deterministic when for each state ¢ € Q, p € Xy,
d € XYy and Z € T* there is at most one possible
move, that is |§(¢,p,d, Z)| < 1.

4 Instantiation

CPs can be defined declaratively and stored into
conversation protocol repositories open to inter-
agents. Each CP is identified by a unique name
anonymously set by the agent society. When an
interagent is requested by its customer to start a
conversation with another agent it must retrieve
the appropriate CP from a conversation reposi-
tory, and next proceed to instantiate it. In fact,
the CP must be instantiated by each one of the

interagents used by the agents intending to talk.

We say that a CP becomes fully instantiated
when the interagent creates a CP instance, i.e. af-
ter setting the values for the following attributes:

CP name CP class to which the CP instance
belongs;

speakers identifiers of the agents to engage in
conversation. Notice that we shall restrict a CP
instance to consider exactly two speakers: the
agent that proposes to start a conversation, the
originator, and 1ts addressee, the helper. In spite
of this limitation, we are not prevented from defin-
ing multi-agent conversation, since these can be
created by means of multiple CP instances;

conversation identifier
ated by the originator;

a unique identifier cre-
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polarity this property indicates how to instanti-
ate the polarity of each transition of the CP: if
the instance polarity is positive, each transition is
instantiated just as it is, whereas if it is negative
each transition polarity is inverted. Notice that
the helper must instantiate the symmetric view
of the originator’s CP in order to ensure protocol
compatibility as shown in Section 5.

transport policies such as time-out or maximum
time allowed in the input list. These can be al-
tered during the course of a conversation whereas
the rest of attributes of a CP instance remain
fixed. The use of transport policies require to ex-
tend the CP being instantiated with e-moves that

enable to roll back to previous conversation states.

From the point of view of interagents the con-
versations requested to be held by its customer
agent can progress through several states:

pre-instantiated after retrieving the requested
CP from the originator’s conversation repository;

instantiated a CP becomes instantiated when
the originator creates a CP instance, and subse-
quently asks the helper for starting a new con-
versation accepting the terms (attributes) of the

interaction expressed by the CP instance;

initiated this state is reached when both speak-
ers agree on the value of the attributes of a new
conversation, as a result of the negotiation phase
described in Section 6;

running state attained after the first utterance;

finished a conversation is over whenever either
the final state of the CP is reached, the helper
refuses to start it, or an unexpected error comes
about.

4.1 Instantaneous Description

An instantaneous description formally describes
the state of a CP instance at a particular time.
An nstantaneous description of a CP instance p
is a T-tuple: (o, h,p,t,q,1, a) such that: o is the
originator agent; h is the helper agent; p is the po-
larity of the CP instance; ¢ is the current setting
of transport policies; ¢ is the current state of the
finite state control; [ represents all utterances cur-
rently kept by the input list; and « is the current
state of the pushdown list.

Figure 1 depicts a partial instantaneous descrip-
tion for an instance of the CP DBP employed by a
trading interagent to allow its customer (a buyer
agent) to participate in a bidding round open by
the auctioneer agent. We identify buyer Akira as
the originator, the auctioneer as the helper, and
the colored node gg as the state of the finite state
control.

A deterministic CP has at most —without tak-
ing into account possible e-moves for dealing with
expired utterances— one possible move from any
instantaneous description. However, continuously
traversing the input list in search of an utterance
that causes a transition can lead to race cond:-
tions. For instance, in the CP instance of Figure 1
the second and fourth utterances can originate a
race condition since both utterances can cause a
move in the finite state control. Thus, it is neces-
sary to define criteria for deciding which utterance
must be accepted —as we show in the next sec-
tion.

5 Compatibility Semantics

In order to ensure the correct exchange of utter-
ances during a conversation, there are important,
desirable properties such as termination, liveli-
ness, deadlock and race condition free that CPs
must verify. In what follows we concentrate ex-
clusively on the two last properties, since to guar-
antee both termination and liveliness it suffices to
assume that every CP whose set of final states is
non-empty does not remain forever in the same
state.

First we formulate our notion of CP compatibil-
ity, following the notion of protocol compatibility
proposed by Yellin and Strom in [29], whose work
provides, in fact, the foundations of our analysis.

CPs can be assigned two different semantics:
asynchronous or synchronous. Although asyn-
chronous semantics may facilitate implementa-
tion, it makes generally harder reasoning about
certain properties, such as deadlock which has
proven undecidable under these semantics[29]. On
the contrary, under synchronous semantics, rea-
soning about such properties is easier, though an
implementation technique must map these seman-
tics to a particular implementation. For our pur-
poses, we have decided for a synchronous semantic
for CPs and, consequently, for devising the ad-
equate mechanisms for implementation. Such a
type of semantic requires to assume that a speaker
can send an utterance to the other speaker only
if that is willing to receive the utterance. There-
fore, we must assume that the finite state con-
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trols of both CP instances advance synchronously,
and hence that sending and receiving an utter-
ance are atomic actions. Upon this assumption,
Yellin and Strom introduced the following notion
of compatibility of protocols: “Protocols p; and
po are compatible when they have no unspecified
receptions, and are deadlock free”. On the one
hand, in terms of CPs, the absence of unspecified
receptions implies that whenever the finite state
control of a CP instance corresponding to one of
the speakers 1s in a state where a utterance can be
sent, the finite state control of the CP instance of
the other speaker must be in a state where such
utterance can be received. On the other hand,
deadlock free implies that the finite state control
of both CP instances are either in final states or
in states that allow the conversation to progress.
Interestingly, the authors prove the existence of
an algorithm for checking protocol compatibility.
By applying such algorithm, it can be proved that
under synchronous semantics a CP instance p and
its symmetric view P are always compatible. From
this follows that two CP instances are compatible
if both belong to the same CP class, and both
have the same speakers but different polarity. In
this way, the complete agreement on the order of
the utterances exchanged between the speakers is
guaranteed.

Concerning the implementation, observe that
the atomicity of sending and receiving utterances
cannot be guaranteed. Nonetheless, when com-
patible CP instances lack mixed states, the un-
specified receptions and deadlock free properties
can still be guaranteed. But the presence of
mixed states can lead to race conditions that pre-
vent both speakers from agreeing on the order of
the messages, and therefore unexpected receptions
and deadlocks might occur. In order to avoid such
situations, low-level synchronization mechanisms
must be provided in accordance with the interpre-
tation given to message sending and receiving in
Section 2.

For this purpose, we consider that the speak-
ers adopt different conflict roles —either leader
or follower— when facing mixed states. The
leader will decide what to do, whereas the follower
will respect the leader’s directions. By extend-
ing CP instances with a new attribute —which
can take on the values leader or follower— we
include the role to be played by each speaker
in front of mixed states. Besides, we consider
two special symbols —TRY and OK— that al-
ter the interpretation of message sending. Thus,
on the one hand when a message is sent under
the TRY semantics, the receiver tries to directly

accept the message without requiring previous ad-
mission. On the other hand, the OK symbol con-
firms that the TRY was successful. Then given a
CP(Q,X1,X2,T,6,q0, Zo, F') for each mixed state
z € @ the CP instance corresponding to the fol-
lower will be augmented in the following way:

Vp € ¥1,Vd € Xo,VZ € I*VZ' e '*,Vq € Q
such that 3d(z,+p,d,Z) = {(¢,2’)} then a new
state n ¢ @ will be added @ = Q U {n} and the

following transitions will be added:
1. §(z,+TRY (p),d, Z) = {(n, Z)}
2. 6(n,—OK,e,Z) ={(y,Z2")}

3.Vp € TVd e E,v7" e T*
(e, —p',d', 2"y =6(n,—p',d', Z")

then

Therefore, when the leader is in a mixed state
and sends an utterance, the follower admits it and
subsequently accepts it. Conversely, when the fol-
lower is in a mixed state and sends an utterance,
the leader, upon reception, determines if i1t is ad-
mitted or not. Figure 3 illustrates how the CP
instance on the left should be augmented to deal
with the mixed state gg.

Notice that the conflict role played by each
speaker must be fixed before the CP becomes com-
pletely instantiated. This and other properties of
CP instances need be negotiated by the speakers
as explained in the next section.

6 Conversation Protocol Negotiation

In Section 4 we introduced the attributes of a CP
instance that have to be fixed before the conver-
sation between the speakers becomes fully instan-
tiated, and subsequently started. The value of
each one of these attributes has to be mutually
agreed by the speakers in order to guarantee con-
versation soundness. For this purpose, interagents
have been provided with the capability of negoti-
ating such values by means of the so-called Hand-
shake phase, following the directions of their cus-
tomers. During this process, the initial connection
between the originator and the helper is estab-
lished, and next the originator conveys its multi-
attribute proposal (the set of attributes’ values)
to the helper. Then, we distinguish two models of
negotiation based on the helper’s response: one-
step and two-step negotiation.

In one-step negotiation the helper either auto-
matically accepts or refuses the originator’s pro-
posal. The sequence in Figure 4 depicts a typical
exchange for this model of negotiation, where ¢
values indicate the degree of preference over each
proposal.
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Fig. 3: Augmented CP instance

originator: START
CP/DBP; id=21; polarity=+; leader=me; q=0.7
CP/DBP; id=21; polarity=-; leader=you; g=0.3
helper: 0K

CP/DBP; id=21; polarity=+; leader=me

Fig. 4: One-step negotiation. In this example the
nator.

In two-step negotiation (see Figure 5), instead
of directly accepting or refusing the originator pro-
posal, the helper can reply with a a list of counter-
proposals ranked according to its own preferences.
Then, the originator can either accept one of these
proposals or cancel the process.

It should be noted here that the concrete con-
versation protocol to be instantiated can be nego-
tiated too. For this purpose, we have introduced
the CP type (e.g. the CP/DBP for the downward
bidding protocol), analogously to MIME content
types (text/html, image/gif, etc.). On the other
hand, it makes no sense to negotiate certain at-
tributes for some CPs. For instance, the polar-
ity of the CP to be employed by an auctioneer
attempting to open a DBP round is unnegotiable
since the auctioneer cannot play the role of a buyer
and vice versa.

7 Final Remarks

We have introduced conversation protocols as the
methodological way to conceptualize, model, and
implement conversations in agent-based systems.
We have also explained the way of negotiating, in-
stantiating and ensuring compatibility semantics
of CPs. CPs allow to impose a set of constraints
on the communicative acts uttered by the agents
holding a conversation. Other finite state mod-
els have been largely used for network protocols,
and subsequently adapted to speech act theory.
Though valid for specifying the states through
which a conversation may progress, they lack of
mechanisms for maintaining contextual informa-
tion valuable for tracking the evolution of the con-

helper accepts the second proposal from the origi-

versation in time. CPs, on the contrary, allow to
store the context of an ongoing conversation.

Our proposal relies upon interagents[19], au-
tonomous software agents that mediate the in-
teraction between each agent and the agent so-
ciety wherein this is situated. Interagents em-
ploy conversation protocols for mediating conver-
sations among agents. We think that CPs to-
gether with interagents constitute a convenient in-
frastructure for easing the development of agent-
based systems. Two major benefits are achieved
by deploying our infrastructure from the point of
view of the agent developer: on the one hand,
their agents can reason about communication at
higher levels of abstraction, and on the other hand
they are released from dealing with interaction de-
tails, and so they can concentrate on the design of
the agents’ logics—from the agents’ inner behav-
ior (knowledge representation, reasoning, learn-
ing, etc.) to the agents’ social behavior responsi-
ble for high-level coordination tasks (the selection,
ordering, and communication of the results of the
agent activities so that an agent works effectively
in a group setting [16, 14]).

We have materialized the conceptualization of
interagents through the design and development
of JIM: a java-based implementation of a general-
purpose interagent capable of managing conver-
sation protocols and capable also of dealing with
agent interaction at different levels [21]. Although
there is a large number of software tools for de-
veloping agents[1], not many of them happen to
provide support for the specification of conversa-

tion protocols. AgentTalk?, COOL[5], JAFMAS

2 http://www.cslab.tas.ntt.jp/at/
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originator: START
CP/DBP; i1d=22; polarity=+;
CP/DBP; id=22; polarity=-;
helper: NOT
CP/DBP; id=22; polarity=-;
CP/DBP; id=22; polarity=+;
originator: OK
CP/DBP; id=22; polarity=+;

leader=me; timeout=500; gq=0.7
leader=you; timeout=1000; g=0.3

leader=me; timeout=200; gq=0.4
leader=you; timeout=200; g= 0.6

leader=you; timeout=200

Fig. b: Two-step negotiation. In this example the helper refuses the proposals of the originator, who

finally accepts the first helper’s counterproposal.

(8], Agentis[12], Jackal[10] and InfoSleuth[22], do
offer conversation constructs. JAFMAS, for in-
stance, provides a generic methodology for devel-
oping speech-act based multi-agent systems us-
ing coordination constructs similar to COOL. In
addition to this, as far as our knowledge goes,
none of them offers dynamically and incremen-
tally specifiable conversation protocols except for
InfoSleuth[22]. We attempt to make headway in
this matter with respect to other agent building
tools by introducing interagents, that permit both
the dynamic and incremental definition of conver-
sation protocols. We have chosen such concep-
tualization instead of an agent’s built-in conver-
sation layer as proposed in other agent architec-
tures because of the need to separate the agents’
logics from the agents’ interactions —such sepa-
ration has proven to be valuable in the develop-
ment of a particular type of agent-based systems,
namely electronic institutions such as FM.

JIM has been successfully applied in the devel-
opment of FM3[25, 26], our current implementa-
tion of an agent-mediated electronic auction mar-
ket. Additionally, JIM is being successfully em-
ployed by other ongoing research projects: the
SMASH? project, that addresses the construction
of prototype multi-agent systems with case-based
reasoning capabilities that cooperate in the so-
lution of complex problems in hospital environ-
ments; and in the multi-agent learning framework
Plural[18] which tackles the problem of sharing
knowledge and experience among cognitive agents
that co-operate within a distributed case-based
reasoning framework.

Acknowledgments

This work has been supported by the Spanish CI-
CYT project SMASH, TIC96-1038-C04001 and

8 http://www.iiia.csic.es/Projects/fishmarket
4 http://www.iiia.csic.es/Projects/smash/

the COMRIS project, ESPRIT LTR 25500; Juan
A. Rodriguez-Aguilar and Francisco J. Martin en-
joy DGR-CIRIT doctoral scholarships FI-PG/96-
8490 and FI-DT/96-8472 respectively.

References

[1] AAAI-98 Workshop on Software Tools for
Developing Agents, 1998.

[2] FIPA 97. specification part 2: Agent com-
munication language. Technical report, FIPA
- Foundation for Intelligent Physical Agents,
1997.

[3] Alfred V. Aho and Jeffrey D. Ullman. The
Theory of Parsing, Translation, and Compil-
ing, volume I: Parsing of Series in Automatic
Computation. Prentice-Hall, 1972.

[4] J. L. Austin. How to Do Things With Words.
Oxford University Press, 1962.

[5] Mihai Barbuceanu and Mark S. Fox. Cool: A
language for describing coordination in multi
agent systems. In Proceedings of the First In-
ternational Conference on Multi-Agent Sys-
tems, 1995.

[6] J. M. Bradshaw. Kaos: An open agent ar-
chitecture supporting reuse, interoperability,
and extensibility. In Tenth Knowledge Acqui-
sition for Knowledge Based Systems, 1996.

[7] J. Glenn Brookshear. Theory of Compu-
tation, Formal Languages, Automata, and
Complezity. The Benjamin/Cummings Pub-
lishing, 1989.

[8] Deepika Chauhan. JAFMAS: A Java-based
Agent Framework for Multiagent Systems
Development and Implementation. PhD
thesis, ECECS Department, University of
Cincinnati, 1997.



7 Final Remarks

10

[9]

[10]

[11]

[15]

[18]

P. R. Cohen and H. J. Levesque. Communica-
tive actions for artificial agents. In Proceed-
ings of the First International Conference on
Multi-Agent Systems (ICMAS-95), pages 65—
72, Menlo Park, CA., jun 1995. AAAI Press.

R. Scott Cost, Tim Finin, Yannis Labrou, Xi-
aocheng Luan, Yun Peng, and Tan Soboroff.
Jackal: a java-based tool for agent develop-
ment. In AAAI-98 Workshop on Software
Tools for Developing Agents, 1998.

Yves Demazeau. From interactions to col-
lective behaviour in agent-based systems. In
European Conference on Cognitive Sciences,

1995.

Mark d’Inverno, David Kinny, and Michael
Luck. Interaction protocols in agentis. In
Third International Conference on Multi-
Agent Systems, 1998.

Tin Finin, Yannis Labrou, and James May-
field. Kgml as an agent communication lan-
guage. In Jeff Bradshaw, editor, Software
Agents. MIT Press, Cambridge, 1995. invited
chapter.

Nick R. Jennings. Commitments and con-
ventions: The foundation of coordination in
multi-agent systems. The Knowledge Engi-
neering Review, 8(3):223-250, 1995.

Jean-Luc Koning, Guillaume Frangois, and
Yves Demazeau. Formalization and pre-
validation for interaction protocols in multi-
agent systems. In 13th European Conference
on Artificial Intelligence, 1998.

Victor R. Lesser. Reflections on the nature
of multi-agent coordination and its implica-
tions for an agent architecture. Autonomous
Agents and Multi-Agent Systems, 1:89-111,
1998.

Robin MacEntire and Donal McKay. Kqml
lite specification. Technical report, Lockheed
Martin Mission Systems, 1998. Technical Re-
port ALP-TR/03.

Francisco J. Martin, Enric Plaza, and
Josep L. Arcos. Knowledge and experience
reuse through communication among compe-
tent (peer) agents. 1998. To appear in In-
ternational Journal of Software Engineering

and Knowledge Engineering.

Enric Plaza, and

An infrastructure for

Francisco J. Martin,

Juan A. Rodriguez.

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

agent-based systems: an interagent ap-
proach. 1999. To appear in International
Journal of Intelligent Systems.

Francisco J. Martin, Enric Plaza, Juan A.
Rodriguez-Aguilar, and Jordi Sabater. Java
interagents for multi-agent systems. In
AAAI-98 Workshop on Software Tools for
Developing Agents, 1998.

Francisco J. Martin, Enric Plaza, Juan A.
Rodriguez-Aguilar, and Jordi Sabater. Jim:
A java interagent for multi-agent systems. In
1r Congrés Catala d’Intel.ligéncia Artificial,
pages 163—171, Tarragona, Spain, 1998.

Marian Nodine, Brad Perry, and Amy Unruh.
Experience with the infosleuth agent archi-
tecture. In AAAI-98 Workshop on Software
Tools for Developing Agents, 1998.

H. Van Dyke Parunak. Visualizing agent
conversations: Using enhanced dooley graph
for agent design and analysis. In Proceed-
ings of the Second International Conference

on Multi-Agent Systems, 1996.

Emmanuel Roche and Yves Schabes. Finite
State Language Processing. The MIT Press,
1997.

Juan A. Rodriguez-Aguilar, Francisco J.
Martin, Pablo Noriega, Pere Garcia, and
Carles Sierra. Towards a test-bed for trad-
ing agents in electronic auction markets. A7
Communications, 11(1):5-19, 1998.

Juan A. Rodriguez-Aguilar, Francisco J.
Martin, Pablo Noriega, Pere Garcia, and
Carles Sierra. Competitive scenarios for het-
erogenous trading agents. In Second Inter-
national Conference on Autonomous Agents,

1998.

John Searle. Speech Acts. Cambridge Univer-
sity Press, 1969.

T. Winograd and F. Flores. Understanding
Computers and Cognition. Addison Wesley,
1988.

Daniel M. Yellin and Robert E. Strom. Pro-
tocol specifications and component adaptors.
ACM Transactions on Programming Lan-

guages and Systems, 19(2):292-333, 1997. .





