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Abstract. Multiagent systems offer a new paradigm to organize AI Applications.
We focus on the application of Case-Based Reasoning to Multiagent systems.
CBR offers the individual agents the capability of autonomously learn from ex-
perience. In this paper we present a framework for collaboration among agents
that use CBR. We present explicit strategies for case bartering in order improve
individual case bases and reduce bias in the case bases. We also present empirical
results illustrating the robustness of the case bartering process for several con-
figurations of the multiagent system. Finally, a bias and variance analysis of the
effects of bartering is included.
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tiagent Learning.

1 Introduction

Multiagent systems offer a new paradigm to organize AI applications. Our goal is to
develop techniques to integrate CBR into applications that are developed as multiagent
systems. CBR offers the multiagent system paradigm the capability of autonomously
learn from experience. In this paper we present a framework for collaboration among
agents that use CBR and some experiments illustrating how they can improve its per-
formance using case bartering strategies.

The individual case bases of the CBR agents are the main issue here, if they are not
properly maintained, the overall system behavior will be suboptimal. In a real system,
there will be agents that can very easily obtain certain kind of cases, and that will very
costly obtain other types of cases, and for sure that other agents in the system will be in
the inverse situation. It will be beneficial for both agents if they reach an agreement to
trade cases. This is a very well known strategy in the human history called bartering.
Using case bartering, agents that have a lot of cases of some kind will give them to
another agents in return to more interesting cases for them.

Our research focuses on the scenario of separate case bases that we want to use
in a decentralized fashion by means of a multiagent system, that is to say a collection
of CBR agents that manage individual case bases and can communicate (and collabo-
rate) with other CBR agents. In this paper we focus on case bartering. We present two



protocols for case bartering that improve the overall performance of the system and of
the individual CBR agents without compromising the agent’s autonomy. This protocols
will try to minimize the individual case base bias (how far is a case base of being a good
sample of the overall distribution).

The structure of the paper is as follows. First, we present the collaboration scheme
that the agents use, then the individual case base bias measurement is introduced. Af-
ter that, the case bartering mechanism, including the bartering protocols is presented.
Finally, the experiments are explained and the paper closes with related work and con-
clusion sections.

2 Collaboration Scheme

A multiagent CBR (
�

AC) system
� �������	��
������������������� �

is composed on n agents,
where each agent

�	�
has a case base

���
. In the experiments reported here we assume

that initially case bases are disjunct (� ����
����! "� #$��&%"�'�(�*)
), i.e. initially

there is no case shared by two agent’s case bases. In this framework we restrict our-
selves to analytical tasks, i.e. tasks (like classification) where the solution is achieved
by selecting from an enumerated set of solutions + �,�.- �0/�/1/ -324�

. A case base� � �!���65 � 
�-37��8� ����������� 9
is a collection of pairs problem/solution.

When an agent
�	�

asks another agent
��

help to solve a problem the interaction
protocol is as follows. First,

�	�
sends a problem description P to

���
. Second, after���

has tried to solve P using its case base
�:�

, it sends back a message that is either
:sorry (if it cannot solve P) or a solution endorsement record (SER). A SER has the
form ; ���6- 7 
�<

�7 ���=
�5>
�����?
, where the collection of endorsing pairs

��- 7 
�< �7 �
mean that

the CBR method of the agent
��

has found
< � 7 cases in case base

�:�
endorsing solution-37

—i.e. there are a number
< �7 of cases that are relevant (similar) for endorsing

-@7
as

a solution for P. Each agent
� �

is free to send one or more endorsing pairs in a SER
record.

2.1 Voting Scheme

The voting scheme defines the mechanism by which an agent reaches an aggregate
solution from a collection of SERs coming from other agents. The principle behind the
voting scheme is that the agents vote for solution classes depending on the number of
cases they found endorsing those classes. However, we want to prevent an agent having
an unbounded number of votes. Thus, we will define a normalization function so that
each agent has one vote that can be for a unique solution class or fractionally assigned
to a number of classes depending on the number of endorsing cases.

Formally, let ACB the set of agents that have submitted their SERs to the agent
� �

for
problem

5
. We will consider that

� �  ADB and the result of
� �

trying to solve
5

is also
reified as a SER. The vote of an agent

� �  ADB for class
-E7

is

F�GIH�J ��-37@
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K'L"MON ��������� 2 < �N



where K is a constant that on our experiments is set to 1. It is easy to see that an agent
can cast a fractional vote that is always less than 1. Aftern aggregating the votes from
different agents the winning solution class is the class with more votes in total.

This voting scheme can be seen as a variation of Approval Voting [2]. In Approval
Voting each agent vote for all the candidates they consider as posible solutions without
giving any weight to its votes. In our scheme, Approval Voting can be implemented
making

F$GIH�J �6- 7 
���� �&� �
if
< �7����� and

�
otherwise.

There are two differences between the standard Approval Voting and our voting
scheme. The first one is that in our voting scheme agents can give a weight to each one
of its votes. The second difference is that the sum of the votes of an agent is bounded to
1. Thus we can call it Bounded-Weighted Approval Voting (BWAV). In the experiments
section we will show some experiments illustrating the effect of changing the voting
scheme.

We will show now the
� G�������H H�J�J

collaboration policy that uses this voting scheme
(see [8] for a detailed explanation and comparison of several collaboration policies).

2.2 Committee Policy

In this collaboration policy the agent members of a
�

AC system
�

are viewed as
a committee. An agent

���
that has to solve a problem P, sends it to all the other

agents in
�

. Each agent
���

that has received P sends a solution endorsement record
; �=��- 7 
�<

�7 ���=
�5 
 ��1? to
�	�

. The initiating agent
���

uses the voting scheme above upon
all SERs, i.e. its own SER and the SERs of all the other agents in the multiagent system.
The problem’s solution is the class with maximum number of votes.

Notice that the agents participating in the Committee Policy have no reason or in-
centive to lie when providing a SER. First of all, it is rational for an agent to participate
in the Committee Policy because it improves the accuracy of the agent itself in classi-
fication. Secondly, once an agent has joined the Committee Policy there is no incentive
to cheat the others (there is no benefit in the others being worse). On the contrary, if
agents start to cheat causing the Committee Policy accuracy to diminish, the agents
would decide simply to leave the Committee Policy. Thus, it is rational to participate in
the Committee Policy and cheating provides no immediate or long term benefit.

3 Case Base Bias

In a previous work [8] we showed how agents can obtain better results using the Com-
mittee collaboration policy that working alone. However, in those experiments we as-
sumed that every agent had a representative sample of cases in its case base. When an
agent has a case base that is not representative of the overall distribution, we say that
the agent has a biased case base.

In this section we are going to define a measure of the degree of biasing of an
individual case base (ICB bias or Individual Case Base bias), then we will show how
the performance of the Committee degrades as the ICB bias of the agents grow. Later
sections introduce bartering policies to improve the Committee performance.



�
AC ICB 3 Ag. 5 Ag. 8 Ag. 10 Ag.
0.0 88.36% 88.12% 87.50% 86.75%
0.1 86.07% 87.50% 85.35% 85.00%
0.2 81.46% 83.53% 83.00% 82.00%

Table 1. Classification accuracy for the marine sponge classification problem for systems with
several mean Individual Case Base bias.

Let be � � � � � �� 
 /1/�/ 
 � 2� � the individual distribution of cases for an agent
���

,
where � � � is the number of cases with solution

- �
in the case base of

� �
. Now, we can

estimate the overall distributionof cases � � � � � 
 /1/�/ 
 � 2 � where � � is the estimated

probability of the class
-E�

, � � � ���� �	��
� �� �� ��� ���� ��� 
 � �
To measure how far is the case base

�>�
of a given agent

�	�
of being a representative

sample of the overall distribution we will define the Individual Case Base (ICB) bias, as
the square distance between the distribution of cases � and the (normalized) individual
distribution obtained from � � :� ���4��� � �&� 2� �

���
� � ��� � ��M 2�1��� � � �����

In order to see how the ICB bias affects the performance of the system, Table 1
shows the accuracy of several multiagent systems with increasing ICB bias (the

�
AC

ICB bias is calculated as the mean of all the ICB bias of the agents in the system).
There we can see that when the agents have case bases that are not representative (those
with a high ICB) the agents using the Committee policy obtains lower accuracies. In the
following sections, we will show how case bartering improves accuracy by lowering the
individual biases.

4 Case Bartering

In the physical world, bartering involves the interchange of two goods. But as our agents
will barter with cases (that are just information) they will only send a copy of the cases
to the other agents without losing them. It’s a matter of the internal case deletion policy
of each agent if a case must be forgotten or not. Deletion policies have been studied
[13] but we will not be considering them in these experiments.

In this section, we are going to present the Case Bartering protocol that the agents
use in order to improve the overall performance.

4.1 Case Bartering Mechanism

To reach a bartering agreement for bartering between two agents, there must be an
offering agent

� �
that sends an offer to another agent

� �
. Then

� �
has to evaluate

whether the offer of interchanging cases with
� �

is interesting, and accept or reject
the offer. If the offer is confirmed, we say that

� �
and

��
have reached a bartering

agreement, and they will interchange the cases in the offer.



Formally an offer is a tuple
G � ; ����
����=
�- 7 � 
�- 7 � ? where

� �
is the offering agent,���

is the receiver of the offer, and
- 7 � and

- 7
� are two solution classes, meaning that

the agent
�	�

will send one of its cases with solution
- 7

� and
���

will send one of its
cases with solution

- 7 � .
4.2 Making and accepting offers

The Case Bartering Protocol is not restrictive in how many offers can an agent send at
a time. So, many strategies can be used here, but in our experiments, the agents use a
very simple one to choose which are the most interesting offers, as follows for a given
agent

�	�
:

– For each solution class
- 7 �  � -�� /�/1/ - 2 �

–
� �

looks if increasing by one its number of cases with solution
- 7 � will decrease

its ICB bias.
– If so,

� �
chooses which agent

� �
of the others is the best one to ask for cases of

solution
-E7 � (Currently the chosen

� �
is the one with more cases of the solution

class
-37 � ).

– Now
�	�

determines which is its best class
- 7

� (the class for which it has more
cases), and makes the offer

G � ; � � 
�� � 
�-37 � 
�-37 � ? , i.e.
� �

offers to
� �

a case of
solution

-37
� if

� �
gives one of solution

-E7 � to
� �

.

When an agent receives a set of offers, it has also to choose which of these offers
to accept and which not. In our experiments the agents use the simple rule of accepting
every offer that reduces its own ICB bias. Thus, we will define the set of interesting
offers Interesting

���4
�� � �
of a set of offers

�
for an agent

� �
as those offers that will

reduce the ICB bias of
� �

. Moreover, an agent cannot send twice the same case to the
same agent. So, the agents will only accept those interesting offers that can satisfy (i.e.
can provide a new case for interchanging).

4.3 Case Bartering Protocol

We are going to present two different protocols for Case Bartering, both synchronous
(i.e. there are preestablished stages (“rounds”) where the agents can send their offers,
then the protocol moves to the next stage, etc). The first one is called the Simultane-
ous Case Bartering Protocol, and the second one the Token-Passing Case Bartering
Protocol.

When an agent member of the
�

AC wants to enter in the bartering process, it
sends an initiating message to all the other agents in the

�
AC. Then all the other

agents answer whether or not they enter the bargaining process. This initiating message
contains a parameter

H��
, corresponding to the time that each round of the protocol will

last.

Simultaneous Case Bartering Protocol (SCBP) In this protocol,in every round all
the agents send their offers simultaneously. When all the offers have been sent, all the
agents send a message for the offers they accept.



1. Each agent
�	�

broadcasts its individual distribution � � .
2. Each agent computes the overall distribution estimation � .
3. The agents send their bartering offers.
4. Each agent chooses a subset of accepted offers from the set of received offers from

the other agents and sends messages accepting them.
5. When the maximum time

H �
is over, all the unaccepted offers are considered as

rejected.
6. Each agent that has some bartering agreements sends the cases to interchange to

the corresponding agents.
7. Each agent broadcasts its new individual distribution � � .
8. If there have been no interchanged cases, the protocol ends, otherwise go to 3.

Token-Passing Case Bartering Protocol (TPCBP) The main difference between this
protocol and the previous one is the introductionof a Token-Passing mechanism, so that
only the agent who has the Token can make offers to the others.

1. Each agent broadcasts its local statistics � � .
2. Each agent computes the overall distribution estimation � .
3. Each agent computes the ICB bias of all the agents taking part in the bartering

(including itself), and sorts them. This defines the order in which the Token will be
passed through.

4. The agent with highest ICB bias is the first to have the Token.
5. The agent who has the Token sends its bartering offers.
6. Each agent chooses a subset of accepted offers from the set of received offers from

the owner of the token and sends messages accepting them.
7. When the maximum time

H �
is over, all the unaccepted offers are considered as

rejected.
8. Each agent that has some bartering agreements sends the cases to interchange to

the corresponding agents.
9. Each agent broadcasts its new individual distribution � � .

10. If the Token belongs to the last agent, go to 11, otherwise the Token is given to the
next agent and we go to 5.

11. If there have been no interchanged cases, the protocol ends, otherwise go to 3.

In both protocols, if an offer is not accepted neither rejected within the period timeH �
, the offer is considered as rejected, and the protocol moves to the next round.
To ensure the convergence of both protocols, we have only to have in mind the only

restriction that we have imposed: an agent cannot send twice the same case to the same
agent. With this restriction it’s easy to see that both protocols cannot run indefinitely,
because each agent has a limited number of cases to trade with. So, we can say that in
a bounded number of rounds both protocols will end.

Comparing the protocols, we can see that the Simultaneous protocol has the problem
that an agent has to decide if accept offers or not without knowing if its own offers are
going to be accepted. The Token-Passing protocol tries to solve this problem by letting
only one agent to send offers at a time. TPCBP is not really sensible to the order in
which the token is passed on, because many rounds are needed, and each round with a
recomputed order.



Accuracy comparison using Nearest Neighbour
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Fig. 1. Accuracy comparison of systems where the agents use nearest neighbor with and without
using case bartering

5 Experimental results

In this section we want to show how the classification accuracy of the agents improve
using the case bartering protocols with respect to systems where the agents do not use
them. We also show results concerning case base sizes after the bartering and the num-
ber of rounds needed to converge to a stable case distribution.

We use the marine sponge identification (classification) problem as our test bed.
Sponge classification is interesting because the difficulties arise from the morphological
plasticity of the species, and from the incomplete knowledge of many of their biological
and cytological features. Moreover, benthology specialists are distributed around the
world and they have experience in different benthos that spawn species with different
characteristics due to the local habitat conditions.

In order to show the improvements obtained in the system when the agents use
case bartering, we have designed an experimental suite with a case base of 280 marine
sponges pertaining to three different orders of the � J � G ��� G���� ����J class (Astrophorida,
Hadromerida and Axinellida). In an experimental run, cases are randomly distributed
among the agents (e.g. if the training set is composed of 252 cases and we have a 4
agents system, each agent will receive about 63 cases). In the testing phase, problems
arrive randomly to one of the agents. The goal of the agent receiving a problem is to
identify the correct biological order given the description of a new sponge. Once an
agent has received a problem, he will use the Committee collaboration policy to obtain
the prediction.

For experimentation purposes, we force biased case bases in every agent. Specifi-
cally, we increase the probability of each agent to have cases of some classes and de-
crease the probability to have cases of some other classes. For example, in the 3 agent
scenario, the 70% of the cases for the class Astrophorida in the training set are in the
individual case base of Agent 1, and the other two agents only have a 15% of them.
Analogously, the 70% of the cases for the classes Hadromerida and Axinellida are in
the case bases of the Agents 2 and 3 respectively. This process increases the individual



Accuracy comparison using 3-Nearest Neighbour
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Fig. 2. Accuracy comparison of systems where the agents use 3-nearest neighbor with and without
using case bartering �

AC ICB 3 Ag. 5 Ag. 8 Ag. 10 Ag.
Before 0.2 0.2 0.23 0.15

After SCBP
��� �����	�

0.0003 0.0004 0.0004
After TPCBP 
 � ��� �	� 0.0002 0.0002 0.0003

Table 2.
�

AC ICB biases of the multiagent systems used in the experiments before and after the
case bartering process.

case-base bias of the agents in the
�

AC; the first row of Table 2 shows the average
over Individual Case-Base (ICB) biases for the agents in the experiments.

Table 2 also shows the average ICB biases for the agents in the experiments after
the bartering process. We can see that both protocols are able to reduce the ICB bias
to very small values. This shows that the bartering protocols effectively interchange
cases until all agents drastically reduce their ICB bias; only then the process ends and
the overall accuracy has indeed improved to the level we expected. Finally, notice that
when agents have a greater volume of cases to barter (e.g. in the 3 agents scenario)
the ICB bias obtained after bartering is one order of magnitude lower than when the
agents have fewer cases (from 0.00003 in 3 agents scenario to 0.0003 in the 10 agents
scenario).

In order to test the generality of the protocols, we have tested them using systems
with 3, 5, 8 and up to 10 agents, and using several CBR methods: nearest neighbor,
3-nearest neighbor and LID [1]. The results presented here are the average of 5 10-fold
cross validation runs.

The figures 1, 2 and 3 show the results of applying the two case bartering protocols.
Three bars are shown for each scenario, the biased results represent the average accu-
racy obtained by the

�
AC without using case-bartering with biased individual case

bases; and the SCBP and TPCBP results represent the average accuracy obtained by the�
AC after using the Simultaneous Case Bartering Protocol and Token-Passing Case

Bartering Protocol respectively. We can see in those figures that in all the scenarios, the



Accuracy comparison using LID
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Fig. 3. Accuracy comparison of systems where the agents use LID with and without using case
bartering
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Fig. 4. Comparison of the case base size before and after the bartering process

�
AC systems using case bartering obtain a significative gain in accuracy than those

systems that do not use case bartering. This shows the independence of the bartering
protocols from the CBR method used by the individual agents. Those figures also show
that case bartering is robust even when the size of the case bases decreases and the num-
ber of cases an agent can barter is very small, as we can see for the 10 agents scenario
where each agent has only about 25 cases (i.e. less than 9 cases per class).

Comparing the accuracy obtained by the two protocols SCBP and TPCBP we see
that both have nearly the same accuracy in all the scenarios. We can see that there is
never a difference greater than 1% between the results of the Simultaneous protocol
and the results of the Token-Passing protocol. Therefore no bartering protocol is sig-
nificantly better than another but both are significantly better than using no bartering
protocol.



Voting Scheme comparison using LID
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Fig. 5. Comparison between Bounded-Weighted Approval Voting and standard Approval Voting
for agents using LID.

A naive way to solve the ICB bias problem colud be to centralize all data in one
location and adopt a completely cooperative multiagent approach where each agent
sends its cases to all the other agents. In this approach, each agent will have aquired
all the cases known in the system. To see that bartering is better than this approach, we
have performed experiments where all the agents have all the cases and the accuracy
obtained for LID was 88.37% versus the 90.36% achieved by a 3 agent system using
the SCBP in the copy mode.

Figure 4 shows the case base sizes reached after case bartering. The biased bar
shows the case base size before case bartering, and the other two show the case base
size after applying case bartering. We see that the agents stop interchanging cases be-
fore each agent acquires all known cases in the system. Moreover, except in the 3 agents
scenario, the case base sizes do not increase very much. The 3 agents scenario is spe-
cial because the initial case bases of the agents are quite big, and to repair their ICB
biases the number of cases needed to be bartered is much greater than in the 5, 8 or 10
agent scenarios. We also see that the case base sizes obtained using the Token-Passing
protocol are slightly smaller than the ones obtained using the Simultaneous protocol.

For comparison purposes Figures 5 and 6 show some results where the agents use
standard Approval Voting instead of the Bounded-Weighted Approval Voting. These fig-
ures show a comparison between the two voting schemes for two different scenarios:
in the first one the agents do not use case-bartering, and in the second one they use
the SCBP. The results show the accuracy for LID and 3-Nearest Neighbour (since in
1-Nearest Neighbour agents vote for only one class, there is no difference between AV
and BWAV). Figures 5 and 6 show that there is no significant difference between the
two voting schemes. When the agents use LID, BWAV works better for systems where
there are fewer agents (and thus more cases per case-base). But when the agents use
3-Nearest Neighbour this difference is not so clear. When the case-bases are biased,
standard AV is worse than BWAV with 3-Nearest Neighbour (specially in the 3 and 8
agents scenario). However, after the bartering process (when ICB bias is low), both vot-



Voting Scheme comparison using 
3-Nearest Neighbout
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Fig. 6. Comparison between Bounded-Weighted Approval Voting and standard Approval Voting
for agents using 3-nearest neighbour.

Individual results

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

Unbiased Bias Bartering

Variance

Bias

Committee results

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

Unbiased Bias Bartering

Variance
Bias

Fig. 7. Bias plus variance decomposition of the classification error for a system with 5 agents
both solving problems individually and using the Committee collaboration policy.

ing schemes obtain nearly the same result. Sumarizing, both voting schemes behave
similarly, but BWAV is more robust with higher biased conditions.

5.1 Bias plus variance analysis

Bias plus Variance decomposition of the error [7] is a useful tool to provide an insight
of learning methods. Bias plus variance analysis breaks the expected error as the sum
of three non-negative quantities:

– Intrinsic target noise: this is the expected error of the Bayes optimal classifier (lower
bound on the expected error of any classifier).

– Squared bias: measures how closely the learning algorithm’s prediction matches
the target (averaged over all possible training sets of a given size).



– Variance: this is the variance of the algorithm’s prediction for the different training
sets of a given size.

Figure 7 shows the bias plus variance decomposition of the error (obtained using the
model presented in [7]) for a system composed of 5 agents using NN. the left hand of
Figure 7 shows the bias plus variance decomposition of the error when the agents solve
the problems individually, and the right hand shows the decomposition when agents
use the committee collaboration policy to solve problems. Three different scenarios
are presented for each one: unbiased, representing a situation where the agents have
unbiased case bases; biased, representing a situation where the agents have biased case
bases; bartering, where the agents have biased case bases and they use case bartering.

Comparing the Committee collaboration policy with the individual solution of prob-
lems, we see that the error reduction obtained with the Committee is only due to a
reduction in the variance component. This result is expected since a general result of
machine learning tells that we can reduce the classification error of any classifier by
averaging the prediction of several classifiers when they make uncorrelated errors due
to a reduction in the variance term [5].

Comparing the unbiased and the biased scenarios, we can see that the effect of the
ICB bias in the classification error is reflected in both bias and variance components.
The variance is the one that suffers a greater increase, but bias is also increased.

If the agents apply case bartering they can greatly reduce both components of
error—as we can see comparing the biased and the bartering scenarios. Comparing
the bartering scenario with the unbiased scenario, we can also see that case bartering
can make agents in the biased scenario to achieve greater accuracies that agents in the
unbiased scenario. Looking with more detail, we see that in the bartering scenario the
bias term is slightly smaller than the bias term in the unbiased scenario. This is due to
the increased size of individual case bases, because as noted in [10], when the individ-
ual training sets are smaller the bias tends to increase. The variance term is also slightly
smaller in the bartering scenario than in the unbiased scenario.

Sumarizing, the Committee collaboration policy is able to reduce the variance com-
ponent of the error. Case Bartering can make a system with biased case bases to achieve
grater accuracies than a system with unbiased case bases because of two reasons: as the
ICB bias is reduced, the accuracy of a system with unbiased case bases is recovered,
and as the size of individual case bases is slighly increased, the bias term of error is
reduced and the accuracy can be greater than in the unbiased scenario.

6 Related Work

Several areas are related to our work: multiple model learning (where the final solution
for a problem is obtained through the aggregation of solutions of individual predic-
tors), case base competence assessment, and negotiation protocols. Here we will briefly
describe some relevant work in these areas that is close to us.

A general result on multiple model learning [6] demonstrated that if uncorrelated
classifiers with error rate lower than 0.5 are combined then the resulting error rate must
be lower than the one made by the individual classifiers. The BEM (Basic Ensemble



Method) is presented in [9] as a basic way to combine continuous estimators, and since
then many other methods have been proposed: Bagging [3] or Boosting [4] are some
examples. However, all these methods do not deal with the issue of “partitioned exam-
ples” among different classifiers as we do—they rely on aggregating results from multi-
ple classifiers that have access to all data. Their goal is to use multiplicity of classifiers
to increase accuracy of existing classification methods. Our intention is to combine the
decisions of autonomous classifiers (each one corresponding to one agent), and to see
how can they cooperate to achieve a better behavior than when they work alone. A
more similar approach is the one proposed in [15], where a MAS is proposed for pat-
tern recognition. Each autonomous agent being a specialist recognizing only a subset
of all the patterns, and where the predictions were then combined dynamically.

Learning from biased datasets is a well known problem, and many solutions have
been proposed. Vucetic and Obradovic [14] propose a method based on a bootstrap
algorithm to estimate class probabilities in order to improve the classification accu-
racy. However, their method does not fit our needs, because they need the entire testset
available for the agents before start solving any problem in order to make the class
probabilities estimation.

Related work is that of case base competence assessment. We use a very simple
measure comparing individual with global distribution of cases; we do not try to as-
sess the aeras of competence of (individual) case bases - as proposed by Smyth and
McKenna [12]. This work focuses on finding groups of cases that are competent.

In [11] Schwartz and Kraus discuss negotiation protocols for data allocation. They
propose two protocols, the sequential protocol, and the simultaneous protocol. These
two protocols can be compared respectively to our Token- Passing Case Bartering Pro-
tocol and Simultaneous Case Bartering Protocol, because in their simultaneous proto-
col, the agents have to make offers for allocating some data item without knowing the
other’s offers, and in the sequential protocol, the agents make offers in order, and each
one knows which were the offers of the previous ones.

7 Conclusions

We have presented a framework for cooperative Case-Based Reasoning in multiagent
systems, where agents use a market mechanism (bartering) to improve the performance
both of individuals and of the whole multiagent system. The agent autonomy is main-
tained, because if an agent does not want to take part in the bartering, he just has to
do nothing, and when the other agents notice that there is one agent not following the
protocol they will ignore it during the remaining iterations of the bartering process.

We have shown a problem arising when data is distributed over a collection of
agents, namely that each agent may have a skewed view of the world (the individual
bias). Comparing empirical results in classification tasks we saw that both the individ-
ual and the overall performance decreases when bias increases. The process of bartering
shows that the problems derived from distributed data over a collection of agents can
be solved using a market-oriented approach. Each agent engages in a barter only when
it makes sense for its individual purposes but the outcome is an improvement of the
individual and overall performance.



As we have previously said in the experiments section, the naive way to solve the
ICB bias problem could be to centralize all data in one location or adopt a completely
cooperative multiagent approach where each agent sends its cases to all other agents.
We have shown, that we can obtain better results with the bartering approach that with
this completely cooperative one. Moreover, another problem with this completely co-
operative approach is that redundancy increases and there may be scaling up problems;
the bartering approach tries to interchange cases only to the amount that is necessary
and not more.

In the experiments reported in this paper, the agents use strategies for choosing
which offers to generate and send to other agents and for choosing which offers to ac-
cept from other agents. Currently, both strategies try to minimize the ICB bias measure.
The ICB bias estimates the difference between the individual and global case distribu-
tion over the classes. However, we plan to study other kinds of biases that may charac-
terize the individual agents’ case base. In order to compute these new bias measures, the
agents may need to make public more information. Thus, a modification in the bartering
protocols would be needed to manage the information required.

We have focused on bartering for agents using lazy learning but future work should
address the usefulness of bartering for eager (inductive) learning techniques.
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