
Ceaseless, Sequential-Case Based CBR
October 2003

Francisco J Martin
EECS-OSU

Corvallis, Oregon (USA)

Enric Plaza
IIIA-CSIC

Bellaterra, Catalonia (Spain)

Alba – A Cognitive Assistant for Network
Administration

CCIA2003
 Sisè Congrés Català d’Intel·ligència Artificial

Divendres, 23 d’octubre de 2003

3

Alert Triage (AT) is the process of rapid and approximate
prioritization for subsequent action of an IDS alert stream.

Alert Triage (AT) is the process of rapid and approximate
prioritization for subsequent action of an IDS alert stream.

Alert Triage (AT) is the process of rapid and approximate
prioritization for subsequent action of an IDS alert stream.

Alert Triage (AT) is the process of rapid and approximate
prioritization for subsequent action of an IDS alert stream.

Alert Triage (AT) is the process of rapid and approximate
prioritization for subsequent action of an IDS alert stream.

Alert Triage (AT) is the process of rapid and approximate
prioritization for subsequent action of an IDS alert stream.

Our goal is to increase the efficiency of current IDSes.

Our approach overview (I)

Aggregation and Correlation
Components

No
tif

y

Probes

Al
er

ts

Host-based
sensors

Network-based
sensors

Our goal is to increase the efficiency of current IDSes.

Our approach overview (II)

Snort
Ruleset CLCSI CVE NERD

SOID

SSO

Alba

Snort

5

Three-layered approach

Perception layer

sensors emit alerts on suspicious actions in the
network

Recognition layer

SOID ontology models monitored actions

sequential cases (actionable trees)

Planning layer

plan recognition to prioritise alerts and use them
to anticipate final goals

6

SOID overview

Vulnerability or Exposure

Computer Incident

Network Entity

IDS Alert

For each knowledge source a separate ontology has been built.

SOID merges those ontologies on top of the Noos knowledge
representation language.

SOID details

CVE
Alba/CVE/full-cve.txt

Snort Rules
Alba/Rules/*.rules

Snort SIDs
Alba/Rules/sid-

msg.map

Nessus Reports
Alba/Nessus/
network.txt

CVE2Noos.pl

Snort2Noos.pl

sidmsg2Noos.pl

Nessus2NERD.pl

CVE
Alba/CVE/full-

cve.noos

Rules
Alba/CVE/

*.rules.noos

CVE
Alba/CVE/sid-

msg.noos

NERD
Alba/NERD/network-

today.noos

ACID2Noos.pl

CVE

NERD

Snort
Ruleset

CLCSIAlert
Trees

Case-Based
Sequence
Analysis

Sequential Case
Discovery

Original Alert Stream

8

A simple taxonomy of Snort alerts.

Example of a taxonomy of Snort alerts

Not-
suspicius

Bad-
unknown

Attempted-
recon

Successful-
recon-
limited

Successful-
recon-

largescale
Attempted-

dos
Successful-

dos
Attempted

-user
Unsucessful-

user
Attempted-

admin
Successful-

admin

ProbeUnclassified DOS Remote-to-
local

Snort
Alert

WEB-MISC
long basic

authorization
string

Attempted-
dos

DOS
MSDTC
attempt

DOS
MSDTC
attempt

DDOS
mstream
client to
handler

DDOS
shaft client
to handler

DDOS
shaft

synflood

WEB-MISC
apache

DOS
attempt

WEB-
MISC ICQ
webserver

DOS

TELNET
livingston

DOS

SMTP
exchange
mime DOS

NETBIOS
DOS

RFPoison

User-to-root

9

Actionable Trees

Case Activations

Ceaseless Retrieve

Ceaseless Reuse

Ceaseless Revise

Ceaseless Retain

Outline

10

A highly intuitive and machine learnable
knowledge structure that enables the
representation of sequential cases.

An actionable tree (AT) is a Multi-
Rooted Directed Acyclic Graph
(MDAG) with the semantics that roots
represent observable symptom
events, intermediate nodes (in the
trunk and crown) represent composite
(serial or parallel) cases and the
arcs represent part-whole
relationships.

The crown made up of only one node
represents the overall case. There is
one and only one path from each root
node to the crown.

Actionable Trees: Definition

C

a b

D

e f

G

Roots represent observable symptom events (i.e.
alerts)

nodes a and b are complex objects
represented by means of feature terms.

The crown represents a case:

node c stores information about:

the risk that supposes the occurrence
of a and b together. Risk is a
combination of threat, exposure, and
cost.

constraints that limit the correlation
of a and b (using a set of common
features of a and b for which path
equality must be hold)

the prioritization that received a and b
(i.e. the case solution)

Actionable Trees: Definition (II)

C

a b

12

Actionable Trees are compoundable

Actionable Trees: Compoundability

D

e f

C

a b

G

13

There are three types of intermediate nodes:

a-nodes (dashed nodes) represent parallel cases

s-nodes represent serial cases

b-nodes (doted nodes) represent burst cases (i.e. flood situations)

Actionable Trees: types of intermediate nodes

C

a b

D

e f

I

h

yields: {[a b] [b a]} yields: {[e f]} yields: {[hn] n> X/t}

14

A direct mapping can be established between an Actionable Tree and a
Context-Free Grammar that yields all the sequences represented by
the Actionable Tree.

Actionable Trees and Context-Free Grammar
correspondence

C

a b

D

e f

I

h

S

G: S→ C D I
C→ ab | ba
D→ ef
I → hX/tI

15

Actionable Trees Example: Mitnick Attack

Mitnick
Attack

SYN
Flooding

DOS

DDOS
shaft

synflood

TCP
Hijacking

TCP
Sequence
Number

Predicition

Spoofed
IP

nmap
fingerprint

atempt

TCP
Sequence
Sampling

SYN half-
open

connection

16

We have defined a dynamic similarity between two sequences of complex objects
based on the following components:

1. A dynamic subsumption scoring scheme that:

establishes the similarity between two individual alerts according to its
probability of occurrence and its position in the hierarchy of sorts.

Rare alerts receive a high score and frequent alerts receive a low
score.

is continuously updated upon arrival of new alerts.

2. A semi-global alignment obtained by insertion of a number of dummy
feature terms such that both sequences have the same length and in the
individual alignment of the elements at least one of the two element isn’t a
dummy feature term.

3. Two operations that allow a sequence to be altered so that corresponding
elements in both sequences to be comparable.

Abduction: injecting an alert of sort a in the alert stream at a given
position.
Neglection: ignoring an alert in the alert stream.

4. A dynamic programming formulation that computes the score of the optimal
aligment.

Dynamic Sequence Similarity

17

Dynamic Sequence Similarity

ai-2 ai-1ai-3ai-4ai-5

⊥⊥⊥⊥⊥

e2 e3 e4ai

Episode

Alert Stream Current
Alert

(Suffix)

(Prefix)

e2 e3 e4e1

{Predicted
Alerts

ω

ε
neglected neglected neglected neglected neglected abduced abduced abduced

S1~s S2 = max1≤j≤|S2|S(|S1|, j).

S(0, 0)= 0
S(i, 0)= S(i− 1, 0)
S(0, j)= S(0, j − 1) + Ca(!S2[j])

S(i, j) = max

{S(i− 1, j) +Cn(!S1[i])
S(i, j − 1) +Ca(!S2[j])
S(i− 1, j − 1)+M(root(i), root(j))

a

e

a

⊥

⊥

e

Subsumption Neglection Abduction

Mi,j =

{1−qi

qj
if ψai " ψaj

−1 otherwise

A B C D E Z Y X ⊥

2.167 -1 -1 -1 -1 -1 -1 -1 -1

-1 2.8 -1 -1 -1 -1 -1 -1 -1

-1 -1 2.8 -1 -1 -1 -1 -1 -1

-1 -1 -1 18 -1 -1 -1 -1 -1

-1 -1 -1 -1 8.5 -1 -1 -1 -1

2.167 -1 -1 -1 -1 2.167 -1 -1 -1

-1 1.8 1.8 -1 -1 -1 0.9 -1 -1

-1 -1 -1 16 8 -1 -1 5.333 -1

A

B

C

D

E

Z

Y

X

0 0 0 0 0 0 0 0 0⊥

M

1. Dynamic Scoring
Scheme

2. Semi-Global
Alignment

3. Operations 4. Dynamic Programming
Formulation

18

A case activation represents a hypothesis on a case explaining the
current situation.

A case activation is composed of:

Case (risk(threat,exposure,cost), yields of observable symptom
events, and prioritization).

Observed (O) symptoms that represent observed alerts.

Abducted (A) symptoms that represent lost symptoms.

Neglected (N) symptoms that represent spurious symptoms.

Evidence computed in terms of O, A, and N symptoms.

Cases are activated using a similarity-based likelihood judgment
(i.e. similarity between the current window of alerts and a case’s yield
of observable events).

Case Activations

Ceaseless CBR

A push-pull constructive situation awareness process governed
ceaselessly by:

1. Observational data. The sequence of events received pushes
towards a situation

2. The sequential case base pulls towards the best explanation of
the current situation interpreted in terms of past cases.

Ceaseless CBR is decomposed in four parallel processes:

Ceaseless Retrieve

Ceaseless Reuse

Ceaseless Revise

Ceaseless Retain

Ceaseless CBR

W(t)

R(t)

H(t)

E(t)

B(t)

Expected
Alerts

Case Base

Obsolete Case
Activations

S(t)User's
 feedback

Alert Stream

Prioritization

Ceaseless
Retrieve

Ceaseless
Reuse

Ceaseless
Retain

Ceaseless
Revise

S'(t)

Ceaseless Retrieve (I)

Ceaseless Retrieve:

R(t): Using the sequence of alerts (O) returned by the

corresponding window model (Wwm(t)) and a dynamic similarity
measure, retrieve those cases that are similar to such sequence
above a user-defined threshold (q).

Hi: A case activation (Hi) is created for each retrieved case
containing observed, abducted and neglected alerts as well as
an estimation of its evidence and the risk that supposes.

H(t): New case activations (hypotheses) are merged with
previous case activations considering the constraints imposed by
each case (path equality checking). For example, the same
source and address in all the sequence of alerts.

22

Initially:

C(0)={C1...Cn} (i.e. case-base)

R(0) = ∅, H(0) = ∅,

E(0) = ∅, max B(0) = 1

S(0)= ∅, S’(0)= ∅

Wwm(t) extracts the next sequence of alerts from the alert stream according
to a given window model wm (landmark, sliding, damped or alert-driven).

R(t)(Wwm(t)) = {Case Activations :Ci∈ C
(t) and sim(Wwm(t), Ci) > q}

H(t) = H(t-1) ∪ R(t) ⇐ Current Situation

H(t) keeps a number of case activations for each pending alert (i.e. alerts
that have not received an explanation/prioritization yet).

Ceaseless Retrieve (II)

23

E(t): Computes a set of explanations (combinations of case activations that
explain completely the current sequence of observed alerts (O)). This set is
computed following a minimum description length (MDL) principle. Those
explanations:

that contain case activations that appear in other explanations that are
already in the set.

whose size is greater than the minimum size of the combinations above
are not contemplated.

B(t): An estimation of the goodness of each explanation in E(t) is computed.
This estimation considers the probability of occurrence and can also consider
the risk and cost of each explanation.

Explanations are ranked according to B(t) and then proposed to the user for
their revision.

Ceaseless Reuse (I)

24

E(t)(S(t), O) = {H’ ⊆ H(t) : H’ explains all events in O and !∃ H’’ : |H’’| < |H’|
and H’ ∩ H’’≠∅}

E(t) is computed following a minimum description length (MDL)
principle.

The following observation: “the probability of multiple coincidental
sources is low” induces the following heuristic:

H’i is not included in E(t) if it contains a case activation that is already

contained by H’j ∈ E
(t) such that its size is lower and its risk is greater.

B(t)(Ei) is a belief function that represents the likelihood that all cases in Ei

have occurred and Ei explains all events in O:

B(t) is computed incrementally: B(t)(E(t)) = B(t-1) ∪ E(t)(H(t), O)

Explanations are ranked according to B(t)

Best Explanations ⇒ {Ei ∈ E
(t) : B(t)(Ei) is maximal}

Ceaseless Reuse (II)

B(t)(E(t)
i ,O) =

∏
Hi.ci∈Ei

p(ci)
∏

ai∈O

(
1−∏

Hi.ci∈Ei
(1− p(ai|ci)

)

25

This process continuously provides a human (expert) operator with the set of
most likely explanations given the alerts received so far (instead of presenting
a solution periodically).

The operator can define a threshold θ’ such that individual explanations whose
likelihood is above it produce an automatic triage of the corresponding alerts and
initiates the same process that above.

S(t)= {Ei ∈ E
(t) : B(t)(Ei) is maximal} ∪ {Hi : B

(t)(Hi) > θ’}

The operator’s feedback may create a completely new case or update a past
case:

adding, deleting or altering observable events or constraints among them.

altering its risk(threat, exposure, or cost) or the corresponding prioritization.

The operator’s feedback produces a set of revised solutions that in turn
produces the triage of the corresponding alerts and initiates a back-

propagation process that automatically updates H(t) and the set of expected
alerts (i.e. alerts that are probably to occur and have already received an
explanation).

S’(t)= feedback(S(t))

Ceaseless Revise

26

Once a solution has been revised by the user:

The probability of occurrence of each case is updated as well as the
probability of occurrence of each alert in the cases that have been used in
the solution.

Those cases whose probability of occurring together is above the
probability of occurring separately are merged together in a new case.

Other features of intervening cases such as risk or cost can also be
updated in this process.

New cases are created using alerts that do not appear in any other case.

In other words, this process ceaselessly stores the solutions revised by the
former process

C(t)= C(t-1) ∪ S’(t)

Ceaseless Retain

a b a a b c d e c c b a b a c c e a

Working MemoryCase Memory

H(t) Situation

H1 = <1, ab, e, cd>

H2 = <2, bd, ∅, ac>

H3 = <3, ac, e, bd>

H4 = <4, d, cc, abc>

R(t)

Case 1

Case 2

Case 3

Case 4

E(t) Explanation

E1 =<{2,3}, {e}>

E2=<{1,3,4},{ee,a,cc}>

B(t) Belief

B1 = < E1, 0.3265>

B2 = < E2, 0.3907>

S(t) Solution

S1 = {<1,1>,<3,1>,<4,1>,
ee, a, cc}

S'(t) Revised Solution
S'1 = {<abe,0,0.2>}
Update
P(aj|C1) ; P(aj|C3); P(aj|C4)

Obsolete activations

Alert Stream

Window Expected Alerts

User's feedback

risk(C1,0.2)

Case 1
<abe, 1,0.9>

b

a a b c d

Case 2
<bd, 0,0.2>

Case N
<xzfr, 0>

...

Case 3
<ace, 1,0.8>

a

O = Window - Expected Alerts
Ci = <yield, priority,risk>
Hi = <case, observed, abducted, neglected>
Ei = <{Ci}, {abducted}>
Bi = < Ei, belief>
Si = {<Ci,priorityi> expected alerts>}

Case N+1

Case 4
<dcc, 1,0.7>

Case
1
2
3
4

{1,2}
{1,3}
{1,4}
{2,3}
{2,4}
{3,4}

{1,2,4}
{1,3,4}

O
a b c d
x x - -
- x - x
x - x -
- - - x
x x - x
x x x -
x x - x
x x x x
- x x x
x - x x
x x - x
x x x x

Abducted
e
-
e
cc
e,b

e,e,a
e,cc

e
cc,d
e,cc

e,b,cc
e,e,a,cc

Neglected
cd
ac
bd
abc
c
d
c
-
a
b
c
-

Yield
abe
bd
ace
dcc

abe,bd
abe,ace
abe,dcc
bd,ace
bd,dce
ace,dcc

abe,bd,dcc
abe,ace,dcc

Observed
ab
bd
ac
d

abd
abc
abd
abcd
bcd
acd
abd
abcd

P(Ci)
0.91
0.62
0.53
0.81
...

0.42

Ci
1
2
3
4
...
N

P(aj|C1)
0.89
0.65
0.65

alert
a
b
e

P(aj|C2)
0.53
0.67

alert
b
d

P(aj|C3)
0.67
0.73
0.53

alert
a
c
e

P(aj|C4)
0.67
0.89
0.89

alert
d
c
c

ee, a, cc

B1 = 0.62 * 0.53 * (1 - (1 - 0.53) * (1 - 0.67) *
 (1 - 0.67) * (1 - 0.73) * (1 - 0.54))

B2 = 0.91 * 0.53 * 0.81 * (1 - (1 - 0.89) * (1 - 0.65) * (1 - 0.65) *
 (1 - 0.67) * (1 - 0.73) * (1 - 0.53) *
 (1 - 0.67) * (1 - 0.89) * (1 - 0.89))

28

ROC curve generated in a set of
preliminary experiments where
we employed an alert stream
composed of 84168 alerts
coming from 8848 different IPs
that was generated after four
months of real surveillance in
a networked organization using 3
Snort sensors, 18 sequential
cases corresponding to well-
known attack patterns, an error
type weighting of 1:500 (i.e. a
cost of 1 for each false positive
and cost of 500 for each false
negative), and 12 variants of 3
different multi-stage attacks.
The optimal decision threshold
corresponded to the iso-
performance line with slope equal
to 2.2 as shown in the Figure.

Preliminary Experiments

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive fraction

tru
e

po
sit

ive
 fr

ac
tio

n

ROC Curve

Questions?

Back-up

31

Commonalities -- Comparable elements that appear at the same
position in both sequences.

Alignable Differences -- Comparable elements that appear in both
sequences but a different position.

Non-alignable Differences -- Non-comparable elements that
appear in one sequence but not in the other.

Sequence Similarity

32

Alignment Example

C = {B} A={B,E} N={A,C,D}

C = {E,B} A={B} N={A,C,D}

E B D

A B A C C E B

A B A C C E B

E B D

33

Definition 5. (Sequence Alignment) Given a signature
∑=〈S,⊥,F,≤〉and two sequences S1, S2 ∈ ∑*. An alignment of
sequences S1 and S2 is a pair {S’1, S’2} attained by insertion of a
number of dummy feature terms (⊥) in both sequences such that:
|S’1| = |S’2 | and ∀1≤i≤|S’1|S’1[i] is aligned with S’2[i] and either
S’1[i] or S’2[i] is not a dummy feature term.

Sequence alignment

34

Sequence alignment example

A B A C D E A B

E B D

A B A C D E A B

E B ⊥ ⊥ D ⊥ ⊥ ⊥

A B A C D E A B ⊥

⊥ ⊥ ⊥ ⊥ ⊥ E ⊥ B D

35

Semi-global alignment

ai-2 ai-1ai-3ai-4ai-5

⊥⊥⊥⊥⊥

e2 e3 e4ai

Episode

Alert Stream Current
Alert

(Suffix)

(Prefix)

e2 e3 e4e1

{Predicted
Alerts

ω

ε
neglected neglected neglected neglected neglected abduced abduced abduced

36

Score of an alignment

Neglection

a

⊥

⊥

e

Abduction

a

e

Subsumption

S1

S2

S(S1, S2) =
∑

1≤i≤|S1| S(S1[k], S2[k])

37

Subsumption scoring scheme

Definition 7. (Subsumption Scoring Scheme). Given the
following signature ∑=〈S,⊥,F,≤〉, a subsumption scoring
scheme M is a square |S ∪⊥| x |S ∪⊥| matrix such that:

Mi,j =

{1−qi

qj
if ψai " ψaj

−1 otherwise

38

Dynamic scoring scheme example

A B A A B C D E C C B A B A C C E A B

Z Y Z Z Y Y X X Y Y Y Z Y Z Y Y X Z Y

1 1 2 3 4 4 5 5 5 6 7 9 9 9 10 11 11 12 12

sorts

timestamp

alerts

⊥

Z Y X

A B C ED W=3secs

39

Dynamic scoring scheme example
A B C D E Z Y X ⊥

2.167 -1 -1 -1 -1 -1 -1 -1 -1

-1 2.8 -1 -1 -1 -1 -1 -1 -1

-1 -1 2.8 -1 -1 -1 -1 -1 -1

-1 -1 -1 18 -1 -1 -1 -1 -1

-1 -1 -1 -1 8.5 -1 -1 -1 -1

2.167 -1 -1 -1 -1 2.167 -1 -1 -1

-1 1.8 1.8 -1 -1 -1 0.9 -1 -1

-1 -1 -1 16 8 -1 -1 5.333 -1

A

B

C

D

E

Z

Y

X

0 0 0 0 0 0 0 0 0⊥

M
0.316

0.263

0.263

0.053

0.105

0.316

0.526

0.158

A

B

C

D

E

Z

Y

X

1⊥

qi

40

Abduction(S, a,i): injects an alert a in alert stream S at postion i.

Neglection(S, i): ignores an alert at position i from alert stream S.

Abduction (Ca) and Neglection (Cn) Costs

Ca(a) = −∑
a′∈S:root(a)$a′ ρα(a′)

Cn(a) = −ρα(a)−1

ρα(a) = α−rare(a)
#distinct

41

Abduction (Ca) and Neglection (Cn) Costs

Ca Cn

-1.2 -0.83

-1 -1

-1 -1

-0.2 -5

-0.4 -2.5

-2.4 -0.83

-4 -0.5

-1.2 -1.67

A

B

C

D

E

Z

Y

X

-11.4 -0.26⊥

42

Definition 6. (Sequence Similarity). The similarity between two
sequences S1 and S2 is the score of the optimal alignment between
a suffix of S1 and a prefix of S2: S1~s S2 = max1≤j≤|S2|S(|S1|, j).

Sequence Similarity

S(0, 0)= 0
S(i, 0)= S(i− 1, 0)
S(0, j)= S(0, j − 1) + Ca(!S2[j])

S(i, j) = max

{S(i− 1, j) +Cn(!S1[i])
S(i, j − 1) +Ca(!S2[j])
S(i− 1, j − 1)+M(root(i), root(j))

43

Sequence similarity

i

j

i-1

j-1

subsumption

abduction
ne

gl
ec

tio
n

S1

S2

44

Dynamic programming trace

Ca Cn

-1.2 -0.83

-1 -1

-1 -1

-0.2 -5

-0.4 -2.5

-2.4 -0.83

-4 -0.5

-1.2 -1.67

A

B

C

D

E

Z

Y

X

-11.4 -0.26⊥

E B D

-0.4 -1.4 -1.6S1[0]

-0.4 -1.4 -1.6S1[1]

-0.4 2.4 2.2S1[2]

-0.4 1.567 1.4S1[3]

-0.4 0.567 0.5S1[4]

-0.4 -0.433 -0.433S1[5]

8.5 7.5 7.30S1[6]

7.67 7.5 7.30S1[7]

6.67 10.467 10.267S1[8]

S2[1] S2[2] S2[3]

A

B

A

C

C

E

A

B

0

0

0

0

0

0

0

0

0

S2[0]

subsuming(B)

subsuming(E)

neglecting(A)

neglecting(C)

neglecting(C)

neglecting(A)

neglecting(B)

neglecting(A)

10.467 >q

