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Santiago Ontañón ∗ and Enric Plaza
IIIA - Artificial Intelligence Research Institute
CSIC - Spanish Council for Scientific Research

Campus UAB, 08193 Bellaterra, Catalonia (Spain)
{santi,enric}@iiia.csic.es

Abstract
We present a proactive communication approach
that allows CBR agents to gauge the strengths and
weaknesses of other CBR agents. The communi-
cation protocol allows CBR agents to learn from
communicating with other CBR agents in such a
way that each agent is able to retain certain cases
provided by other agents that are able to improve
their individual performance (without need to dis-
close all the contents of each case base). The
selection and retention of cases is modeled as a
case bartering process, where each individual CBR
agent autonomously decides which cases offers for
bartering and which offered barters accepts. Exper-
imental evaluations show that the sum of all these
individual decisions result in a clear improvement
in individual CBR agent performance with only a
moderate increase of individual case bases.

1 Introduction
Distributed case-based reasoning (CBR) aims at studying and
applying CBR techniques for situations where distributed
resources are present [Plaza and McGinty, 2006]. Current
approaches range from one CBR agent using several case
bases [Leake and Sooriamurthi, 2001] (or several agents
using one case base) to multiple agents having individual
case bases [Plaza and Ontañón, 2001], and applications span
from classification [Plaza and Ontañón, 2001] and planning
[McGinty and Smyth, 2001] to engineering applications
[Watson and Gardingen, 1999].

Our goal in this paper is studying learning opportunities
derived from communication among different CBR agents
possessing individual case bases. Communication among
agents offers the possibility of using the other agents as an
additional source of information. Typically, a CBR system
learns by retaining the cases they solve during the Retain
stage [Aamodt and Plaza, 1994]. The presence of cases
owned by other CBR agents presents the opportunity of
acquiring some of those cases to improve an individual CBR
agent performance.
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An alternative approach might be to centralize all data.
However, there are several reasons for not following this
path always (i.e. centralization is feasible and efficient on
some situations but not on others). First, since we assume
data distributed over several sites (each with a case base Ci),
centralization means basically sending all data to everyone’s
site. In this way, every CBR agent will have all known cases
on its case base (C = C1 ∪ . . . ∪ Cn); this scenario is simple
but hardly efficient nor scalable, and may be unfeasible in
situations where the different sites would agree to partially
disclose some data but not all data all the time.

However, simply having more cases does not assure better
CBR performance [Smyth and Keane, 1995], and we need
to use case base maintenance techniques or retain policies to
select the subset of cases that improves CBR performance
[López de Mántaras et al., 2006]. Thus, when using the
centralized approach, after receiving all cases from the other
agents each agent will proceed to purge its individual case
base to obtain an individual reduced case base CR ⊂ C.
In fact, a CBR agent Ai would have only needed to acquire
the the cases in the set CR − Ci to achieve this situation.
Therefore, all that is needed is for Ai to acquire from the other
agents a subset of cases (CR − Ci or a similar one) such that
allows a real improvement of Ai’s individual performance.

Therefore, a more intelligent strategy is to find a subset of
cases to be acquired from the other agents that is equivalent
(for the purposes of improving a CBR agent performance) to
the CR − Ci set. Our proposal is developing a distributed
and decentralized strategy that achieves exactly this effect:
instead of a centralized process we propose a protocol of
cooperation (that respects the agents autonomy of decision)
based on communication and bartering. This approach is also
feasible in situations where the different agents involved are
willing to share only part of their data, a situation where the
centralized approach is not feasible.

Communication may allow the agents to discover how
they can help one another. However, we need to define
which kind of communication protocol is needed to facilitate
the agents discovering which part of their respective data
should be exchanged and with whom — without recourse to
simply disclosing and transferring all data to all agents. The
next section (§2) presents our proposal for a communication
process aimed at discovering the individual informational
deficits and the possible sources to overcome them.



Case bartering provides an equitable and practical way
to reach agreements on what they effectively share once the
individual information deficits and the possible sources to
overcome them have been identified. Section 4 presents
an interaction protocol for case bartering and an individual
policy for the agents to decide on the contents of each barter
exchange. An experimental evaluation is discussed in Section
5, and the paper ends with a conclusions section.

2 Learning from Communication
Centralized CBR only considers learning from the problems
the CBR system solves, i.e. the Retain stage only considers
the cases “owned” by the system. In a distributed CBR
scenario, however, a CBR agent may learn from the cases
solved by another agent. For this purpose, it is necessary
to define a way to determine which cases of other CBR
agents are of interest for an individual CBR agent to retain
in addition to those it has already in the case base. In
this paper we consider that the cases of interest are those
that if present in an individual case base would improve the
individual performance of that CBR agent. In this section we
will present the process of communication (for information
exchange) and bartering (for case exchange) proposed for
improving the individual performance of CBR agents.

Previously, Ontañón and Plaza [2002] used case bartering
to improve performance in multiagent case-based reasoning.
However, their goal is that of improving performance for
situations where the individual case bases were biased (when
the contents of an individual case base is not a good sample
of all cases it is said to be biased). In this approach, the
communication process was simple and efficient: the only
exchanged information that were class-distribution statistic
data that indicated which agents have more (or respectively
less) cases of a particular class than the average, information
that is then used to barter cases of a specific class from
agents that have more than average to those that have less
than average. Therefore, Ontañón and Plaza [2002] did not
address the issue of improving a CBR agent performance
in general circumstances, since in the absence of bias no
bartering would take place.

In order to enrich the communication process we will use
the notion of justified prediction, introduced at [Ontañón and
Plaza, 2003] as a useful tool for multiagent learning. Using
justified predictions, an agent communicates to another agent
not just the solution of a given problem (the prediction) but
also a symbolic description of the aspects that were important
in determining the solution for that problem. Figure 1 shows
a graphical representation of the justification given by a CBR
agent in the domain of marine sponges identification (used
later in §5). This justification means: “The problem P be-
longs to the class Hadromerida because it has no Gemmules,
the spiculate skeleton does not have a uniform length and
the megascleres (in the spiculate skeleton) have a tylostyle
smooth form”. This justification was obtained using the
CBR technique LID [Armengol and Plaza, 2001], but eager
learning methods can also produce symbolic justifications —
e.g. a decision tree can produce as justification the collection
of branch conditions satisfied by the problem at hand.

Figure 1: Example of symbolic justification returned by LID
in the marine sponges identification task.

The main goal of a proactive communication process is
to establish an interaction among CBR agents that allows to
determine which information deficits each individual agent
has; once these deficits are determined the case bartering
process can proceed with the involved CBR agents possessing
the necessary knowledge to offer and accept profitable case
exchanges (see the case selection policy explained in §4.2).
However, determining those deficits is not obvious, since an
agent cannot determine its individual deficits.

Our proposal is then that an agent determines the deficits
of other agents. Imagine, for instance, that an agent Ai

sends three cases from its case base (c1, c2, c3) and stripping
them from their known solutions sends the three problems
(c1.P, c2.P, c3.P ) to an agent Aj . Agent Aj solves the three
problems and sends back to Ai three justified predictions
(Jc1

Aj
, Jc2

Aj
, Jc3

Aj
). Then, Ai compares the predictions with

the known solutions and determines, for instance, that Aj

has solved correctly problems c1.P and c2.P but has given
an incorrect solution to c3.P ; thus, Ai has discovered a
deficit of Aj , one of which Aj is necessarily unaware of.
Moreover, Ai is surely in a disposition to help Aj to improve
its performance by repairing this deficit. The direct solution
would be to offer case c3 to agent Aj in exchange of some
other case of Aj that would help Ai (case bartering).

In fact, since agents are exchanging justified predictions,
Ai can find several cases that would be interesting for Aj

to exchange with. Ai can examine its individual case base
for those cases that satisfy the symbolic description sent in
the justified prediction Jc3

Aj
and that have the same solution

as c3 — since any of those cases are likely to help Aj in
avoiding similar errors in the future. Therefore, we can
design a proactive communication process with which CBR
agents can find out which deficits the other agents have,
and determine the cases they own that can be useful for
other individual agents; engaging this process insures to
each participating agent that the other agents will detect its
own deficits and determine useful cases for him. The next
sections formalize these ideas defining justified predictions
(§3) and specifying a collaboration strategy for a system of
CBR agents (§4).

3 Justified Predictions
In this section we will formally define the concept of justi-
fied prediction and some related notions required to clearly



present our case bartering interaction protocol. We will use
the following notation for cases. A case c = 〈P, S〉 is a tuple
containing a case description P ∈ P and a solution class
S ∈ S. We will use the dot notation to refer to elements inside
a tuple. e.g., to refer to the solution class of a case c, we will
write c.S. Specifically, we define a justified prediction as:

Definition 3.1 A Justified Prediction is a tuple J =
〈S, D, P,A〉 where agent A considers S the correct solution
for problem P , and that prediction is justified a symbolic
description D such that J.D < J.P .

Thus, a justified prediction provides a way in which an
agent A can explain or justify, using a symbolic description
J.D, the reason why A predicts solution J.S for problem
J.P . The symbolic description has to subsume the problem
(J.D < J.P ) because J.D has to be a generalization of
J.P such that includes only those aspects of the problem that
have determined predicting J.S as the solution. For example,
Figure 1 shows a symbolic description that is a generalization
of (subsumes) a problem description (generated by the LID
CBR technique [Armengol and Plaza, 2001] on the sponges
data set used in §5).

Moreover, when an agent Ai receives an incorrect justified
prediction JAj from another agent Aj , Ai can examine this
justification, and determine whether it has some cases in its
local case base Ci that can contradict JAj , i.e. those cases that
would be useful to Aj to repair its knowledge deficit. These
cases are counterexamples of the justified prediction JAj

.

Definition 3.2 A counterexample of a justified prediction J
is a case c such that J.D v c.P ∧ c.S 6= J.S, i.e. a case c
subsumed by the justification J.D that has a solution different
from the predicted solution J.S.

Using these definitions, we can now proceed to present the
case bartering interaction protocol.

4 The PCCL Collaboration Strategy
We present now a collaboration strategy that supports a proac-
tive communication process and a case bartering protocol.

Definition 4.1 The Proactive Communication Case-based
Learning (PCCL) Collaboration Strategy is a tuple
〈IPCCL, DCS〉, where IPCCL is the PCCL interaction
protocol (§4.1) and DCS is the Case Selection decision
policy (§4.2) used to decide which cases to offer to a given
agent in exchange of other cases.

The PCCL interaction protocol does not separate a proac-
tive communication stage from a case bartering stage; in-
stead, PCCL interleaves proactive communication and case
bartering into a single process.

4.1 Case Bartering Interaction Protocol
The main idea of the case bartering interaction protocol is that
each time an agent A receives a new case c to be retained, A
uses c to find deficits of other agents. Specifically, A sends
them the problem c.P and looks for counterexamples for
any incorrect justified prediction received from them. These
counterexamples form the refutation sets. A refutation set
is a record that contains a set of coutnerexamples found for

A1A2
P1

c1 =hS1, P1i
J = hS2, D, P1, A2i

c2 =hS1, P2i
c3 =hS2, P3i

c4 =hS1, P4i

Set of subsumed
cases by     in the
case base

D

C1

C1

R = hA2, t, {c2, c4}i

Figure 2: Refutation set of an agent A1.

an incorrect justification received from some agent. Agents
keep collecting refutation sets and each time that two agents
have counterexamples to send each other (i.e. that an agent
Ai has some refutation sets for another agent Aj and at the
same time Aj has refutation sets for Ai), they will exchange
cases to improve their individual case bases. Figure 2 shows
how an agent A1 creates a refutation set R after receiving
from another agent A2 an incorrect justified prediction J at
a given time t. A1 checks in its casebase C1 fort those cases
subsumed by the explanation J.D (grey area), finding cases
c2, c3 and c4; the refutation set R incorporates those cases (c2

and c4) with correct solution S1.
Specifically, let A = {A1, ..., An} be a multi-agent system

where each agent Ai keeps a collection Ii = {R1, ..., Rn}
of refutation sets. When an agent Ai receives a case c to be
retained, it proceeds as follows:

1. Ai asks the rest of the agents to make a justified
prediction for c.P .

2. Every agent Aj that has received c.P generates a justi-
fied prediction Jc

Aj
and sends it back to Ai.

3. Ai now looks for counterexamples to all the received
justified predictions that are wrong (i.e. those which
predict a solution different than c.S). For each wrong
justified prediction Jc

Aj
for which a non empty set of

counterexamples C is found, add a refutation set R =
〈Aj , t, C〉 to Ii (where t is the current time).

4. Ai finally retains c into its case base Ci.

5. For each agent Aj for which Ai has some non empty
refutation sets in its collection Ii of refutation sets:

(a) Ai uses its DCS decision policy to construct the
belying set Bi→j (explained in §4.2).

(b) Ai informs Aj that Ai offers a number #(Bi→j) of
cases to barter with Aj .

(c) Then Aj uses its DCS decision policy to construct
the belying set Bj→i.

(d) If Bj→i = ∅ then, Aj has no cases to offer to Ai,
and thus Aj sends a message to Ai rejecting the



Ai Aj

Ii:

R1 = hAj , 0, {c5, c13}i

R2 = hAj , 5, {c21}i
R3 = hAj , 9, {c5, c17, c33}i

R2 = hAj , 4, {c5, c13}i

Bi→j = {c5, c13, c21, c17}

Differents sets of
counterexamples
found for different
justified predictions
received from Aj

Figure 3: A belying set Bi→j by agent Ai to agent Aj .

bartering offer. Otherwise, (Bj→i 6= ∅) agent Aj

sends a message to Ai accepting the bartering offer
and informing that has a number #(Bj→i) of cases
to barter with.

(e) When a bartering offer is accepted both agents
select a subset of cases from their belying sets with
exactly min(#(Bj→i),#(Bi→j)) cases. Then
those cases are actually bartered (i.e. a copy of each
bartered case is sent in a message), and the bartered
cases are removed from the stored refutation sets in
Ii and Ij .

The next section explains the decision policy used in the
protocol at step 5.a to select the cases offered to barter with
another specific CBR agent.

4.2 Case Selection Decision Policy
The Case Selection decision policy DCS is in charge of
selecting a set of cases that would be offered to a given agent
Aj in exchange of other cases.

Intuitively, when an agent Ai uses its DCS decision
policy to select cases, the process is the following one: Ai

has collected counterexamples in the refutation sets Ii =
{R1, ..., Rm} during the past iterations of the PCCL inter-
action protocol. Moreover, since the stored counterexamples
are cases that may help other agents to improve their pre-
dictions (since those cases bely some of the other agents’
wrong predictions), they are the cases that Ai will offer to
other agents.

Specifically, given an agent Ai that wants to offer cases to
another agent Aj , DCS works as follows:

1. Bi→j := ∅.
2. For each Rk ∈ Ii such that Rk.A = Aj

(a) Select a case ck ∈ Rk such that ck 6∈ Bi→j .
(b) If ck exists then Bi→j := Bi→j ∪ ck.

3. Bi→j is the set of cases to be offered to agent Aj .
We call Bi→j the belying set because this is the set of cases

that contradict the justifications received from Aj that were
found incorrect. Figure 3 illustrates this process, and shows
how an agent Ai generates the belying set Bi→j for another
agent Aj by selecting one case of each of the refutation sets
it has collected for Aj .
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Figure 4: Individual average accuracy with only individual learning
(IL) and with learning from communication (LFC).

5 Experimental Evaluation
In this section we empirically evaluate our learning from
communication framework. We have made experiments in
three different data sets: sponges, soybean, and zoology.
The Sponges data set is a marine sponges identification
task, contains 280 marine sponges (of class Demospongiae)
represented as a relational cases and they have to be identified
as pertaining to one of three different orders (Astrophorida,
Hadromerida or Axinellida). Soybean is a standard data
set from the UCI machine learning repository with has 307
examples pertaining to 19 solution classes, why the Zoology
data set is also from UCI and has 101 examples pertaining to
7 solution classes.

In order to evaluate PCCL, we have used a 5 agent system.
In an experimental run the data set is divided into training
set (90% of the cases) and test set (10%), a 25% of the
training cases are initially distributed among the 5 agents
without replication, i.e. there is no case shared by two agents.
The remaining training cases are sent to the agents one by
one. When an agent receives a training case, the agent uses
PCCL to find opportunities of learning from communication
with other agents. Moreover, periodically, test cases are sent
to the agents to evaluate their improvement in classification
accuracy as they receive more training cases.

Figure 4 shows the learning curves for a 5 agents system in
the sponges, soybean and zoology dataset. The vertical axis
shows the individual classification accuracy of the 5 agents
on average, and the accuracy values are evaluated (over the
horizontal axis) with different percentage of training cases
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Figure 5: Average number of cases retained with only individual
learning (IL) and with learning from communication (LFC).

learnt by an individual agent (from 25% to 100%). The
IL plot shows the average individual accuracy for learning
only from the training set, while the LFC plot show the
average individual accuracy for learning from the training set
and also from communication (using the PCCL collaboration
strategy). We can see that the additional case learning
obtained from case bartering clearly improves individual
accuracy in the three data sets. Moreover, this improvement
is achieved with a relatively modest number of additional
cases (compared to what a “large” number of cases would be
sharing in a scenario where all cases are shared). Finally, the
difference in accuracy is statistically significant for the three
data sets according to a t-test with p = 0.05.

Figure 5 shows the evolution of the average individual
case base size of the CBR agents both for IL and LFC: the
horizontal axis represents percentage of training cases learnt
and the vertical axis shows the number of cases retained in an
individual case base on average. The three plots of Figure 4
also show that the proactive communication process increases
the speed at which an individual CBR agent achieves higher
accuracy values. Moreover, the accuracy with case bartering
keeps getting higher as the training set increases, showing
that the cases learnt from communication are useful for the
individual CBR agent. Thus it is clear that with more
cases (acquired via proactive communication) the average
individual accuracy improves.

Let us now compare the accuracy achieved using case
bartering with that achieved by the (random) cases in the
training set. For instance, in the zoology data set accuracy
is 82.18 with 17.74 retained cases on average (at 70%) using
case bartering, while without bartering accuracy is only 80.73

with 18.18 retained cases (at 100%); that is to say, with a
smaller number of cases the accuracy is higher — and this
effect is due to the selection of cases realized in PCCL.
Another example, in the sponges data set, is that accuracy
with case bartering is 82.07 with 50.4 retained cases (at 55%)
while accuracy without case bartering is 79.21 with 50.4
retained cases (at 100%); i.e. the same effect is present.
In the soybean data set this effect is not as apparent: the
reason is that accuracy rapidly degrades when a CBR agents
has few cases, and in this situation any new case improves
accuracy. Summing up, the results in the three experiments
show that the cases acquired via case bartering are useful
not just as being new cases, but they are useful specifically
for the individual for which they have been selected in the
PCCL collaboration strategy. That is to say, the case bartering
protocol (§4.1) together with the Case Selection decision
policy (§4.2) achieve the selection and effective retention of a
small and individualized set of cases that clearly improve the
case base of each CBR agent.

The effect of achieving more compact case bases (for a
given level of accuracy) can only be explained as a result of
three factors. Firstly, a “good selection” (in the sense of being
individualized) of cases is obtained by the DCS decision
policy; otherwise more compact case bases would not achieve
higher accuracy levels. Secondly, a “small enough” set of
cases is selected by the DCS decision policy; otherwise the
size of case bases could grow by means of bartering a much
larger amount of cases. Thirdly, the bartering protocol is
effective in transforming individual goals (improving one’s
accuracy) into a mutually beneficial strategy.

Finally, let us focus on step 5.e of the interaction protocol,
where the number of cases effectively bartered is determined.
Step 5.e takes the minimum cardinality of the two belying
sets Bj→i and Bi→j assuring the barter exchanges cases on
a 1 for 1 basis. At first sight, this may seem too restrictive,
since if agent Ai offers 5 cases to Aj who offers back 1 case
then only 1 case is bartered and the other 4 (that might be
useful for Aj) are “lost.” In order to evaluate this assumption,
we performed the same experiments changing the step 5.e of
the interaction protocol in a way that as long as the two agent
have some cases to barter they are exchanged regardless of
their numbers —i.e. we allow n : m barters. In principle,
this is not unreasonable: traditional barter does not formally
enforce a 1 : 1 exchange of goods since the utility of goods
for each barterer may be quite different. This may also be true
for case bartering, e.g. for a 1 : 3 exchange the single case
may be very useful for the recipient.

The experiments showed that this looser n : m exchange
policy is not better than the strict 1 : 1 exchange policy.
Specifically, the experiments showed in the three data sets
that n : m bartering achieves roughly the same accuracy
as 1 : 1 bartering but the average individual case base size
appreciably increases. Thus, each CBR agent retains more
cases from the proactive communication process but they are
redundant, since they are not increasing the average individ-
ual accuracy. This situation is an instance of the principle
mentioned in the Introduction section: simply retaining all
cases is not always the best retain policy. If we examine more
deeply the reason for this effect, we notice that the selection



policy DCS only selects one case from each refutation set.
The reason is that, in principle, one counterexample is enough
to prevent an agent Aj to make the same error again. Sending
more than one counterexample to an agent Aj for the same
justified prediction will not add extra value to Aj , and will
(unnecessarily) increase its case base. The experimental
results confirm that one counterexample is enough since the
accuracy improvement is roughly the same. We can then
conclude that the PCCL collaboration strategy (case bartering
protocol plus case selection policy) exchange an adequate
number of cases and not more than those necessary.

6 Conclusion
The content of a case base in a CBR system is traditionally
determined by applying retention policies and/or case base
management techniques [López de Mántaras et al., 2006].
However, these traditional approaches assume that there is
a single source of case acquisition (the problems solved by
the CBR system), while we have presented a situation where
communicating with other CBR agents is a second source
for case acquisition. We have presented a proactive commu-
nication process, by which a CBR agent sends problems to
other agents and acquires their justified answers; this process
is proactive because it is engaged to acquire the information
that will later be useful in case bartering.

During the proactive communication process, CBR agents
not only solve the received problems, they use justified
predictions to express the aspects they took into account in
making that prediction. The symbolic description that is
contained in a justified prediction is what allows an agent
to determine not only when another agent fails, but the
particular deficit that caused that failure. Comparing the
symbolic justification with its own cases, a CBR agent can
discover which cases (counterexamples) can be useful for
another agent to avoid a similar failure in the future. Notice
that it is the existence of justified predictions (introduced at
[Ontañón and Plaza, 2003]) that allows such a fine-grained
analysis and thus supports later a more focused bartering of
cases process resulting in an overall improvement with only
a relatively small number of cases exchanged.

Previous work on case bartering [Ontañón and Plaza,
2002] used a much less informed decision policy (ICB), and
would not improve the performance of CBR agents in our
experimental setting. ICB is useful when CBR agents have
biased case bases —i.e. less (resp. more) than average
number of cases of a certain class. Biased CBR agents have
lower accuracy that unbiased ones and ICB guides a process
of bartering cases that allows the CBR agents to eliminate
all or most of their bias (achieving the “nominal” accuracy).
However, PCCL has been experimented with in this paper
with already unbiased CBR agents, and the improvement
is therefore on top of the “nominal” accuracy. The use of
justified predictions is precisely the tool that allows to detect
the cases that need to be bartered.
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