
Poolcasting: a Social Web Radio

Architecture for Group Customisation

Claudio Baccigalupo and Enric Plaza

IIIA - Artificial Intelligence Research Institute

CSIC - Spanish Council for Scientific Research

Campus UAB, 08193 Bellaterra, Catalonia (Spain)

Vox: +34-93-5809570, Fax: +34-93-5809661

{claudio,enric}@iiia.csic.es

Abstract

Poolcasting is a social Web radio architecture in which

groups of listeners influence in real time the music played

on each channel. Poolcasting users contribute to the radio

with songs they own, create radio channels and evaluate the

proposed music, while an automatic intelligent technique

schedules each channel with a group-customised sequence

of musically associated songs. The benefits of this approach

are multiple: on one hand music producers can increase

the exposure of their songs to specific target audiences; on

the other hand, music consumers can easily discover new

songs that match their preferences and group with people

with whom they share similar listening experiences.

1 Introduction

In 2005, online radio listening increased 18 percent and

free streaming of online music increased 37 percent [12].

About 52 million people tune in to Internet radios each

month [3]. A recent survey revealed US consumers are

moving to Web radios because [2]: they can listen to audio

not available elsewhere, they can control/choose the music

played, they get more music variety and more of new mu-

sic. Users see Web radios as a simple way to listen for free

to new and varied music; in the uncountable myriad of radio

channels available on the Internet, they often find the station

that best fit their musical tastes.

From the point of view of music providers and Web ad-

ministrators, though, Web radios are not so simple. In first

place, to set up a Web radio, a large library of songs in a

digital format is needed, whether acquired by purpose or

imported from a physical source. Additionally, a radio nor-

mally serves several channels at the time, and each channel

needs dedicated bandwidth and storage space, and needs to

be scheduled in advance, specifying which songs will be

playing on each channel. After a Web radio has been set up,

its library has to be continuously kept up to date, in order

to guarantee new music to the audience and to avoid repe-

titions. Since competitiveness in the world of Web radios

is very high, radios that do not conform to these points are

soon abandoned, for changing from a station to another is

as easy as clicking on a hyperlink. Indeed, this is the only

action listeners can take when they do not like the songs

played on a Web radio.

In this paper we present a network architecture that both

simplifies the management of Web radios and improves the

user listening experience and fidelity towards Web radio sta-

tions. This architecture, called Poolcasting, takes into ac-

count listeners not as a purely passive audience, but rather

as a proactive public who is given the tools to interact and

to collaborate, in order to adapt the music played on each

channel according to their tastes. Poolcasting automates

and facilitates the creation and management of a Web ra-

dio in several aspects. Firstly, no large library of songs is

needed, for the streamed music comes from the personal

digital libraries of those users who have agreed to share

them. When a user shares her personal library, Poolcast-

ing partly infers her musical preferences by analysing which

songs and artists are contained in her library. Thus, for each

channel, Poolcasting combines the individual preferences

of all of its listeners to automatically create a customised

sequence of songs that matches both the preferences of the

audience and some musical associations criteria. Poolcast-

ing proposes a new social Web radio experience, where the

audience is able to influence in real time the music being

played on each channel. At the same time, Poolcasting im-

proves the administrators’ work, who can spend less effort

in set up and maintenance, and learn more about their listen-

ers’ musical preferences, to eventually focus on promoting

new targeted music to their audience.



2 Social features in Poolcasting

A social revolution has recently shaken the Internet, with

media content being more and more created and distributed

by common users rather than by large corporations. In this

scenario, Web radios seem to have remained quite unaf-

fected. Similarly to terrestrial radios, Web radios still fol-

low a classical one-to-many broadcast model, where lis-

teners are not involved in the set up and programming of

a music channel. Given that no generic Web radio can

completely match the complex taste of a listener, users of-

ten switch from a station to another, always looking for a

“temporarily better” Web radio. To get around this lack of

user fidelity, several Web-based music recommenders have

been implemented that provide users with personalised mu-

sic streams. Pandora1, for instance, prompts its visitors

for a favourite song or artist, and produces a stream of re-

lated songs, while Last.fm2 assembles listening experience

data from the users’ media players to provide individually

tailored music stations. These systems improve the user

listening experience in terms of personalisation; however

they completely ignore the social nature of radio to gather

communities of related listeners. These recommenders nar-

rowcast music, creating one personalised but isolated con-

text for each user. On the contrary, Web radios as such are

supposed to broadcast their signals to a large audience.

Poolcasting merges both approaches, providing public

channels that everyone can listen to, where the musical con-

tent of each channel is customised in real time for the whole

group of listeners. In this section we first describe how

users tune in to a Poolcasting Web radio (Sect. 2.1); then we

present the distinguished features that let the audience of a

channel collectively influence the music played (Sect. 2.2);

finally we show how both listeners and music providers can

benefit from this social approach (Sect. 2.3).

2.1 Basic interaction: passive listeners

Listening to Web radios is very simple. Users just have

to navigate with a Web browser to the radio home-page,

click on one of the available channels, and an appropriate

streaming media player (e.g., iTunes, VLC, Winamp) opens

up playing the music broadcast from the radio station. In

Poolcasting, this process has not been changed. Figure 1

shows an example of the Web interface of a Poolcasting ra-

dio with three active channels; clicking on a Listen now

button opens a media player that immediately starts playing

music from the selected channel.

1Available at: http://www.pandora.com
2Available at: http://www.last.fm

2.2 Social interaction: active participants

Tuning in to a Poolcasting Web radio channel is a con-

cise and intuitive process, so that users who just want to pas-

sively listen to music can do so. However, users who want

to actively participate in the selection of the music played

can do so swiftly as well, with different functions offered

by the Web interface.

Sharing personal music libraries. Web radios usually

broadcast songs from a centralised music library that is set

up and maintained by the administrators, who spend time

and effort in acquiring new songs and keeping the collec-

tion continuously up-to-date. Still, some listeners may find

the library poor or inappropriate; for instance it may contain

too many mainstream tracks, or too many obscure songs, or

it may be not sufficiently updated.

Poolcasting introduces the ability for listeners to share

their personal music libraries, that is, to contribute with

songs they own to the collection of music the radio can

broadcast. To share one’s music library and become an Ac-

tive Participant, a user has to click on the Share your mu-

sic library link and indicate the path to the folder where

the library is stored (see Fig. 2). Right now, sharing is im-

plemented only for users whose library is managed using

Apple iTunes and is stored in a folder accessible via HTTP.

Poolcasting accesses this folder and retrieves the index file

where library information is stored (a file called iTunes Mu-

sic Library.xml for iTunes-managed libraries). Once this

file has been loaded, all the songs in the library are virtually

included in the Music Pool of the radio. This means that, as

long as the user is connected, Poolcasting can pick from her

library any song to be played on any radio channel.

The advantages of a distributed collection of songs over

a classical centralised music library are numerous. Firstly,

Figure 1. A Poolcasting Web radio.



Figure 2. Sharing a personal library.

a distributed collection of songs is more dynamic: when a

new user shares her library, the songs contained in her li-

brary enter the Music Pool; when she leaves, these songs

are removed; in general the set of songs in the Music Pool

continuously varies over time. Next, a distributed collection

is more up-to-date: while an administrator would usually

update the radio library once in a while (e.g., once a week),

individual users add new songs to their libraries as soon as

they acquire them, so these instantly enter the Music Pool.

A distributed collection also contains more of the longed for

“audio not available elsewhere”: in fact personal libraries

often include songs not publicly distributed (e.g., personal

audio material, uncommon records, alternative versions of

known themes). Finally, a distributed collection contains a

finer selection of songs: while a centralised library is nor-

mally a massive heterogeneous collection of albums, not fil-

tered by any quality criteria, personal libraries usually con-

tain themes the owner has selected and appreciates.

Notice that Web radios copyright and license policies are

not affected by the the fact that Poolcasting retrieves songs

from personal libraries. In fact, whether a radio station pays

a fee for on-air time, for number of streamed songs or for

number of listeners, the fee still applies; whether the broad-

cast songs are copyright-free, no fee has to be paid; when

the personal libraries contain DRM-protected songs, these

are not broadcast.

Influencing the music selection of the channels. An-

other advantage of having users share their personal li-

braries is that Poolcasting is able to implicitly infer the

users’ musical preferences by analysing listening experi-

ence data stored in the library index file. For instance Apple

iTunes stores the play count of each song (how many times

a song was played) and the explicit rating (1 to 5 stars) as-

signed by the user. Exploiting these data, Poolcasting builds

a partial preference model for each active participant, under

the intuitive assumption that the higher the rating assigned

to a song and the higher its play count, the more the user

likes that song.

The Poolcasting Web interface also allows users to ex-

plicitly state their preferences towards any song played or

scheduled on a channel. For each channel, Poolcasting pro-

vides a channel-specific Web page (see Fig. 3) with real-

time information (current track playing, history of played

tracks, upcoming tracks) and links to explicitly evaluate and

request songs. When a participant assigns a rating to a song,

Poolcasting accordingly updates her preference model for

that song. When a participant requests a track to be played

on channel, Poolcasting updates her preference model as

well, assigning a high preference to that track.

Preference models (made of both implicit and explicit

musical preferences) are internally used by Poolcasting to

play, on the channel a participant is listening to, more songs

she probably likes (e.g., songs from her best-rated artists)

and less songs she probably dislikes. Notice that Poolcast-

ing does not immediately and surely play a requested song,

for this would infringe most Web radios copyright policies.

Creating radio channels. Commonly Web radio provide

their audience with a fixed set of channels. Some of these

may have no listeners at all; still the administrators will have

spent time in their creation, and money in songs acquisition,

storage space and bandwidth. Large as the number of chan-

nels can be, some listeners may still be unsatisfied for they

won’t find the channel that best fits their taste.

Poolcasting introduces the ability for listeners to create

channels. Every listener can browse the collection of active

channels and listen to one of them, or else create a new

one by clicking on the Create a new channel link and

defining its name, description and Channel Pool, that is, the

subset of songs that is allowed to play on that channel (see

Fig. 4). The Channel Pool is defined in terms of metadata

restrictions; for instance “Jazz from 1967” or “Electronic

Dance at 135 BPM”. Once a channel is created, it appears in

the list of the available channels. Poolcasting automatically

Figure 3. Detail of a Web radio channel.



Figure 4. Creating a Web radio channel.

provides a music stream for that channel and programmes it

with music that fulfils the specified restrictions.

2.3 Examples of user interaction

We present some situations where the social features of

Poolcasting improve the listening experience when com-

pared to a common Web radio.

Example 1. Paul likes Soundtrack music (music com-

posed for movies), and is disappointed for most “Sound-

track” Web radios mainly broadcast popular songs in-

spired by or included in movies. John enters a Poolcast-

ing Web radio, shares his library (containing many Sound-

track themes), creates a new channel as “genre = Sound-

track” and starts listening to it. Initially, the Channel Pool

only contains themes from his library; this means John will

hear a sequence of his own songs, automatically selected

and ordered without the need for him to manually com-

pile a playlist. John promotes the channel on a Soundtrack-

related Web forum, inviting people to join the channel and

share their own themes. As the collection grows, different

Soundtrack-lovers from different places will listen together

to a unique stream of music, automatically ordered and gen-

erated to match their tastes. John, for instance, will listen

to some songs he does not own, but all the same appreci-

ates, mixed with other songs he already knows and likes.

At one moment, John recalls a Soundtrack theme from his

library that he supposes other listeners will like to hear, so

he requests the theme to be played. The audience likes the

proposed song and rates it positively. This implicitly in-

creases John’s reputation as a good human recommender in

the context of Soundtrack music. Music labels also benefit

from this architecture: to promote new soundtracks they just

have to join the Poolcasting radio and share their records.

Soundtrack themes will then be automatically scheduled on

the appropriate channel and broadcast to the specific group

of listeners that like that genre.

Example 2. Several friends own large music libraries in

their offices, but do not have any portable device where to

copy them on. One day they decide to set up a home party

where the music played will be “Dance from the Nineties”.

Before leaving their offices, they all enter a Poolcasting ra-

dio, share their libraries and create a channel defined as

“genre = Dance and year > 1990 and year < 2000”. Once

at the party, the host connects to the same Poolcasting ra-

dio channel. The media player will then start playing music

tailored for the party, where the sequence of songs, auto-

matically ordered and group-customised, will fairly satisfy

all the participants, without the need for a human DJ.

Example 3. A German musician performs as a DJ in a

night club and needs to stay continuously up-to-date with

the last “Progressive Trance” hits (a subset of electronic

dance music where BPM is within 125 and 135). He en-

ters Poolcasting and creates a niche-targeted “Progressive

Trance” channel. He also shares his library, which con-

tains published tracks, copyright-free unpublished tracks

produced by himself and live performances. As more peo-

ple from all over the world join this channel and share

their music, he suddenly gets to listen to Progressive Trance

tracks that are completely unknown in Germany but might

be appropriate for his upcoming performances. Meanwhile,

his own tracks are broadcast on the channel, and are listened

by a specific niche of public that will probably appreciate

and evaluate his works better than a generic audience.

3 Poolcasting architecture

This section explains in detail the architecture of a Pool-

casting radio, how the social features we have described are

integrated and how a sequence of songs is customised for a

group of listeners/participants.

The components of a Poolcasting Web radio are (see

Fig. 5): a Database, which contains all the data regard-

ing songs, channels, listeners, participants; a Web Interface,

which allows users to open the radio streams, create chan-

nels, share libraries and evaluate songs; Active Participants,

users who share their personal libraries using the Web In-

terface; the Music Pool, containing references to every song

shared by every participant; the Library Analyser, a module

that builds individual preference models analysing the lis-

tening experience data of the personal libraries; Preference

Models, describing the musical preferences of each partic-

ipant, either inferred from personal libraries or from users’

explicit ratings; a Musical Associations model, containing

a musical association degree for each pair of songs and for



Stream Generator

Streaming Server

Passive listener

CURRENT LISTENERS

Song Buffer

ACTIVE CHANNELS

Database

I N T E R N E T

MUSICAL ASSOCIATIONS MODELPREFERENCE MODELSMUSIC POOL

available songs

requests and evaluations

Active participant

download song scheduled songcreate channel

Web pages

browse channels OGG stream (256 kbps)

list of

listeners
listening experience

knowledge to schedule

Library Analyser

share library

list of shared songs

Web Interface

Song Scheduler
audio signal

MP3 stream (64 kbps)

Figure 5. Architecture of Poolcasting.

each pair of artists in the Music Pool; Channels’ references,

containing for each channel its name, its description, its

Channel Pool (definition of which songs can be played) and

it list of current listeners; the Song Scheduler, a module that

selects in real time which songs to play on each channel;

a Song Buffer, where songs that are to be played are tem-

porarily cached; the Stream Generator, a module that loads

songs from the Song Buffer and transforms them into un-

compressed audio signals; the Streaming Server, that con-

verts the uncompressed audio signals to music streams and

broadcast them to the listeners; Listeners, who employing

an appropriate media player connect via the Internet to the

Streaming Server to listen to their favourite channel.

3.1 Music Pool and Preference Models

When a participant shares her library (see Fig. 2), the Li-

brary Analyser retrieves and parses the index file from the

user library and tries to identify each track of the library

by matching its title and artist against a public large music

database. In our implementation, we use the catalogue of

the Web-based music community MyStrands3 which con-

tains over 6 million songs and offers a Web service called

OpenStrands that automates the matching queries. After

this process, every song from the user library is virtually

included in the Music Pool and, as long as the user is con-

nected, can be scheduled to play on any channel. No audio

file is retrieved at this step.

The Library Analyser also performs another task:

analysing the listening experience data included in the re-

trieved index file, builds a Preference Model of the user. A

Preference Model describes the degree in which each par-

ticipant likes each of the songs included in the Music Pool.

Namely, we define for each participant P and for each song

S a preference degree g(P, S) with values in [−1, 1], where

-1 means P hates S, 1 means P loves S and 0 represents

indifference. The technique used to assess the preference

3Available at: http://www.mystrands.com

degree of P for a song S in her library considers the rating

P assigned to S and the play count of S in the library of

P , both normalised according to the average listening be-

haviour of P . In other words, if P has given S a rating

higher than (resp., lower than, equal to) the average rating

assigned by P , then the normalised rating n(P, S) of P

for S is higher than (resp., lower than, equal to) 0. The

same happens with the normalised play count m(P, S) of

S for P . For any non-rated song, n(P, S) = 0; for any

unheard song, m(P, S) = 0. For any song S in the li-

brary of P the preference degree of P for S is defined as:

g(P, S) = θn(P, S) + (1 − θ)m(P, S), with 0 6 θ 6 1
(currently θ = 0.5). For songs not included in the personal

library of P , we define g(P, S) following the assumption

that if P does not own song S but owns other songs from

the same artist of S, then her preference for S can be esti-

mated as her average preference for those songs.

3.2 Musical Associations Model

In order to provide a satisfactory listening experience to

the radio audience, we want to ensure the property that each

song played on a channel is musically associated with the

song it follows. This is intended to emulate the behaviour of

terrestrial radios where human DJs programme sequence of

songs that musically “flow” one after the other. While a hu-

man DJ knows from experience which songs are associated,

Poolcasting needs an automatic technique to obtain a model

of good musical associations between songs or artists.

For this purpose, we have elaborated a pattern mining

technique [5] that, by analysing the co-occurrences of songs

and artists in a large collection of human-built playlists, es-

timates a song association degree for each pair of songs

and an artist association degree for each pair of artists

in the Music Pool. Briefly, this technique evaluates that

two songs or artists are strongly associated (or else, mu-

sically “flow” one after the other) when they occur together

in many human-built playlists, few songs separate them in



each of these playlists and they do not occur separately (that

is, only one of the two occurs) in many playlists.

Other techniques can be implemented to build a musi-

cal associations model. We chose playlists as a source of

knowledge because human-built playlists include cultural

information that cannot be extracted from audio signal, and

also contain songs in a specific order, which can be pre-

served when programming a radio channel.

3.3 Group customisation and satisfaction

The Song Scheduler is responsible for programming in

real time a sequence of songs for each channel. Using

the Musical Associations model and the individual Pref-

erence Models, we want the Song Scheduler to arrange a

sequence of songs that a) are musically associated and b)

match the preferences of current audience. Since listeners

of the same channel can have diverging preferences, a crit-

ical challenge is how to combine different individual pref-

erences to satisfy the group as a whole. Different strategies

can be used to face this issue. A Plurality Voting strategy,

for instance, would compile a sequence by accumulating

songs that match the individual Preference Models of the

majority of the current listeners. Though apparently demo-

cratic, such an approach does not consider the degree of

satisfaction of listeners over time. For instance, it could

compile a sequence in which each song satisfies the same

majority of listeners, eventually leaving a large minority of

the audience totally unsatisfied with the sequence played.

To guarantee more fairness among listeners, we have de-

veloped a different strategy [4]. Rather than equally con-

sidering all the listeners’ Preference Models, we assign a

higher weight to the preferences of the listeners that were

less satisfied with the last songs played, so that eventually

every participant gets to listen to some songs she likes. For

example, let P1, P2 and P3 be three listeners of a Pool-

casting channel, let X be the song currently playing, and let

Y be the next song scheduled to be played. Let the indi-

vidual musical preferences for song Y be: g(P1, Y ) = 1,

g(P2, Y ) = 1 and g(P3, Y ) = −0.5, that is, both P1 and

P2 like song Y while P3 quite dislikes it. Since P1 and

P2 are somehow “favoured” in this selection against P3,

the musical preferences of P3 will have a higher weight in

determining which song to play on the channel after Y .

3.4 Song Scheduler

The Song Scheduler is a module integrated in the Pool-

casting architecture that uses knowledge from both the Pref-

erence Models and the Musical Associations model to select

in real time which song to play on each channel. The task of

the Song Scheduler is defined as follows. Let H be a chan-

nel, let Y be the last song scheduled on channel H and let

φ(H) be the Channel Pool of H , that is, the subset of songs

of the Music Pool that fulfils the restrictions of channel H

(e.g., “genre = Soundtrack”). Before the streaming of song

Y terminates, the Song Scheduler has to schedule the next

song to play on channel H after Y , where this song should

be a) included in the Channel Pool φ(H), b) musically as-

sociated with Y and c) satisfactory for the current audience

of channel H .

There are several ways to programme a Song Scheduler

in order to achieve these properties, depending on which

property is considered more relevant. As a matter of fact,

the precise implementation is not critical for the Poolcast-

ing architecture: the Song Scheduler only represents a mod-

ule that takes in input knowledge about Music Pool, Prefer-

ence Models and Musical Associations and returns in output

the next song to schedule on each channel. For instance, a

Song Scheduler could be programmed to play some group-

preferred songs even if they do not strictly satisfy the Chan-

nel Pool; or else it could assign more importance to mu-

sical associations than to the Preference Models; or else it

could completely ignore musical associations and be guided

only by the preferences of the audience. In our current im-

plementation we have opted for a Case-Based Reasoning

(CBR) technique [4], which is in our expectations the most

efficient approach for scheduling many channels in real-

time, balancing the contributions of both musical associa-

tions and listeners’ preferences. This CBR approach works

in three consecutive steps:

• (Retrieve Process) when a new song has to be sched-

uled on a channel, the Musical Associations model de-

scribed in Sect. 3.2 is used to retrieve from the Channel

Pool a subset of candidate songs that are musically as-

sociated with the last scheduled song;

• (Reuse Process) Preference Models are used to sort the

candidate songs and to pick the one that best matches

the group preference of the current listeners, according

to the strategy described in Sect. 3.3;

• (Revise Process) participants can evaluate the pro-

posed song before it is streamed; whether user feed-

back is strongly negative, the song is substituted in

real-time for the next best candidate of the Reuse step.

3.5 Poolcasting at works

The architecture described in this paper has been im-

plemented and an experimental Poolcasting Web radio is

currently running within the internal network of our Re-

search Institute. The radio runs on an Intel-based Mac Pro

server and was developed with open source software and

standard formats: MySQL for the Database, liquidsoap for

the Stream Generator, icecast for the Streaming Server,



Apache for the Web Server, Ruby for both Song Sched-

uler and Library Analyser, Rails for the Web framework,

and XHTML/CSS for the Web Interface. A private Web In-

terface allows the administrators to start/stop the server, list

the active channels, browse the listeners’ Preference Models

and update the Musical Associations Model. Each channel

is provided in both MP3 and OggVorbis encoding formats.

Hereafter we will explain the cycle of life of a radio chan-

nel.

A Poolcasting Web radio is idle until a participant (or

an administrator) creates a channel using the Web Interface.

When this occurs, the Streaming Server opens a new Inter-

net stream for the channel and waits for the Stream Genera-

tor to fill it with music. The Stream Generator, in turn, asks

the Song Scheduler to pick from the participants’ libraries

one song to be played on the channel. The Song Sched-

uler checks the Channel Pool and the current audience and

selects a song X , then connects via HTTP to the personal li-

brary where X is stored and downloads the file into the local

Song Buffer. In turn, the Stream Generator transforms that

file into an uncompressed audio signal that the Streaming

Server finally broadcasts to the connected listeners. Once

the channel is up and running, the Stream Generator has

to continuously feed the Streaming Server with music; any

delay would cause an annoying interruption in the stream

broadcast to the audience. For this reason, the Stream Gen-

erator works “two songs in advance”: while song X is be-

ing broadcast to the public, and the next song Y has been

cached into the Song Buffer, ready to be played, the Stream

Generator asks the Song Scheduler to select a song Z that

will play on the channel after Y . Then, when X ends, Y is

loaded to the Streaming Server, Z replaces Y in the Song

Buffer, and a new song is selected by the Song Scheduler.

This approach prevents delays that may occur when a per-

sonal library becomes unavailable because a user has sud-

denly disconnected from the system. In this way the Web

radio can serve for each channel an uninterrupted music

stream, without gaps between songs. The Streaming Server

also maintains in the Database an updated list of the IP ad-

dresses of the listeners of each channel; channels that have

not had any listener are automatically disabled after some

time, in order to save bandwidth.

Our future work includes: testing listeners’ satisfaction

and loyalty, introducing a “reputation degree” for each par-

ticipant, improving the Preference Models, allowing users

to share only part of their personal libraries, introducing the

use of tags to define channels and better characterise songs,

implementing library sharing also for libraries not managed

with Apple iTunes and deploying a comprehensive Pool-

casting open source package.

4 Related Work

Previous work has addressed the generation of a se-

quence of music to maximise the satisfaction of a group

of listeners. MusicFX [10] is a system that works in a

gym centre to select, from an existing collection of radio

stations, the one that maximises the “mean happiness” of

the public. For this purpose, users have to manually indi-

cate their preferred genres, while Poolcasting infers Prefer-

ence Models from the listeners’ personal libraries. Adap-
tiveRadio [8] is a group-based Web radio where listeners

can show discontent for a song, so that no other song from

the same album will be played. Thus, user interaction is

limited to veto song selections while in Poolcasting songs

can also be promoted. Moreover, Poolcasting defines mu-

sical associations not just for songs from the same album,

but exploiting co-occurrence analysis of a large collection

of playlists. Flycasting [9] is an online radio system where

channels are group-personalised based on users’ explicit re-

quests, while Poolcasting creates a customised and ordered

musical sequence combining users’ requests, evaluations,

implicit preferences and musical associations to match the

overall satisfaction.

Other network architectures have been proposed to pro-

vide personalised music listening experiences following a

distributed approach. r-MUSIC [13] describes a (local)

wireless network architecture where people share music

from their handheld devices and vote which songs should

be streamed from a centralised speaker; however Poolcast-

ing proposes a (global) Internet radio architecture, in which

individual preferences are not obtained with a voting mech-

anism but combining explicit and implicit listeners’ musi-

cal preferences. StreamOnTheFly [1] is a peer-to-peer

network for local radios to publish their audio material on

the Internet, where users find shared radio programs ei-

ther browsing the content archives or constructing complex

queries. The novelty of Poolcasting is that participants do

not only share audio content, but also their listening experi-

ence; in fact each Poolcasting channel virtually gathers peo-

ple with similar tastes that listen at once to the same music

content. AXMEDIS [6] proposes a multi-channel architec-

ture with a peer-to-peer platform to reduce costs for con-

tent production and distribution in the digital-content mar-

ket. Poolcasting also addresses the issue of reducing the

costs of music distribution on the Internet, and proposes a

Web radio architecture that both preserves protection poli-

cies for musical content and increases user accessibility to

online music.

5 Conclusions

Nearly one-fourth of frequent online music users say the

ability to share music with others in some fashion is an im-



portant criteria when selecting an online music service [11].

Exchanging mix-tapes used to occur with friends in social

environments, but with online music sharing much of this

sociality is stripped away [7]. Peer-to-peer networks have

made exchanging music files very easy, though a small ef-

fort has been devoted to help people share their listening

experiences; that is, to provide a framework where people

with similar tastes can virtually gather together to listen at

once to the music they like. Current Web radios ignore

the fact that people are more and more eager to collabo-

rate on the Internet, and offer free music streams which are

not customised to the listeners’ preferences. In this paper

we have presented Poolcasting, a social Web radio architec-

ture where a) users can create channels that best match their

tastes, b) user preferences are inferred from the listening

experience data contained in their personal libraries and c)

users can actively participate in the music scheduling pro-

cess by sharing their personal libraries and by requesting or

evaluating the scheduled songs.

Poolcasting represents an innovative and powerful distri-

bution medium that mediates between music providers and

music consumers. Any musician or music label, by reg-

istering to Poolcasting, can submit to the Music Pool her

produced music, that is later distributed along the differ-

ent channels. Since the content of each channel is defined

by the users themselves, target audiences naturally emerge

from this consumer-driven process. Poolcasting helps pro-

ducers increase exposure to the public, while customised

channels prevent consumers from “information overload”,

that is, being exposed to an immense, unfiltered, unorgan-

ised and unmanageable amount of songs. Poolcasting en-

ables a streamlined process that facilitates the matchmak-

ing between music producers and communities of similar

listeners, organised around group-customised channels. In

the future, we plan to expand the social interaction among

users with the possibility to share not only listening expe-

riences, but also profiles, opinions and other group-related

activities.

In terms of copyright issues, any public Poolcasting ra-

dio should pay the same license fees applied to current Web

radios to stream over the Internet. These licenses change

from country to country; for instance, SGAE manages mu-

sic digital rights in Spain, where in 2007 the license fee

for a small non-commercial streaming-only Web radio has

a monthly cost of 53.25 euros4.

6 Acknowledgements

This research is partially supported by the MID-CBR

(TIN2006-15140-C03-01) project and by a MyStrands

scholarship.

4More details on SGAE fees at: http://www.sgae.es

References

[1] R. Alton-Scheidl, A. Micsik, M. Pataki, W. Reutz, J.

Schmidt and T. Thurner. StreamOnTheFly: A Peer-to-

Peer Network for Radio Stations and podCasters. In:

Proc. of the AXMEDIS ’05 Conference, 2005.

[2] Arbitron-Edison Media Research. Reasons Why US

Consumers Listen to Web Radio. May 2005.

[3] Arbitron-Edison Media Research. Web Radio Listen-

ing Up 50%. April 2006.

[4] C. Baccigalupo and E. Plaza. A Case-Based Song

Scheduler for Group Customised Radio. In: Proc.

of the ICCBR 2007 Conference, LNCS (LNAI), vol.

4626, 2007.

[5] C. Baccigalupo and E. Plaza. Mining Music Social

Networks for Automating Social Music Services. In:

Workshop Notes of the ECML/PKDD 2007 Workshop

on Web Mining 2.0, 2007.

[6] P. Bellini and P. Nesi. An Architecture of Automatic

Production of Cross Media Content for Multi-channel

Distribution. In: Proc. of the AXMEDIS ’05 Confer-

ence, 2005.

[7] B. Brown, A. Sellen and E. Geelhoed. Music Sharing

as a computer supported collaborative application. In:

Proc. of the ECSCW ’01 Conference, 2001.

[8] D. L. Chao, J. Balthrop and S. Forrest. Adaptive

Radio: Achieving Consensus Using Negative Prefer-

ences. In: Proc. of the GROUP ’05 Conference, 2005.

[9] D. B. Hauver and J. C. French. Flycasting: Using Col-

laborative Filtering to Generate a Playlist for Online

Radio. In: Proc. of the WEDELMUSIC Conference,

2001.

[10] J. F. McCarthy and T.D. Anagnost. MusicFX: An Ar-

biter of Group Preferences for Computer Supported

Collaborative Workouts. In: Proc. of the CSCW ’98

Conference, 1998.

[11] M. McGuire and D. Slater. Consumer Taste Sharing

Is Driving the Online Music Business and Democra-

tizing Culture. 2005.

[12] The NPD Group, Inc. US Consumers 13+ Music Lis-

tening. May 2005.

[13] U. Wolz, M. Massimi and E. Tarn, r-MUSIC, A Col-

laborative Music DJ for Ad Hoc Networks. In: Proc.

of the WEDELMUSIC Conference, 2004.


