
SHARING AND COMBINING LISTENING EXPERIENCE:
A SOCIAL APPROACH TO WEB RADIO

Claudio Baccigalupo and Enric Plaza
IIIA - Artificial Intelligence Research Institute
CSIC - Spanish Council for Scientific Research

Campus UAB, 08193 Bellaterra, Catalonia (Spain)
Vox: +34-93-5809570, Fax: +34-93-5809661

{claudio,enric}@iiia.csic.es

ABSTRACT

We present Poolcasting, a social Web radio architecture
in which the group of listeners is able to influence in real
time the music played on each channel. Poolcasting users
contribute to the radio with songs they own, create radio
channels and evaluate the proposed music, while an auto-
matic intelligent technique schedules each channel with a
group-customised sequence of musically associated songs.
This technique works both with active users, who explic-
itly state their musical preferences, and with passive users,
whose musical preferences are inferred from the analy-
sis of their personal music libraries. The radio dynami-
cally generates and streams on each channel a sequence
of songs where the preferences of all the current listeners
are combined together, with an approach that promotes
fairness among listeners with different tastes.

1. INTRODUCTION

We present a network architecture that both simplifies the
management of Web radios and improves the user listen-
ing experience and fidelity towards Web radio stations.
This architecture, called Poolcasting, takes into account
listeners not as a purely passive audience, but rather as a
proactive public who is given the tools to interact and to
collaborate, in order to adapt the music played on each
channel according to their tastes.

In 2005, online radio listening increased 18 percent and
free streaming of online music increased 37 percent [4].
About 52 million people tune in to Internet radios each
month [1]. Several Web-based music recommenders have
recently appeared providing users with personalised mu-
sic streams, such as Pandora or Last.fm 1 . These recom-
menders narrowcast music, creating one personalised but
isolated context for each user. On the contrary, Web radios
as such are supposed to broadcast their signals to a large
audience. Poolcasting merges both approaches, providing
public channels that everyone can listen to, where the mu-
sical content of each channel is customised in real time
for the whole group of listeners. At the same time, Pool-
casting improves the administrators’ work, who can spend

1 Available at: http://www.pandora.com and http://www.last.fm

Figure 1. A Poolcasting Web radio.

less effort in set up and maintenance, and learn more about
their listeners’ musical preferences, to eventually focus on
promoting new targeted music to their audience.

2. SHARING LISTENING EXPERIENCE

Tuning in to a Poolcasting Web radio channel is as simple
as navigating with a Web browser to the radio home-page
(see Fig. 1) and clicking on one of the available channels,
so that users who just want to passively listen to music can
do so. However, users who want to actively participate in
the selection of the music played can do so swiftly as well
with the different functions offered by the Web interface.

First, Poolcasting introduces the ability for listeners to
share their personal music libraries, that is, to contribute
with songs they own to the collection of music the ra-
dio can broadcast. The advantages of this distributed ap-
proach over a classical approach — where songs are broad-
cast from a unique centralised library — are numerous. A
distributed collection of songs is more dynamic (at each
moment, it contains only the music of the participants
who are sharing their libraries), more up-to-date (as users
add new songs to their libraries, these can instantly be
broadcast) and contains more “audio not available else-
where” (personal libraries often include songs not pub-



licly distributed, such as personal audio material, uncom-
mon records, alternative versions of known themes). To
share one’s music library and become an Active Partic-
ipant, a user clicks on the Start Poolcasting link and
indicates the path to the local folder where her music li-
brary is stored. Right now, sharing is implemented only
for users whose library is managed using Apple iTunes
and is stored in a folder accessible via HTTP. Poolcast-
ing accesses this folder and retrieves the index file where
library information is stored (a file called iTunes Music
Library.xml for iTunes libraries). Once this file has been
loaded, the title and artist of each track are matched against
a public large music database to potentially obtain a unique
ID and additional metadata (genre, tags, cover art); in our
current implementation we use the catalogue of the Web-
based music community MyStrands 2 which is made of
over 6 million songs. From this moment on, all the songs
in the user library are virtually included in the Music Pool
of the radio. This means that, as long as the user is con-
nected, Poolcasting can pick from her library any song to
be played on any channel. No file is retrieved at this step.

Another advantage of having users share their personal
libraries is that Poolcasting is able to implicitly infer the
users’ musical preferences by analysing listening experi-
ence data stored in the library index file. For instance Ap-
ple iTunes stores the play count of each song (how many
times a song was played) and the explicit rating (1 to 5
stars) assigned by the user. Exploiting these data, Pool-
casting builds a partial preference model for each active
participant, under the intuitive assumption that the higher
the rating assigned to a song and the higher its play count,
the more the user likes that song. Briefly, the preference
degree g(P, S) of a participant P for a song S is estimated
combining the rating that P assigned to S and the play
count of S in the library of P , both normalised accord-
ing to the average listening behaviour of P (average rat-
ing and average play count). For songs not included in
the personal library of P , g(P, S) is estimated following
the assumption that if P does not own song S but owns
other songs from the same artist of S, then her preference
for S can be estimated as her average preference for those
songs.

The Web interface also allows users to explicitly state
their preferences towards any song played or scheduled
on a channel. For each channel, Poolcasting provides a
detailed Web page (see Fig. 2) with real-time information
(current track, history of played tracks, upcoming tracks)
and links to explicitly evaluate and request songs. When a
participant assigns a rating to a song, Poolcasting accord-
ingly updates her preference model for that song. When
a participant requests a track to be played on a channel,
Poolcasting updates her preference model as well, assign-
ing a high preference to that track. Preference models
(made of both implicit and explicit musical preferences)
are internally used by Poolcasting to influence the music
selection of the channel a participant is listening to, by
playing more songs she probably likes (e.g., songs from

2 http://www.mystrands.com

her best-rated artists) and less songs she probably dislikes.

Poolcasting also introduces the ability for listeners to
create channels. A listener creates a channel by click-
ing on the Create a new channel link and defining its
name, description and Channel Pool, that is, the subset of
songs that is allowed to play on that channel. The Chan-
nel Pool is defined in terms of metadata restrictions; for
instance “Jazz from 1967” or “Electronic Dance at 135
BPM”. The new channel appears in the list of the avail-
able channels, and is associated with a music stream that
is automatically programmed with music that fulfils the
specified restrictions.

3. COMBINING LISTENING EXPERIENCE

Poolcasting utilises the knowledge collected from the Web
interface and the user libraries to automatically schedule
and play on each channel a sequence of songs that possi-
bly matches the taste of the listeners connected at each
moment. Because of the dynamic nature of the Music
Pool, Poolcasting cannot pre-build the whole sequence of
songs that will play on a channel, but has to select in real
time the song that will play next, based at each moment on
the current set of songs shared by the participants. To se-
lect at time t the song that will be played next on a channel
H , Poolcasting first builds a subset of possible candidates,
made of all the songs that are in the Music Pool at time t
and that match the Channel Pool of H (e.g., songs whose
Genre is Jazz for a “Jazz” channel). Then, the candidates
are ranked according to how much they are musically as-
sociated with the last song played on the same channel.
This is intended to emulate the behaviour of terrestrial ra-
dios, where human DJs programme sequence of songs that
musically “flow” one after the other. Finally, Poolcasting
utilises the Preference Models to pick the candidate song
that most satisfies the musical tastes of the current listen-
ers of channel H .

Figure 2. A Poolcasting Web radio channel.



3.1. Musical Associations Model

In order to programme for each channel a sequence of
songs that musically “flow” one after the other, Poolcast-
ing needs a musical knowledge about which songs can be
seen as musically associated. While a human DJ gath-
ers this knowledge from experience, Poolcasting utilises
a pattern mining technique [2] that, by analysing the co-
occurrences of songs and artists in a large collection of
human-built playlists, gives an estimation of the song as-
sociation degree of each pair of songs and of the artist
association degree of each pair of artists. Briefly, this
technique evaluates that two songs or artists are strongly
associated (or else, musically “flow”) when they occur
together in many human-built playlists, few songs sepa-
rate them in each of these playlists and they do not occur
separately (that is, only one of the two occurs) in many
playlists. We chose human-built playlists as a source of
knowledge because they include cultural information that
cannot be extracted from audio signal, and also contain
songs in a specific order, which can be preserved when
programming a radio channel.

3.2. Group customisation and satisfaction

In order to select the candidate song that most satisfy the
group of listeners as a whole, Poolcasting ranks the can-
didates according to the Preference Models of the current
listeners. A critical challenge is how to combine these in-
dividual preferences when they are contrasting. To solve
this issue, we have elaborated an Average Without Mis-
ery [3] technique that considers individual satisfaction, so
that in a limited amount of time, every participant in a
channel gets eventually to listen to some songs she likes
[2]. Briefly, this technique ranks each candidate song S
calculating a weighted average preference degree for all
the current listeners. In this average, songs that have a
strongly negative preference for some listener are demoted,
while the individual preference g(P, S) of each listener P
for each song S is biased with a weight that reflects how
P was satisfied with the last songs played on the channel:
if the previous songs matched (resp. did not match) her
musical preferences, then her individual preferences have
a weaker (resp. stronger) impact in the average.

3.3. The Song Scheduler

To schedule each channel with a group-
customised sequence of musically associated songs, we
have implemented a Case-Based Reasoning (CBR) tech-
nique [2], which is in our expectations the most efficient
approach for scheduling many channels in real-time, bal-
ancing the contributions of both musical associations and
listeners’ preferences. This CBR technique works in three
consecutive steps: 1) a Retrieve Process, where a new
song has to be scheduled on a channel and the Musical As-
sociations model described in Sect. 3.1 is used to retrieve
from the Channel Pool a subset of candidate songs that
are musically associated with the last scheduled song; 2) a

Reuse Process, where Preference Models are used to sort
the candidate songs and to pick the one that best matches
the group preference of the current listeners, according to
the strategy described in Sect. 3.2; 3) a Revise Process,
where participants can evaluate the proposed song before
it is streamed; when user feedback is strongly negative,
the song is substituted in real-time for the next best candi-
date of the Reuse process.

3.4. Poolcasting at work

The architecture of a Poolcasting Web radio is illustrated
in Fig. 3. A radio is idle until a participant (or an adminis-
trator) creates a channel using the Web interface. When
this occurs, the Streaming Server opens a new Internet
stream for the channel and waits for the Stream Generator
to fill it with music. The Stream Generator, in turn, asks
the Song Scheduler to select the next song to be played on
the channel. The Song Scheduler checks in the Database
the Channel Pool (the subset of songs of the Music Pool
that fulfils the restrictions of the channel) and the Prefer-
ence Models of the current listeners and selects a song X
as described in Sect. 3.3; then connects via HTTP to the
user library where X is stored and downloads the file into
a local Song Buffer. In turn, the Stream Generator trans-
forms that file into an uncompressed audio signal that the
Streaming Server finally broadcasts to the listeners.

Once the channel is up and running, the Stream Gen-
erator has to continuously feed the Streaming Server with
music; any delay would cause an annoying interruption in
the stream broadcast to the audience. For this reason, the
Stream Generator works “two songs in advance”: while
song X is being broadcast to the audience, and the next
song Y has been cached into the Song Buffer, ready to
be played, the Stream Generator asks the Song Scheduler
to select a song Z that will play on the channel after Y .
When X ends, Y is loaded to the Streaming Server, Z re-
places Y in the Song Buffer, and a new song is selected
by the Song Scheduler. With this approach, the Web radio
can serve for each channel an uninterrupted music stream,
without gaps between songs, even when a personal library
becomes suddenly unavailable because a user has discon-
nected from the system. The Streaming Server also main-
tains a list of the IP addresses of the listeners of each chan-
nel; channels that have not had any listener are automati-
cally disabled after some time, in order to save bandwidth.

The architecture described in this paper has been im-
plemented and an experimental Poolcasting Web radio is
currently running within our Institute. The radio runs on
an Intel-based Mac Pro server and was developed with
open source software and standard formats: MySQL for
the Database, liquidsoap for the Stream Generator, ice-
cast for the Streaming Server, Perl for both Song Sched-
uler and Library Analyser, Apache for the Web Server,
PHP, XHTML/CSS for the Web interface. A private Web
interface allows the administrators to start/stop the server,
list the active channels, browse the listeners’ Preference
Models and update the Musical Associations Model. Each



Stream Generator

Streaming Server

Passive listener

CURRENT LISTENERS

Song Buffer

ACTIVE CHANNELS

Database

I N T E R N E T

MUSICAL ASSOCIATIONS MODELPREFERENCE MODELSMUSIC POOL

available songs

requests and evaluations

Active participant

download song scheduled songcreate channel

Web pages

browse channels OGG stream (256 kbps)

list of
listenerslistening experience

knowledge to schedule

Library Analyser

share library

list of shared songs

Web Interface

Song Scheduler audio signal

MP3 stream (64 kbps)

Figure 3. Architecture of Poolcasting.

channel is provided in both MP3 and OggVorbis encod-
ing formats.

4. AN EXAMPLE SCENARIO

Let us consider the following scenario: a German musi-
cian performs as a DJ in a night club and needs to stay up-
to-date with the last “Progressive Trance” hits (a subset
of electronic dance music where BPM is within 125 and
135). He is disappointed for most “Dance” Web radios
mainly broadcast mainstream songs. He enters Poolcast-
ing, creates a niche-targeted “Progressive Trance” chan-
nel and starts listening to it. He also shares his library,
which contains published tracks, copyright-free unpub-
lished tracks produced by himself and live performances.
Initially, the Channel Pool only contains themes from his
library; this means he will hear a sequence of his songs,
automatically selected and ordered without the need for
him to manually compile a playlist. As more people from
all over the world join the same channel and share their
music, he suddenly gets to listen to Progressive Trance
tracks that are completely unknown in Germany but might
be appropriate for his upcoming performances. He will
listen to songs he does not own, but all the same appreci-
ates, mixed with other songs he already knows and likes.
Meanwhile, he can request his own tracks to be played on
the channel, which will be listened by a specific niche of
public that will possibly appreciate his works better than a
generic audience, and send feedback in real time using the
Web interface. Positive ratings from the audience for the
music he proposes will implicitly increase his reputation
as a good human recommender in the context of Progres-
sive Trance music. Music labels can also benefit from this
architecture: to promote new dance hits, they just need
to join the Poolcasting radio and share their own music
libraries; Progressive Trance tracks will be automatically
scheduled on the right channel and listened by the right
group of participants.

5. CONCLUSIONS

Poolcasting is a social Web radio architecture where a)
users can create channels that best match their tastes, b)

user preferences are inferred from the listening experi-
ence data contained in their personal libraries and c) users
can actively participate in the music scheduling process by
sharing their personal libraries and by requesting or eval-
uating the scheduled songs.

Poolcasting provides a “group-oriented recommenda-
tion” service which endeavours to satisfy an entire com-
munity of listeners not by looking for one individual solu-
tion (a song) able to satisfy the whole group, but by gener-
ating a good sequence of songs, where different individual
preferences are combined, and each participant gets to lis-
ten to both songs she knows (and will possibly like) and
songs she does not know (and will probably appreciate,
since they are liked by others in the same channel).

As in Web radios, music is streamed (not copied) to
the audience, who may eventually buy the best of music
they have just discovered. Web radio administrators are
also facilitated by the Poolcasting architecture for they do
not need to manually prepare a large collection of songs to
stream; also, user interaction allows the administrators to
instantly know the reaction and preference of the audience
towards the music played.

6. ACKNOWLEDGEMENTS

This research is partially supported by the MID-CBR
(TIN2006-15140-C03-01) project and by a MyStrands
scholarship.

7. REFERENCES

[1] Arbitron-Edison Media Research. Web Radio Lis-
tening Up 50%. April 2006.

[2] C. Baccigalupo and E. Plaza. A Case-Based Song
Scheduler for Group Customised Radio. In Proceed-
ings of the ICCBR ’07 Conference, 2007.

[3] J. Masthoff. Group modeling: Selecting a sequence
of television items to suit a group of viewers. User
Modeling and User-Adapted Interaction, 14:37–85,
2004.

[4] The NPD Group, Inc. US Consumers 13+ Music
Listening. May 2005.


