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Abstract. We present a CBR approach to musical playlist recommen-
dation. A good playlist is not merely a bunch of songs, but a selected
collection of songs, arranged in a meaningful sequence, e.g. a good DJ
creates good playlists. Our CBR approach focuses on recommending new
and meaningful playlists, i.e. selecting a collection of songs that are ar-
ranged in a meaningful sequence. In the proposed approach, the Case
Base is formed by a large collection of playlists, previously compiled by
human listeners. The CBR system first retrieves from the Case Base the
most relevant playlists, then combines them to generate a new playlist,
both relevant to the input song and meaningfully ordered. Some experi-
ments with different trade-offs between the diversity and the popularity
of songs in playlists are analysed and discussed.

1 Introduction

A typical music recommender considers songs the user likes, has listened to,
or has bought, and proposes similar songs that the user will probably like, be
interested in listening, or buying. Only a few recommenders are addressed to
suggest playlists of similar songs with an inherent sequential structure.

Creating a playlist is a common manual operation in audio user experience.
Imagine a user wants to assemble a playlist, on the basis of a specific song he
likes, has listened to or has bought. He could either choose each song manually,
or follow the advice of a recommender, adding one proposed song after the other.
In both cases, the process would be slow; besides, the user would also have to
order the songs, for a playlist is expected to contain songs in a specific sequence.

In this paper, we describe a case-based approach to playlist recommendation.
Given a song chosen by the user, we don’t focus on finding isolated similar
songs; instead we put the emphasis on recommending good playlists. A playlist
is a sequence—not a set—of songs; thus its quality is given both by the songs it
contains, and by their ordering (their relative positions).
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This paper presents a CBR system that takes a song as the input and re-
turns a recommended playlist as the output. The possible applications include:
personalised radio programs, playlist generators, digital music organisers, and in
general any scenario where the user desires a good sequence of songs, related to
a chosen one, without the burden of compiling it manually.

In this paper, after reviewing related works (Sect. 2), we present the problem
of recommending a playlist from a song (Sect. 3). Then we describe the CBR
process: in Sect. 4, we illustrate the structure of the Case Base; in Sect. 5, we
explain the Retrieve process, and introduce the basic concepts of pattern and
relevance; in Sect. 6, we describe how the retrieved playlists are combined in the
Reuse process. In Sect. 7 we report about the tests with an actual Case Base of
playlists. Section 8 ends the paper with a brief conclusion and future works.

2 Related Work

Several approaches have been investigated to develop an Automatic Playlist Gen-
erator [2, 7, 17, 3, 20, 16]. Some of them require a large pre-existent music-related
knowledge, either in form of music metadata [18] or acoustic-based measures
[12]. In this paper we introduce a ‘knowledge-light’ approach to recommenda-
tion, based only on user-related knowledge. In this sense, our approach is com-
parable with SmartRadio and CoCoA Radio, two systems with which we share the
vision that the work involved in compiling a playlist of music can be distributed
to other listeners [10]. SmartRadio [8] is an Automatic Collaborative Filtering
recommender that generates personalised playlists on the basis of playlists of
users whose profiles are similar. Similarly, CoCoA Radio [4] recommends new
playlists, but it also assumes that the knowledge of a playlist is encoded in the
order of its songs. Our system is, in a sense, lighter than SmartRadio and CoCoA
Radio. We also do assume that, in any well chosen collection of music, there is
some great implicit value in the order of its songs, but we use this and only
this knowledge to generate new playlists, without, for instance, collecting users’
profiles or managing explicit ratings.

Some common points can be found between our system and the approach
presented by Ragno et Al. [21]. In their work, similarity is inferred analysing
the occurrences of songs in broadcasted streams of music, and new playlists are
generated using a graph-search process (where the songs are the nodes of the
graph and the similarities between them represent the weights of the arcs).

In our approach, the recommender is implemented as a Case-Based Reasoning
(CBR) process [1, 14]. Every playlist is seen as a case whose relevance is inferred
measuring the co-occurrences of its songs in a large collection of past playlists.
Co-occurrences analysis [11] has been proved effective in many domains where
information is available as large sets of sequential data. Applications range from
semantical similarity recognition [13] to weather forecast [22]. Pachet et al. [15]
have originally proposed co-occurrences analysis as a method to evaluate sim-
ilarity between songs. In this paper, we combine this method with an explicit
notion of sequentiality, in order to infer similarity between songs and playlists.



3 Playlist Recommendation

In our approach, the user chooses an input song s and a desired length λ; the
goal of the recommender is to return a playlist p (with λ songs) such that:
(G1) p contains s; (G2) p is varied; (G3) p is coherently ordered. A playlist is
varied if it does not repeat the same track or artist in the sequence, or at least
if repetitions are not close. We say a playlist is coherently ordered if its songs
make sense in the proposed sequence. The problem we have to solve is then to
determine which sequences of songs are coherently ordered.

In order to answer this issue, we analyse a large repository of playlists, previ-
ously compiled by human listeners. In this analysis, we seek for those sequences
(of two or more songs) that occur more often, with the same order, in these
playlists. The idea is that the higher the number of playlists where a sequence
occurs, the stronger the evidence that sequence is coherently ordered. This idea
takes inspiration from studies of co-occurrences analysis. Basically, these studies
argue that when two items appear frequently in the same context, this proves
the existence of some similarity between them. For instance, linguists regularly
use co-occurrences analysis to extract clusters of semantically related words from
large collections of texts. We adapt this approach to a musical context: if some
songs occur frequently, in the same order, in a collection of past playlists, then
we assume that the order in which they appear is meaningful. We call such
sequences of songs relevant patterns.

Relevant patterns are the starting point for the recommender we present;
to fulfil the aforementioned goals we employ a Case-Based Reasoning approach
that comprises four subsequent steps:

1. Assemble a Case Base from a repository of playlists (Case Base Setup).
2. Prompt the user for an input song s and the desired length λ of the recom-

mendation (Problem Description).
3. Retrieve from the Case Base a subset of playlists that satisfy most of the

goals. Specifically, the retrieved playlists are varied (G2) and include rele-
vant patterns that contain s (G1) (Retrieve Process).

4. Combine the songs of the retrieved playlists to generate a coherently ordered
playlist (G3) with length λ (Reuse Process).

Notice that the knowledge that guides the CBR process comes from the same
content of the Case Base, in the form of relevant patterns. Hence the quality of
the recommendation depends mostly on the quality of past playlists: the more
accurately they have been compiled by the users with a meaningful order, the
more this order will be reflected in the output. Clearly, different repositories may
lead to different recommendations.

4 The Case Base

Let P be the repository of past playlists. P may include, for example, track-
lists from radio programs, web streams, music compilations, DJ sessions, and
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Fig. 1. General view of the CBR process.

in general lists of songs that have been compiled with a meaningful order. By
the way, the repository could include some noisy playlists, that is, playlists that
have not been compiled with a great accuracy, and that would lower the quality
of the Case Base if used. Examples of noisy playlists are: very long sequences
of songs (that are probably only large sets of songs, with no meaningful order),
very short sequences (from which we cannot extract any relevant pattern), and
sequences in alphabetical order (that is hardly a meaningful order). Before using
the repository, we filter P to remove such playlists; the result C is the Case Base.

Every playlist of C is a sequence of songs: p = (s1, s2, .., sn). Let Λ(p) = n be
the length of p. A song s is contained in a playlist p if the following condition
holds: In(s, p) = ∃i, 1 6 i 6 n : s = si

Every song is characterised by a set A of attributes (e.g.: an identifier of
the track, an identifier of the album it belongs to, the artist that performs
it, etc.). We assume that the user will disapprove of recommendations where
close songs repeat the same attributes: for example playlists where many songs
belong to the same album or artist. Such playlists lack necessary variety, and
our approach intends to avoid these cases, in order to boost diversity. For every
attribute a ∈ A, we introduce a parameter γa, called safe distance for a, as the
minimum number of songs that must occur before we allow a value of a to be
repeated. For instance, if γa = 10, the same value of a can be repeated without
restriction only after 10 songs. To quantify how many, and how close, are the
potential repetitions of an attribute in a playlist, we introduce a function called
attribute variety :

Definition 1. (Attribute variety) Let p ∈ C be a playlist, p = (s1, s2, .., sn),
and a ∈ A be a song attribute; the variety of a in p is a function Va : C → (0, 1]



such that:

Va(p) =
n∏

i=1


j−i
γa

if ∃j, i < j 6 min(n, i+ γa) : a(si) = a(sj)
∧∀k, i < k < j, a(si) 6= a(sk)

1 otherwise

In other words, a playlist has an attribute variety Va(p) = 1 only if no value
of a is repeated within the safe distance γa; otherwise the more and the closer
the repeated values, the smaller Va(p). Combining the values of Va(p) for all
the song attributes with a t-norm (e.g. product), we obtain a global measure of
variety of a playlist p ∈ C:

V ar(p) =
∏
a∈A

Va(p)

The variety of a playlist p equals 1 only if no attribute is repeated in p
within its safe distance. According to (G2), we are interested in recommending
this kind of playlists. We will see in Sect. 5 how V ar(p) will be used, inside the
Retrieve process, to prefer varied playlists over repetitive ones.

5 Retrieve

In a classic CBR approach, the goal of the retrieval task is to return a subset
of cases that contain the solutions for problems similar to the proposed one. In
our approach, we do not intend to characterise the cases in terms of problem
and solution parts: our Retrieve process is not focused on finding which songs
in the Case Base are the most similar to the input song. Instead, we look for
useful cases [6], that is, previous users’ playlists that are useful to achieve the
requested goals. The idea is to retrieve a subset of those playlists that include
s (G1), are varied (G2), and contain relevant patterns, or else are coherently
ordered (G3).

Before presenting the Retrieve process, we introduce the Relevance function
and the Rating function. The Relevance function Rel(q, t), defined in Sect. 5.1,
takes as input a sequence of songs q, and a song t contained in q, and returns
the degree in which q is a relevant pattern for t. The Rating function ρ(p, s),
defined in Sect. 5.2, takes in input a playlist p ∈ C and the chosen song s, and
returns a combined measure of the variety of p and the relevant patterns in p
that contain s. At the end of the section, we present the Retrieve process that,
given all the playlists of C, returns only the k playlists that are more useful to
fulfil our goals.

5.1 Patterns and Relevance

Let q be a sequence of songs. We say q a pattern if q is sub-sequence of at least
one playlist of C, where q = (t1, t2, .., tm) is sub-sequence of p = (s1, s2, .., sn)
when the following condition holds: Sub(q, p) = ∃i : ∀j, 1 6 j 6 m, tj = si+j .



The pattern count φ(q) = |{p ∈ C : Sub(q, p)}| is the number of playlists of C
that q is sub-sequence of.

Let t be a song, Q(t) = {q : Λ(q) 6 θ ∧ In(t, q) ∧ ∃p ∈ C : Sub(q, p)}
be the set of patterns, with at most θ songs, that contain t, and q ∈ Q(t)
be one of these patterns. To assess whether q is a relevant pattern for t, we
can consider how many times t occurs in the playlists of C together with the
other songs of q. According to co-occurrences analysis, in fact, the higher this
number, the higher the evidence that q is a relevant pattern for t. Thus, it
makes sense to use the pattern count φ(q) as a measure of the relevance of q
for t. Nevertheless, the actual value of φ(q) can be biased by two properties
of q: its length and the popularity of its songs. In general, short patterns or
patterns made of very popular songs have a higher probability of occurring in
many playlists, independently from their relevance for a specific song.

Example 1. To understand why shorter patterns are likely to have a higher pattern
count, consider the patterns (S2, S3) and (S2, S3, S4) in Table 1. Notice that (S2, S3)
is shorter than (S2, S3, S4), and φ( (S2, S3) ) > φ( (S2, S3, S4) ). This is not surprising,
for (S2, S3) is contained in (S2, S3, S4), so it occurs at least every time that (S2, S3, S4)
occurs in some playlist. To understand why patterns made of popular songs are likely
to have a higher pattern count, consider the patterns (S2, S3) and (S9, S2), both
containing S2. In the first case, S2 is followed by a “popular” song (S3 occurs 6 times
in Table 1); in the second case, S2 is preceded by a less popular song (S9 occurs only
3 times). Notice that φ( (S2, S3) ) > φ( (S9, S2) ); this is not surprising, for S3 has a
higher probability than S9 to co-occur with S2, due to its high popularity.

Table 1. A sample repository and the list of patterns with φ > 1.

Playlists

A = (S1, S2, S4)

B = (S1, S2, S3, S4, S5, S7, S1, S8)

C = (S4, S6, S9, S2, S2, S3)

D = (S2, S3, S2, S3, S4)

E = (S2, S3, S4, S6, S5)

F = (S9, S2, S3, S5, S9, S1)

Patterns

(S1, S2) (φ = 2)
(S2, S3, S4) (φ = 3)
(S2, S3) (φ = 6)
(S3, S4) (φ = 3)
(S4, S6) (φ = 2)
(S9, S2) (φ = 2)

In a nutshell, short patterns and patterns made of popular songs are likely
to have a high pattern count, independently from being relevant to a particular
song. Therefore, to estimate the relevance of a pattern q to a song t, we combine
φ(q) with two factors that balance the effect of the length of q, and of the
popularity of its songs. We define the Relevance of a pattern q for a song t as
follows:

Rel(q, t) = φ(q) · α
θ−Λ(q)

ψβ(q, t)

where αθ−Λ(q) and ψβ(q, s) are the two factors intended to reduce the bias of the
length of q, and of the popularity of its songs, on the relevance value. Hereafter,
we explain in detail these two factors.



Length factor. Let q1 ∈ Q(t) and q2 ∈ Q(t) be two patterns, with same pattern
count and different length (e.g. Λ(q1) > Λ(q2)). In this case, we consider q1
more relevant for t than q2, because q1 occurs the same number of times than
the (more probable) shorter pattern q2. Moreover, since q1 is longer, it contains
more songs co-occurrent with t than q2. For this reason, we introduce a length
factor αθ−Λ(q) that we multiply φ(q) for, in order to substantially decrease the
relevance of shorter patterns. The shorter q (that is, the more distant is Λ(q) to
the maximum pattern length θ), the smaller this factor, the smaller the relevance
value. The parameter α can be tuned inside (0, 1], to control if the length of q
should affect more (small α) or less (high α) the relevance value.

Popularity factor. Let q1 = (t, u) and q2 = (t, v) be two patterns of two songs
with the same pattern count (e.g. φ(q1) = φ(q2) = 5), and let u be more popular
than v (e.g. u occurs in 600 playlists of C, while v only in 6). Notice that u
occurs relatively few times in C preceded by t (5 out of 600), while v occurs
relatively many times preceded by t (5 out of 6). In the whole, q2 appears in C
more frequently in relation to the popularity of its songs; in this sense it is more
relevant for t. For this reason, we introduce a popularity factor ψβ(q, t) that we
divide φ(q) by, in order to decrease the relevance of patterns made of popular
songs. This factor acts as a measure of inverse songs’ frequency of q; precisely,
ψ(q, t) is the number of times that the sequence q occurs in C “independently
from t”: ψ(q, t) = |{p ∈ C : ∃i : ∀j, 1 6 j 6 m, qj = pi+j ∨ qj = t}|. The
parameter β can be tuned inside [0, 1] to control if the popularity of the songs
should affect more (high β) or less (small β) the relevance value.

Example 2. To understand the effects of α and β on the relevance value, consider the
patterns in Table 1, ranked according to how relevant they are to a specific song, S3.
Table 2 shows the relevance values, using different values of α and β.
Notice that (S2, S3) has the highest pattern count, and indeed is the most relevant
pattern when α = 1 and β = 0.5. However, if we decrease the relevance of short patterns
(α = 0.5), then the most relevant pattern becomes (S2, S3, S4), that occurs less times
but is longer. Similarly, if we decrease the effect of popular songs (β = 1), then the
most relevant pattern is (S2, S3, S4), for it occurs 3 out of the 3 times that S2 and S4
occur in some playlist of Table 1 separated by one song.

Table 2. Relevance to S3 of the patterns from Table 1

Patterns Λ(qi) φ(qi) ψ(qi, S3) Rel(qi, S3) Rel(qi, S3) Rel(qi, S3)
qi ∈ Q(S3) (α = 1 β = 0.5) (α = 0.5 β = 0.5) (α = 1, β = 1)

(S2, S3, S4) 3 3 3 1.73 1.73 1
(S2, S3) 2 6 8 2.12 1.06 0.75
(S3, S4) 2 3 4 1.50 0.75 0.75



5.2 Coherence and Retrieval

We are now able to define the Rating function ρ(p, s), that assigns a high value
to playlists that are varied and coherent with the input song s. This function is a
combination of V ar(p) (the variety of the playlist) and Coh(p, s) (the coherence
of the playlist to the input song), where Coh(p, s) is defined as the sum of the
relevance values of the patterns, present in p, that contain s:

Coh(p, s) =
∑

q∈Ω(s,p)

Rel(q, s)

where Ω(s, p) = {q : Λ(q) 6 θ ∧ In(s, q) ∧ Sub(q, p)}. The more the relevant
patterns that contain s in p, and the higher their relevance to s, the higher
Coh(p, s). The Rating function ρ(p, s) is defined as a combination of variety and
coherence:

ρ(p, s) = V ar(p) · Coh(p, s), ∀p ∈ C

As a result, a playlist p ∈ C has a high value of ρ(p, s) if it contains s, is varied,
and is coherently ordered. Actually, this is the kind of playlist that we intend to
retrieve from C. Let k be the number of playlists to retrieve, the Retrieve process
returns the first k playlists of C, every playlist p ∈ C ranked according to ρ(p, s).

6 Reuse

The goal of the Reuse process is to transform the k retrieved playlists into a
single, recommended playlist of a specific length λ. Notice that the retrieved
playlists can have any length, so they cannot be directly returned as recommen-
dations. The approach we take for Reuse is that of Constructive Adaptation
[19]. Following this approach, we use the elements of the retrieved cases (i.e. the
songs from the retrieved playlists) to build a new combination of elements (i.e. a
new playlist), that is a solution for the current problem. Building this playlist is
seen as a search process, guided by the information contained in the Case Base
(in the form of relevant patterns).

Basically, Constructive Adaptation [19] is composed of two processes: Hy-
potheses Generation and Hypotheses Ordering. Hypotheses Generation deter-
mines how partial solutions are extended in the search process (i.e. which songs
from the retrieved playlists can be combined and how). Hypotheses Ordering
uses the knowledge from the Case Base to rank the nodes visited during the
search (i.e. the sequences of songs generated so far) in order for the search pro-
cess to follow the best paths to the solution. Thus, the Reuse process is a search
process where:

– the goal is to find a playlist of λ songs, that includes the input song s;
– every node in the search is a sequence made of songs from the retrieved

playlists;
– the singleton sequence (s) is taken as the initial node;



– the successors of every node contain the same sequence of songs of that node,
plus another song, either at the beginning or at the end of the sequence.

The fastest method to reach a sequence of length λ starting from (s) (a se-
quence of length 1) is to always explore the search tree “as deep as possible”,
that is, to always visit first the nodes with the longest sequences of songs found
so far. For this reason, the system uses a Depth-First Search process: at first,
it expands the initial node (s) by generating all its successors; at each subse-
quent step, it considers one of the most recently generated nodes, generates its
successors, and ranks them according to a heuristic; if at any moment it finds a
node with λ songs, returns it as the solution; if otherwise it finds a node with
no successors, it backtracks to expand another of the most recently generated
nodes.

6.1 Hypotheses Generation

The nodes of the search are sequences made of elements from the retrieved cases,
that is, of songs from the retrieved playlists. Let T = (t1, t2, .., tn) be a node,
and let T ′ be a successor of T . T ′ contains the same songs of T , and another
song u from the retrieved playlists, either at the beginning or at the end of T ′.
We distinguish these two cases with the notations 〈u+ T 〉 and 〈T + u〉. Let, for
instance, be T ′ = 〈u+T 〉. Notice that in T ′, u occurs before t1. In order for T ′ to
be coherently ordered, u should occur before t1 at least in one retrieved playlist;
basically we consider T ′ a valid successor of T if ∃p ∈ Ret(s) : Sub((u, t1), p),
where Ret(s) is the set of k retrieved playlists. Similarly, a sequence 〈T + u〉 is
a valid successor of T if ∃p ∈ Ret(s) : Sub((tn, u), p). The set of all the valid
successors of a node T is defined as Succ(T ) = {〈u + T 〉,∀u ∈ Pre(T ) ∨ 〈T +
u〉,∀u ∈ Post(T )}, where Pre(T ) = {u : ∃p ∈ Ret(s) : Sub((u, t1), p)} and
Post(T ) = {u : ∃p ∈ Ret(s) : Sub((tn, u), p)}.

In the next subsection, we will describe how such sets of successors are sorted
in the search process in order to finally reach a sequence of λ songs that is varied,
coherently ordered, and relevant to s.

6.2 Hypotheses Ordering

In ordering the successors of a node, we promote those sequences that are varied
and include relevant patterns. In other words, given any successor T ′ of T (where
u is the added song), we determine if T ′ is a good successor of T using the
heuristic function H(T ′) = Rel(T ′, u) · V ar(T ′). Using H, we are able to rank
highly a node T ′ that contains a varied and coherently ordered sequence of songs.
However we cannot determine whether the successors of T ′ will be varied and
coherently ordered sequences as well. To solve this issue, we introduce in the
heuristic a parameter L, called look-ahead factor, such that:

– If L = 0, we evaluate H on T ′, as above;
– If L = 1, we evaluate H on all the successors of T ′; then we return the

maximum value found as the heuristic value for T ′;



– If L = 2, we evaluate H on all the successors at depth 2 of T ′, that is, the
successors of the successors of T ′; then we return the maximum value found
as the heuristic value for T ′; and so on.

The higher is L, the more reliable is the heuristic; on the other hand, the
number of requested evaluations of H grows steeply with L. The value of L is
usually a compromise between a good heuristic and a reasonable performance.
Finally, we define the heuristic function as follows:

Definition 2. (Look-ahead heuristic) Let T be a node of the search tree; any
successor T ′ of T is ranked using the heuristic function:

H ′(T ′, L) =
{

H(T ′) if L = 0
maxT ′′∈Succ(T ′)H

′(T ′′, L− 1) if L > 0

Summing up, the Reuse process follows a Constructive Adaptation approach
in which a) Hypotheses Generation explores the possible combinations of the
songs of the retrieved playlists and b) Hypothesis Ordering ranks the partial
sequences according to a heuristic based on relevance and variety. At the end,
the result is a playlist of length λ that combines the best sub-sequences in the
retrieved playlists into a varied and coherent recommendation.

Example 3. Let S3 be the input song, and λ = 5 the desired length. Let the repository
of Table 1 be the Case Base, and Ret(S3) = {B,C,E, F} be the subset of k = 4
playlists retrieved. Consider how, in the Reuse process, these playlists are combined
using a search process (for brevity, the computation of H ′ is omitted):

1) Generate the successors of (S3) and sort them using H ′: (S3, S4), (S2, S3),
(S3, S5). Next node to visit: (S3, S4).

2) Generate the successors of (S3, S4) and sort them using H ′: (S3, S4, S6),
(S2, S3, S4), (S3, S4, S5). Next node to visit: (S3, S4, S6).

3) Generate the successors of (S3, S4, S6) and sort them using H ′:
(S2, S3, S4, S6), (S3, S4, S6, S9), (S3, S4, S6, S5). Next node to visit: (S2, S3, S4, S6).

4) Generate the successors of (S2, S3, S4, S6) and sort them using H ′:
(S9, S2, S3, S4, S6), (S1, S2, S3, S4, S6), (S2, S3, S4, S6, S9), (S2, S3, S4, S6, S5).
Next node to visit: (S9, S2, S3, S4, S6).

5) The node (S9, S2, S3, S4, S6) has λ = 5 songs, hence is returned as the solution.

Notice that the solution is a varied and coherent combination of sub-sequences from
the retrieved playlists: (S2, S3, S4) from B, (S4, S6) and (S2, S3) from C,
(S2, S3, S4, S6) from E and (S9, S2, S3) from F .

7 Experimental Results

We have tested the described CBR recommending system using a collection of
playlists from MusicStrands1. In the Case Base, we have represented playlists
1 For more information visit: http://www.musicstrands.com.



as pairs (track, artist), being track and artist two integers that allow us to
univocally identify every track and every artist in the MusicStrands database.
We have pre-processed the collection of playlists, discarding those with less than
5 songs, with more than 50 songs, and those alphabetically ordered (backwards
and forwards) along the names of the track and/or of the artist. Eventually, we
have assembled the Case Base using a subset (about 300,000) of playlists from
MusicStrands.

Concerning parameters, we were interested in recommending playlists where
tracks were mostly never repeated (γtrack = 200) and artists were hardly repeated
(γartist = 50). We have chosen θ = 5 as the maximum pattern length (longer
patterns very rarely appeared more than once), k = 50 as the number of retrieved
playlists, α = 0.5 and β = 1 as the length factor and popularity factor for the
relevance, and L = 1 as the look-ahead factor.

Table 3 shows six sample recommendations, where the desired length is λ =
10, and the input songs have been chosen from different genres and periods.
Notice that the suggested songs are similar (both acoustically and in terms of
metadata) to the input songs, especially those that appear closely before or after
them in the proposed sequences2. On the whole, the songs in the playlists sound
well in the presented order, and their genres are never too distant from the one
of the input song.

It is also worth noticing that many of the proposed songs are not very popular,
yet they form a coherently ordered playlist with the input songs. This is due
to effect of the popularity factor in the relevance function (β = 1), by which
we dampen playlists made of popular songs. In this way, we enable the user
to discover new music, because we are suggesting songs the user has probably
never listened to, and yet will appreciate, since they are correlated with the
input song. Should users long for recommendations with more popular songs,
they would just have to lower this value. For instance, in Table 4 we present two
recommendations, obtained with the same input songs of Test 2 and Test 4, but
generated with β = 0, that is, without dampening popular songs. Consider, for
instance, the song American Idiot, recommended in Test 2b (β = 0) before the
input song American Pie. These two songs co-occur in sequence 7 times in the
Case Base, which is, in general, a relevant pattern count. However, this pattern
count becomes irrelevant when compared to the popularity of American Idiot,
which is a very popular song (it appears in 8,479 playlists) and only 7 out of
8,479 times it is followed by American Pie. As a result, the system does not
recommend this sequence in Test 2 (β = 1), where pattern counts are dampened
for sequences made of popular songs.

As a matter of fact, by proposing different recommendations from the same
input, the parameter β allows to improve the diversity of the solutions. This
is indeed an important feature for a recommending system, and a key issue for
CBR systems [5].

2 A 30” excerpt of every song, along with detailed metadata, is available on Music-
Strands web-site.



Table 3. Sample of recommended playlists

Test 1. Input song: Test 2. Input song:
Only Shallow (My Bloody Valentine) American Pie (Don McLean)

Kool Thing Sonic Youth We’re An American Band VV.AA.
Stupid Preoccupations Vic Chesnutt Sweet Home Alabama Lynyrd Skynyrd
Seed Toss Superchunk More Than a Feeling Boston
Flyin’ The Flannel Firehose Bad Moon Rising
Only Shallow My Bloody Valentine Creedence Clearwater Revival
Exhibit A The Features American Pie Don McLean
Lover’s Spit Broken Social Scene Mr. Blue Sky Electric Light Orchestra
Gigantic The Pixies Switch Will Smith
Kamera Wilco This Love Maroon 5
From Blown Speakers Walkie Talkie Man Steriogram

The New Pornographers Walkin’ On The Sun Smash Mouth

Test 3. Input song: Test 4. Input song:
Mrs. Robinson (Simon & Garfunkel) Soldier (Destiny’s Child)

Unchained Melody Let Me Love You Mario
The Righteous Brothers Hush LL Cool J

Kicks Paul Revere & The Raiders Red Carpet (Pause, Flash)
Cherry Hill Park Billy Joe Royal R. Kelly
Windy The Association Hot 2 Nite New Edition
Sunshine Superman Donovan Wonderful Ja Rule
Mrs. Robinson Simon & Garfunkel My Prerogative Britney Spears
Nights In White Satin The Moody Blues Two Step Ciara
Only One Yellowcard Soldier Destiny’s Child
Pain Jimmy Eat World Only U Ashanti
Quiet Ones Tears For Fears Pass Out Ludacris

Test 5. Input song: Test 6. Input song:
Roots Bloody Roots (Sepultura) Strangers In The Night (F. Sinatra)

Satan Spawn, The Caco-Daemon It Had To Be You Steve Tyrell
Deicide Jamaica Farewell Desmond Dekker

Rapture Morbid Angel Just The Way You Are Diana Krall
Serenity In Fire Kataklysm Let’s Fall In Love Diana Krall
Roots Bloody Roots Sepultura Nunca Es Para Siempre
Plague Rages Napalm Death Presuntos Implicados
Blend As Well Coalesce Strangers In The Night F. Sinatra
God Send Death Slayer Candy Man, The Sammy Davis Jr.
Token Damad Unforgettable Nat King Cole
Heaven In Her Arms Converge What A Wonderful World
Fear Of Napalm Louis Armstrong

Terrorizer Falling In Love Again Billie Holiday



Table 4. Sample of recommended playlists, without dampening popular songs

Test 2b. Input song: Test 4b. Input song:
American Pie (Don McLean) Soldier (Destiny’s Child)

Behind These Hazel Eyes Kelly Clarkson Disco Inferno 50 Cent
Beverly Hills Weezer Mockingbird Eminem
I Just Wanna Live Good Charlotte Obsession Frankie J
American Idiot Green Day I Just Wanna Live Good Charlotte
American Pie Don McLean Boulevard Of Broken Dreams
Hotel California The Eagles Green Day
Cocaine Eric Clapton Since U Been Gone Kelly Clarkson
Emerald Eyes Fleetwood Mac Two Step Ciara
Carry On Wayward Son Kansas Soldier Destiny’s Child
Sweet Home Alabama Drop It Like It’s Hot Snoop Dogg

Lynyrd Skynyrd Get Back Ludacris

8 Conclusions and Future Work

We have presented a CBR system for recommending playlists made of mean-
ingful sequences of songs. The Case Base is a collection of playlists of different
quality, provided by different people. While most recommendation systems are
concerned with suggesting an unorganised set of songs, “similar” to those se-
lected by the user, our work focuses on recommending meaningful sequences of
songs (playlists). The proposed recommendations are not deeply “personalised”,
since the model we have of the user requesting a playlist is given only by the
selected (input) song. Future works will explore how to further constrain the
playlist to recommend by acquiring a larger input from the user.

This paper contributes to develop Case-based Reasoning in a variety of ways.
First, we address the important issue of reasoning about sequential cases (here,
in the form of coherently ordered playlists). Both the Case Base and the solution
provided by the CBR system are based on the sequential ordering of songs; the
problem-solving process of the CBR system exploits the informational content
of the Case Base to provide a solution with a coherent order.

A second issue of interest is that our Case Base contains only solutions and
not problems. In the usual CBR approach, the Case Base contains pairs (p, s)
(p is a problem, s is a solution); to find the solution for a new problem p′,
the system retrieves from the Case Base a set of similar problems, takes into
account their solutions, and returns one of them, or a combination of them,
as the solution for p′. In our approach, instead, the Case Base contains only
solutions (playlists), and no explicit problems: we know that the playlists in the
Case Base are meaningful, but we ignore for which input songs they are good
recommendations. In this context, we have designed the simplest CBR approach
that can exploit the information contained in a large Case Base of meaningful
sequences. We have explicitly avoided complex user models, which are a common
feature of Collaborative Filtering systems. User models are not helpful in relation



to our goal: they seek relations between people and preferred songs or playlists,
but disregard any sequential information contained in the playlists.

A third issue of interest is the Reuse process: rather than recommending
an existing playlist, we combine the retrieved playlists using the same criteria
(variety and coherence) that we used in the Retrieve process. In this way we rec-
ommend a playlist that has the desired length λ and higher variety and coherence
values than those of the retrieved playlists.

Further, we have investigated the issue of applying co-occurrences analysis
in a musical context. In this approach, we have opted for a minimal Problem
Description (only one song and the length of the desired recommendation) in
order to generate meaningful playlists by exploiting the co-occurrences present
in the Case Base. We have avoided more constrained inputs (e.g. two songs,
such that the recommendation starts with the first one and ends with the other,
and is coherently ordered). The problem with over-constrained input is that the
system returns low quality solutions when the constraints are too strong (e.g.
a user requests a playlist to start with a rap song and to end with a requiem).
In the future, however, we plan to enlarge the input capabilities of the user,
to partially constrain the recommended playlist. For instance, the user could
provide a short sequence of songs, and the system could recommend a playlist
with most of them; or else the user could indicate a specific genre, or tag, to
consider or to avoid in the recommended playlist.

We have tested the system using a collection of manually-generated playlists,
but in the future we plan to work with other forms of sequential music data. For
instance, MusicStrands provides MyStrands, an iTunes plug-in that recommends
new songs to the user, on the basis of the last songs effectively played in iTunes.
We plan to improve this tool with the introduction of an explicit notion of
sequentiality, in order to recommend on-line, meaningful, personalised playlists,
on the basis of previous sequences of songs effectively played by the user.

The evaluation of the quality of the recommendation is an open issue for
recommender systems. We agree with Hayes et al. [9] that user satisfaction can
only be measured in an on-line context. Although the proposed system has not
yet been evaluated by a significant number of users, we have deployed it on the
Internet3. Users can select an input song, the desired length, and other param-
eters, and can compare the (meaningfully ordered) recommendation generated
with the presented approach with the playlist proposed by the MusicStrands rec-
ommender. We plan to employ the users’ feedback as an evaluation for our work
and, once recommendations have been positively revised by the users, to retain
in the MusicStrands repository those that have been approved as good playlists,
to use them as new cases for future recommendations.
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