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Abstract. This paper presents a new approach to case revision in case-
based reasoning based on the idea of argumentation. Previous work on
case reuse has proposed the use of operations such as case amalgama-
tion (or merging), which generate solutions by combining information
coming from different cases. Such approaches are often based on explor-
ing the search space of possible combinations looking for a solution that
maximizes a certain criteria. We show how Revise can be performed by
arguments attacking specific parts of a case produced by Reuse, and how
they can guide and prevent repeating pitfalls in future cases. The pro-
posed approach is evaluated in the task of automatic story generation.

1 Introduction

Case-based reasoning systems are based on the hypothesis that “similar problems
have similar solutions”, and thus new problems are solved by reusing or adapting
solutions of past problems. However, how to reuse or adapt past solutions to new
problems, and how to revise these solutions are some of the least understood
problems in case-based reasoning. There are multiple open problems such as
what knowledge is required for adaptation and how to acquire it [20], the relation
between solution reuse and case retrieval [17], and solution revision [10]. This
paper builds upon previous work on search-based reuse in case-based reasoning,
and specifically on approaches based on amalgam or merge operators [12, 3],
where a solution to a given problem is generating by amalgamating the problem
with one or more retrieved cases.

Specifically, in this paper we focus on the following problem: search-based
approaches to case reuse employ some sort of search mechanism over the space
of solutions trying to either maximize or satisfy some evaluation function, that
hopefully captures the quality of the proposed solution. However, in some do-
mains, such as automated story generation [6] (which we used as our application
domain), defining an evaluation function that captures the quality of a solu-
tion is a very hard problem. For this reason, we propose a new case revision



approach that integrates argumentation into the case reuse process. Each time
the case reuse process proposes a solution, this is evaluated against a collection
of arguments that may attack the solution, forcing the case reuse to search for
alternative solutions. We claim that rather than capture how “good” a story
is, it is easier to define a collection of arguments that attack certain negative
aspects of the story. These arguments can be kept for future episodes, to prevent
generating stories that suffer from the same problems.

The remainder of this paper is organized as follows. We first introduce some
background on amalgam-based case reuse, and on argumentation. After that we
present our motivating domain: automatic story generation. Argument-based
revision is then presented, followed by an experimental evaluation. The paper
closes with conclusions and directions for future work.

2 Background

Stories (cases) are represented in the formalism of feature terms [1], and case
reuse is implemented as an amalgam of two feature terms: a source term and
a target term. We will briefly introduce here the basic notions of feature terms
and amalgamation; for more a detailed explanation see [13].

Feature terms are defined by their signature: Σ = ⟨S,F ,≤,V⟩. S is a finite
set of sort symbols, including ⊥ representing the most general sort (“any”), and
⊤ representing the most specific sort (“none”). ≤ is an order relation inducing a
single inheritance hierarchy in S, where s ≤ s′ means s is more general than or
equal to s′, for any s, s′ ∈ S (“any” is more general than any s which, in turn, is
more general than “none”). F is a set of feature symbols, and V is a set of variable
names. We define a feature term ψ as: ψ ::= X : s [f1

.
= Ψ1, · · · , fn

.
= Ψn], where

ψ points to the root variable X (that we will note as root(ψ)) of sort s; X ∈ V,
s ∈ S, fi ∈ F , and Ψi is either a variable Y ∈ V, or a set of variables {X1, ..., Xm}.
The set of variables present in a term ψ is noted V ar(ψ); for instance, the term
shown in Fig. 2 has 18 variables, one for each node.

The basic relation over feature terms is subsumption (⊑), i.e. given two terms
ψ1 and ψ2 we say ψ1 ⊑ ψ2 (ψ1 subsumes ψ2) when ψ1 is a generalization of ψ2,
or dually ψ2 is a specialization of ψ1. Subsumption generates a total mapping
m: V ar(ψ1) → V ar(ψ2) satisfying certain conditions such as m(root(ψ1)) =
root(ψ2), or if X.f = Y then m(X).f = m(Y ) (formal definition in [13]).

The unification of two terms ψ1 and ψ2, ψ1 ⊔ ψ2, is the most general term
subsumed by both and the dual notion of antiunification of two terms ψ1 and
ψ2, ψ1 ⊓ψ2, is the most specific term that subsumes both. There might be more
than one antiunification and more than one unification for two given terms. Also,
although an antiunification always exist, two terms might not unify. After this
summary, we are able to define the amalgam of two terms.

2.1 Amalgam-based Case Reuse

An amalgam of two terms is a new term that contains parts from these two
terms. For instance, an amalgam of ‘a red French sedan’ and ‘a blue German
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Fig. 1. A diagram of an amalgam A from inputs I1 and I2 where A = Ī1 ⊔ Ī2.

minivan’ is ‘a red German sedan’; clearly there are always multiple possibilities
for amalgams, like ‘a blue French minivan’.

In this paper we define an amalgam in a feature term language L as:

Definition 1 (Amalgam). A term A ∈ L is an amalgam of two inputs I1 and
I2, with anti-unification G = I1 ⊓ I2, if there exist two generalizations Ī1 and Ī2
such that (1) G ⊑ Ī1 ⊑ I1, (2) G ⊑ Ī2 ⊑ I2, and (3) A = Ī1 ⊔ Ī2

When Ī1 and Ī2 have no common specialization then trivially A = ⊤, since their
only unifier is “none”. For our purpose we will be only interested in non-trivial
amalgams (those different from ⊤) of the input pair, which we call their amalgam
space. This definition is illustrated in Fig. 1, where the anti-unification of the
inputs is indicated as G, and the amalgam A is the unification of two concrete
generalizations Ī1 and Ī2 of the inputs; for short we call Ī1 and Ī2 the transfers of
amalgam A. Usually we are interested only on maximal amalgams of two input
terms, i.e., those amalgams that contain maximal parts of their inputs that can
be unified. Formally, an amalgam A of inputs I1 and I2 is maximal if there is no
other non-trivial amalgam A′ of inputs I1 and I2 such that A ⊏ A′.

In our system, amalgamation is used in the Reuse process to create a new
story, by combining a story from the case base with a target specifying desired
aspects of the story to be generated.

2.2 Argumentation

Computational argumentation, in the abstract framework, consists of a set of
nodes (called arguments, intuitively understood as formulas) and an attack rela-
tion among pairs of nodes. An abstract argumentation framework AF = ⟨Q,R⟩
is composed by a finite set of argumentsQ and an attack relation R among the ar-
guments [4]. For instance, an attack relation written α↠ β means that argument
α is attacking argument β. In our previous work [14] on learning by communi-
cation we integrated inductive concept learning with a concrete argumentation
model in the A-MAIL framework (where A-MAIL stands for argumentation-based
multiagent inductive learning). In particular, a case e in the case base could serve
to attack an argument as a counter-example e ↠ β. Here A-MAIL is a concrete
argumentation framework, not abstract like Dung’s, and one main difference is
that while Dung’s assume a finite, known set of arguments we assume an open-
ended set of arguments. As we shall see, using arguments to revise cases during



the CBR cycle is essentially an open-ended process, since more often than not
the knowledge (here in the form of arguments) used to revise cases is external
to the CBR system.

Another difference is that during the Revise process, the case is assumed to be
a concrete, instantiated formula — while in the A-MAIL framework examples and
counterexamples were instantiated, and the other arguments were assumed to
be general formulas. The usual definition of an attack α↠ β is that α concludes
the opposite of β and β ⊏ α (α is a specialization of β). Section 4 introduces
the role of arguments in the Revise process of the CBR cycle.

3 Automatic Story Generation

Compared with the established narrative forms such as prose fiction computer-
generated stories are still in their early stage. Despite the recent progress in
the area, these stories are still fairly rudimental in terms of both the depth of
meanings and the range of their varieties.

Automatic story generation is an interdisciplinary topic focusing on devising
models for algorithmically producing narrative content and/or discourse. Story
generation is an important area for interactive digital entertainment and cultural
production. Built on the age-old tradition of storytelling, algorithmically gener-
ated stories can be used in a wide variety of domains such as computer games,
training and education. In addition, research in story generation may shed light
into the broader phenomena of computational creativity [6].

Different techniques have been studied in story generation, the most common
of which is automated planning. Salient examples of planning-based story gener-
ation systems include Tale-Spin [11], Universe [9] and Fabulist [16]. By contrast,
computational analogy algorithms have not been sufficiently explored in the do-
main of story generation. An alternative approach is that of using case-based or
analogy-based approaches. Examples of this alternative approach are MISTREL
[19], MEXICA [15] or the work of Gervás et al. [7], which used case-based ap-
proaches, or SAM [21], which uses computational analogy.

Specifically, in this paper we focus on a case-based approach, and address
the following problem: given a partially specified story (target), and a collection
of fully specified stories (case-base), how can we generate a new story by reusing
one of the cases in the case base (source)? This is an important problem in story-
generation since it would allow for a significant amount of authorial control over
the output of the story generator (controlling the target story), while providing
a fully automated way to suggest completed stories based on the target.

4 Argument-based Revision

The Revision process in the CBR cycle introduces knowledge that is external to
the CBR system to evaluate and/or improve the outcome of the Retrieve and
Reuse processes. The situation is similar to supervised Machine Learning where



an external source (called “oracle”) gives new information to the learning sys-
tem on its output; this feedback is used by the learning system to perform credit
and blame assignment on its learnt structures, modify them accordingly, and
increase performance over time (i.e. learn from interacting with the supervisor).
Now, different forms of interacting with the oracle define different modalities of
learning. The most common modality in supervised learning is when, in classifi-
cation tasks, a system predicts as solution a class for an instance, and the oracle
either accepts it as correct or, if not, provides the correct class for that instance.
This modality is common in CBR systems in classification tasks, where the oracle
“revises” the predicted class when the system is wrong and provides the correct
class (thus, the revised case is formed and can be retained in the case base with
the correct solution). However, oracles can provide different information: e.g. an
oracle can provide a yes/no feedback to the system given an instance, but does
not provide the correct answer. In semi-supervised learning approaches, such as
reinforcement learning, the oracle provides a numerical value that estimates how
good is the solution provided by the system.

For CBR systems in more complex tasks than classification, the Revise phase
usually assumes an external oracle (that might be a human expert or a domain
model) that can provide a revised solution that is correct, so the system can
learn. Other approaches, like “critics” in the CHEF system, are able to detect
failures on a recipe and apply repair strategies (e.g. add or remove steps in the
recipe [8]). This approach is based on analyzing the failure of the plan being
executed (in the real world or a simulated world).

The approach we take is to consider the interaction between system and or-
acle as a restricted form of dialogue, in which the system provides a tentative
solution and the oracle’s feedback is an argument attacking the parts of the
solution that, according to that oracle, are wrong or unsatisfactory. This is par-
ticularly interesting in creative domains, such as storytelling, in which what is
a “wrong” output (as in classification) or a “failure” (as in executing a plan),
is rather difficult to determine. In the long run, our goal would be to have a
dialogue between system and oracle on the features that are positive or negative
in a particular story being generated. For the purposes of this paper, we focus
on the more simple scenario where (1) the CBR system presents a solution (a
story), (2) the oracle’s feedback is one or several arguments attacking specific
aspects or parts of the story, and (3) the system incorporates arguments (as
well as the ones provided by the oracle in previous cycles) and generates a new
solution (story) that is coherent with most of the previous oracle’s argument.
We will presently define the notions of “argument” and generation of new stories
coherent with a set of arguments.

4.1 Arguments and attacks

Computational argumentation usually defines an attack relation α↠ β between
two logical statements α and β. However, our situation is slightly different, in
that we have a story represented as a feature term ψ that is a large and complex
structure, and an argument that will attack not the whole story but a particular
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Fig. 2. An example target story used in our experiments (corresponding to the target
in S/T3) represented as a feature term. This describes a situation where a human
named Zack, is in a boat in the middle of the ocean. Zack is taking his fishing gear
because he wants to fish a very large cod he has seen. At the same time, there is a
storm with lightnings.

part of it (in our formalism, a sub-term of ψ). We will discuss the form of
arguments first, and later the attack relation between an argument and an aspect
or part of a story.

Definition 2 (Argument). An argument is a pair (π, α), where π is a term
and α is a logical formula over terms with conjunction, disjunction and negation
(for terms ϕ, ϕ′ ∈ L), specifically, α may have one of the following forms: ϕ, ¬ϕ,
ϕ ∨ ϕ′, and ϕ ∧ ϕ′.

Intuitively, an argument (π, α) states that if a story ψ satisfies π (e.g., there is
a dragon as antagonist), then the story must also satisfy α (e.g., only a magical
weapon can kill the dragon). When the story ψ satisfies π but not α then we
say that the argument attacks ψ. Moreover, the attacking argument is retained
by the system, so in subsequent iterations it would prefer stories that satisfy the
argument to those that do not. Therefore, arguments cannot be understood as
constraints, but rather as preferences (sometimes called soft constraints).

In order to define attacks on stories, represented as feature terms, we need
to introduce notation to define subterms of a term. Let V ar(ψ) denote the set
of variables in term ψ; for instance, the term shown in Fig. 2 has 18 variables,
one for each node. Given a variable X ∈ V ar(ψ), the subterm ψX is the term
with root in variable X, intuitively the subgraph reachable from node X. For
instance, in Fig. 2 the variable X1 has a subterm formed by the root X1 and the



features that go to Zack and cod, or if we take the variable P1 then the subterm
is the graph shown in Fig. 2 describing Phase 1 of the story.

Definition 3 (Pattern Satisfaction). Let π and ψ be terms in L, hereby
called pattern and description respectively. Given a variable X ∈ V ar(ψ), we
say a description ψ satisfies a pattern π through X if π ⊑ ψX , we write π ⊑X ψ.

We can now define an attack of an argument (π, α) against a description
ψ; the intuition is that whenever ψ satisfies π then, if ψ does not satisfy the
patterns in the formula α, the argument attacks ψ.

Definition 4 (Attack). An argument (π, α) attacks a description ψ, written
(π, α) ↠ ψ whenever ∃X ∈ V ar(ψ) such that π ⊑X ψ and one of the following
holds:

1. when α = ϕ and ϕ ̸⊑X ψ holds,
2. when α = ¬ϕ and ϕ ⊑X ψ holds,
3. when α = ϕ ∨ ϕ′ and ϕ ̸⊑X ψ and ϕ′ ̸⊑X ψ hold,
4. when α = ϕ ∧ ϕ′ and ϕ ̸⊑X ψ or ϕ′ ̸⊑X ψ hold.

Each subsumption relation A ⊑X B generates a mapping between V ar(A) and
V ar(B) (as defined in Section 2). The mapping generated when testing subsump-
tion of α must respect the mapping generated for π. Moreover, if π subsumes ψ
for more than one mapping, each one of these mappings constitutes a different
attack.

For the purposes of this paper we do not use nested logical connectives; our
arguments use only simple negation, conjunction and disjunctions. The definition
of attack is the converse of satisfaction with respect to the formula α; thus
satisfying ϕ∨ϕ′ means that either one (ϕ or ϕ′) is satisfied in ψ, and then there
is no attack. Because of this, for α = ϕ ∨ ϕ′ accomplishing an attack, it means
that neither ϕ nor ϕ′ are satisfied in ψ. We will use the notation |a ↠ ψ| to
denote the number of variables in V ar(ψ) that are attacked by the argument
a = (π, α).

For the particular case where an argument wants to express that the formula
α has to be satisfied regardless of any precondition π, we use the notation (⊥, α).

Finally, notice that a new argument (π, α) is retained by the system, and will
be used to generate new stories where the ones that satisfy (are not attacked by)
argument (π, α) are preferred. More generally, given a set of known arguments
Args, the system will generate stories by exploring the space of amalgams and
preferring those that satisfy (are not attacked by) more arguments in Args.

4.2 Argument-based Revision Algorithm

This section presents a specific Argument-based Revision Algorithm (ARA) that
combines the ideas presented above. Specifically, the algorithm we propose per-
forms a greedy search over the amalgam space, starting with the most general
amalgam possible (the anti unification of the two input terms I1 and I2), and it



Algorithm 1 ARA(I1, I2, f , Args)

1: t = 0, A0 = A∗ = I1 ⊓ I2, Ī
0
1 = Ī02 = A0

2: loop
3: t = t+ 1
4: Rt

1 = specializations(Īt−1
1 )

5: Rt
2 = specializations(Īt−1

2 )
6: C = {I ⊔ Īt−1

2 |I ∈ Rt
1} ∪ {Īt−1

1 ⊔ I|I ∈ Rt
2}

7: if C = ∅ then
8: return A∗

9: else
10: At = argmaxA∈Cevaluation(A, f,Args)
11: if evaluation(At, f,Args) > evaluation(A∗, f,Args) then A∗ = At

12: Īt1 = At ⊓ I1, Ī
t
2 = At ⊓ I2

13: end if
14: end loop

specializes it iteratively, employing arguments to determine which of the possible
specializations is the most promising to pursue.

ARA is shown in Algorithm 1, and works as follows. Given two terms I1
and I2 (which in our case represent the target case, and the retrieved case), an
evaluation function f and a set of arguments Args:

1. Step 1 initializes the current amalgam, A0, the currently best amalgam A∗

and the current two transfer terms Ī01 and Ī02 to be equal to the antiunification
of the two input terms (the most general amalgam possible).

2. Then, at each iteration t, first ARA finds the set of possible specializations
of the current two transfers (this is done using a refinement operator over
feature terms [13]).

3. Line 6 computes all the possible next amalgams, resulting from unifying the
next specializations with the previous transfer terms.

4. Lines 10 - 11 select the best amalgam, and line 12 updates the transfer terms
for the next iteration. The way the best amalgam is determined is where
arguments come into play. Each argument a in our framework is assigned a
weight wa. The weight of an argument represents how serious is the issue that
this argument tries to prevent3. Each amalgam is then assessed as follows:

evaluation(A, f,Args) = f(A)−
∑

a∈Args

wa × |a↠ A|

where:
– f is an evaluation function that provides a basic score for an amalgam.

For example, f could encode things like “larger amalgams are preferable”
by giving higher scores to amalgams with a larger number of variables.

3 In the experiments shown later we use a hand-fixed weight equal for all arguments;
determining individual weights is discussed in future work.



In our experiments, we used the function: f(A) = |A| − k × |V ar(A)|,
where |A| is the size of the term A (number of times we need to specialize
⊥ using the refinement operator to reach A), and captures the size of
the story, and k = 4 in our experiments. A larger story means that we
have been able to transfer more information from the source and target
in the amalgam, so a general goal is to maximize |A|. The number of
variables in A is |V ar(A)|. When unifying the two transfers, we would
like variables of one transfer to be mapped to variables of the other. If
this is not the case, the number of variables in the resulting amalgam
grows. Thus, minimizing the number of variables in the amalgam has
the effect of maximizing the number of variables from the source that
are mapped to the target.

– The final term subtracts the weight of each attacked argument multiplied
by the number of times the argument attacks some subterm with root
X of the story A.

The effect of the ARA algorithm is to find amalgams that strike a balance
between maximizing the evaluation function f , and minimizing the number of
attacking arguments. The next section describes the generation of stories using
amalgams and arguments in an experimental scenario.

5 Experimental Evaluation

In order to evaluate our argument-based revision approach, we prepared an ex-
perimental setup that bypasses case retrieval altogether. Thus, we prepared four
source/target pairs: S/T1, S/T2, S/T3 and S/T4. In order to compare our results
with previous work, we translated the source/target pairs used in our previous
work [21] to the feature term formalism used in the approach presented in this
paper4. Below we provide details on the stories used for evaluation, and then we
provide empirical results illustrating the performance of our approach.

5.1 Dataset

As mentioned above, we represent stories using feature terms [1]. Specifically,
a story is a term composed of a sequence of phases, where a phase represents
a given instant in a story. Each phase contains a set of characters, locations,
props, actions and relations. We separated characters into three groups: the ag-
onist (protagonist or main character), the antagonist (the main opposing force),
and other characters. Entities that are not characters are classified into locations
and props. For each of these characters and objects, we specify a collection of
properties such as: their relations to other characters, whether they are perform-
ing any action, or their desires, likes and possessions.

4 The specific source/target pairs used for this experiment can be downloaded from
https://sites.google.com/site/santiagoontanonvillar/software.



Source Target

phases refinements phases refinements Surface similarity Structural similarity

S/T 1 4 203 1 73 low low
S/T 2 4 203 1 62 low high
S/T 3 2 90 1 79 high low
S/T 4 3 134 2 89 high high

Table 1. Properties of the source-target (S/T) pairs used in our study.

Additionally, the high-level structure of each phase is captured by annotating
who is the agonist, the antagonist, and their force relation (inspired in the cog-
nitive linguistics framework of force dynamics [18]). This allows us to represent,
in a compact way, the high-level structure of a story. Figure 2 shows an example
story used in our dataset (the target in S/T3).

As mentioned above, we translated the four source/target pairs used in [21]
to feature terms. These four pairs were selected because they represent a variety
of scenarios based on how similar the target is to the source. We distinguish two
types of similarity between stories: surface similarity and structural similarity.
The former refers to whether two stories contain similar concepts (e.g., both
contain a boat and a fish), while the latter refers to whether they have a similar
structure (e.g., both refer to a story where the main character overcame a diffi-
culty and succeeded). Surface similarity can be measured by the percentage of
keywords shared between two stories, and structural similarity is measured by
how much the force dynamics structures representing the stories match.

Table 1 shows some statistics of the stories used in our evaluation. For each
story, we show the size in number of phases, and number of refinements (this
is the number of times we have to apply the specialization refinement operator
to ⊥ to obtain the given story). This shows that target stories in our dataset
tend to be smaller than the source ones (expected, since they are only partially
specified). Additionally, we show which source/target pairs are similar in terms
of surface and structural similarity.

5.2 Experimental Setup

We evaluated our approach in the following way. First, we run our Reuse ap-
proach with an empty set of arguments for each of the four source/target pairs.
This gets us a baseline against with which to compare. Then, we iteratively gen-
erated arguments to address all the issues we observed in the solution generated
for S/T1. This resulted in a total of 15 arguments. Using those arguments, we
then report on the performance of the system in generating stories again for
all the four source/target pairs. We did not generate arguments for the other
source/target pairs purposefully, in order to assess the extent to which arguments
generated for one story can be used to improve performance in other stories. To
compare results, we report the value of the evaluation function f for the solution
found, and the number of attacks that the resulting story receives with the 15
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Fig. 3. Four example arguments generated during Revise and used in our experimental
evaluation.

arguments we generated. The number of attacks should be seen as a proxy for
the number of syntactic or semantic mistakes that the generated stories contain
(where a “syntactic mistake” would be something like having a character that is
never specified as agonist, antagonist or other-character, and a “semantic mis-
take” would be something like driving a boat on land). Additionally, we report
subjective impressions on the generated stories. Finally, we compare the results
obtained with those obtained in our previous work with the same source/target
pairs, but with a different algorithm [21].

Figure 3 shows four of the 15 arguments we generated. Specifically, those
four arguments capture the following:

– a1: If a human in the story has a relative, it must also be human.
– a2: If an entity is marked as “stronger” in a phase (a force dynamics anno-

tations), that entity must be the agonist or the antagonist.
– a3: An entity cannot be a relative (parent, son, sibling) of itself.
– a4: An entity cannot be the agonist and the antagonist at the same time.

Notice that those four example arguments are basically capturing things that
could be specified using a stricter ontology. However, having them as arguments,
allows us to be flexible, and allowing violations in a story in some cases. For
example, violating a1 would allow for fantasy stories where a human has a parent
being a magical being; violating a4 would allow for “split-self” stories, where
the main character is both the agonist and the antagonist of the story. Other
arguments capture common sense (e.g., a boat cannot be driven on land), or
story aesthetics (e.g., the location of a story should not change from phase to
phase), but they are not hard constraints, and there are specific stories that do
not comply to one of them. The weight wa of all the arguments was set to 10.

5.3 Results

The left-hand side Table 2 shows the amount of time taken and number of
amalgams explored generating stories using amalgams, but without argument-
based revision. Automatically quantifying the quality of stories generated using



Not Using Arguments Using Arguments

score attacks time explored score attacks time explored

S/T1 224 9 43s 5435 207 3 83s 5785
S/T2 219 3 232s 4015 210 2 185s 4081
S/T3 157 2 7s 1393 144 2 8s 1463
S/T4 230 6 21s 2056 215 1 13s 1909

Table 2. Score achieved (result of using the evaluation function f in the final story),
number of attacks that the final story receives from the set of 15 arguments we used,
time taken, and number of amalgams explored in the four story pairs used in our
experiments.

automatic story generation is an open challenge, and thus, in this paper we
report the number of attacks received by the stories using the 15 arguments we
generated as a proxy for the number of errors those stories contain (although this
is by no means a reflection of their literary quality, it reflects their coherence). We
will also list a collection of issues or interesting details of each of the generating
stories we observed.

– S/T1: In the resulting story, our system made a series of semantic mistakes:
created a story where the father of one of the characters is a butterfly,
and when the sister of the main character passed away, the main character
threw her into the toilet (since in the source story, a pet fish died and was
flushed down the toilet); and a collection of syntactic mistakes: incorrect
force dynamics structure, listed the sister of the main character as a prop,
and used a location in an incorrect place of the story structure.

– S/T2: The resulting story is almost syntactically correct since the stories
share strong structural similarity, however, given that they talk about very
disparate things (they share very little surface similarity), the story is rather
surreal. In the resulting story, there is a fish inside of a flower in a backyard
of the main character (who wants to play a game there); the fish later dies.

– S/T3: In this case, the resulting story is perfectly valid: the main character
wants to fish a giant cod, but he ends up not being able to, since the fishing
gear breaks while pulling the cod out of the ocean. It only contains a couple
of syntactic mistakes.

– S/T4: Source and target here are significant similarity (in one the main
character drives a car up a mountain, and in the other he drives a motor-boat
in a bay). The resulting story is almost correct, except for a few semantic
mistakes: first, in the generated story, a motorboat is driven up a mountain
(which clearly cannot be done), and also the bottom of the mountain is “in
the main character” (which doesn’t make sense), also there appear to be two
motorboats instead of one. The rest of the story is coherent: after driving
for a while, the main character realizes he did not fill the tank, and needs to
turn around.

The right-hand side of Table 2 shows that, obviously, when incorporating
the arguments into the search process, the resulting stories receive fewer at-



tacks, since the search process was directed towards parts of the amalgam space
containing stories with fewer attacks. For example the output for S/T1 received
only 3 attacks (while the same 15 arguments would generate 9 attacks against
the story generated without taking them into account). Moreover, even if the 15
arguments were generated with S/T1 in mind, other stories also receive attacks,
and thus benefit from these 15 arguments. Also, as the table shows, the time
taken and the number of amalgams explored vary from the case when we do not
use argument-based revision, but do not significantly increase. Looking closely
at the generated stories, we observed the following:

– S/T1: After argument-based revision, all of the semantic mistakes in this
story disappeared, since we provided arguments to address each of them.
Only two small syntactic problems persisted (a prop and a location were used
without being defined in their appropriate place in the feature term). Notice
that this illustrates both the strengths and weaknesses of our approach:
on the one hand, it is easy to provide arguments that prevent semantic or
syntactic mistakes, but on the other hand, given that stories are generated
by amalgamating information from source and target, it is not possible to
force the resulting story to have something that was not present in the source
nor target just by using arguments.

– S/T2: The only aspects that were improved in this story are the syntactic
ones, concerning some minor force dynamic structures. The overall story is
the same as without arguments.

– S/T3: No changes were observed in this story.
– S/T4: Almost all the syntactic and semantic errors were eliminated in this

story: the “bottom of the mountain” is now “in the island”, and not “in the
main character”, and there is a single motorboat instead of two. The only
semantic error that remains is the fact that a motorboat cannot be driven
up a mountain (since we had no argument to address this, as all arguments
were generated just to attack the issues of S/T1).

Comparing the results obtained using argument-based revision with the re-
sults obtained using the same four story pairs by the SAM algorithm [21], we
observed the following. First, our approach is able to transfer much more infor-
mation from the source case to the target case. SAM is based on computational
analogy (it uses the SME algorithm [5] internally), and only transfers elements
of the source that are related in some way (via analogical mapping) to the target.
The amalgam-based approach naturally achieves the same result, but can also
transfer information that is not mapped directly to the transfer. For example,
SAM was barely able to transfer any information at all for S/T2, whereas our
approach generates a full story consisting of four phases. Another example is
S/T4 where SAM generated a story that did not have the semantic mistake of
driving a motorboat up a mountain (since the mountain was not transferred to
the final story), but had a different semantic mistake: driving a motorboat after
it had ran out of fuel. Additionally, being able to use arguments to guide the
search process provides our new approach a natural way to guide the generation
process toward regions of the amalgam space that contain better stories.



6 Related Work

We already discussed the use of critics in CBR planning systems [8] and how it
relates to our approach. A related topic is that of critiquing-based recommenders.
The main goal in recommender systems is to acquire, via user feedback, a bet-
ter model of the user preferences: “Critiquing systems help users incrementally
build their preference models and refine them as they see more options” [2].
Probably user-initiated critiquing is the more similar to our approach, where a
user is presented with product features that can be selected as candidates to be
changed. Our approach is different, allowing richer feedback using arguments.
These arguments, in the form of pairs (condition, soft-constraint), are acquired
by the system to improve on its own task, in this domain generating stories, not
for user personalization. Moreover, the arguments are integrated as a driving
force into the search process of generating amalgams of stories during Reuse.

7 Discussion and Future Work

This paper has presented an approach to case revision based on arguments. The
main idea is to generate a collection of arguments that attack specific aspects
of a given solution that we want to prevent. These arguments are kept by the
system to prevent the same aspects from appearing in future solutions (albeit as
soft constraints only). The approach was incorporated into a search-based case
reuse framework and evaluated in a story generation task.

Our results indicate that by generating a small collection of arguments, our
approach was able to generate stories of higher quality, and that the same argu-
ments generated to attack a specific story were successfully used to increase the
quality of a separate set of stories.

Future work includes allowing the system to defend itself against attacking
arguments, by generating counter-arguments based on stories in the case base,
or even arguments that support a specific aspect of a story, rather than attack
it, moving closer to a full-fledged argumentation model, such as in [14]. However,
we’d need a larger case base of stories for achieving a richer dialogue. Moreover,
providing some support in deciding the weights wa used for strengthening the
arguments remains as future work. Eventually, we would like to model the notion
of an audience to which to generated story is generated. Value-based argumen-
tation offers this possibility, by associating arguments to values and modeling
an audience as a partially ordered set of values. The order among values may
help in determining the weights wa for their associated arguments.
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