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We present a computational framework for conceptual blending, a concept invention method 
that is advocated in cognitive science as a fundamental and uniquely human engine for 
creative thinking. Our framework treats a crucial part of the blending process, namely the 
generalisation of input concepts, as a search problem that is solved by means of modern 
answer set programming methods to find commonalities among input concepts. We also 
address the problem of pruning the space of possible blends by introducing metrics 
that capture most of the so-called optimality principles, described in the cognitive science 
literature as guidelines to produce meaningful and serendipitous blends. As a proof of 
concept, we demonstrate how our system invents novel concepts and theories in domains 
where creativity is crucial, namely mathematics and music.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Creativity is an inherent human capability that is crucial for the development and invention of new ideas and concepts 
[3]. This paper addresses a kind of creativity which Boden [3] calls combinational, and which has been studied by Fauconnier 
and Turner [27] in their framework of conceptual blending. In brief, conceptual blending is a process where one invents a 
novel concept, called the blend, by combining two familiar input concepts. For illustration, consider the classical example of 
blending the concepts house and boat (e.g. [34,27]). A possible result is the invention of a house-boat concept, where the 
medium on which a house is situated (land) becomes the medium on which boat is situated (water), and the inhabitant of 
the house becomes the passenger of the boat. Another possible blend is the boat-house, where the boat ‘inhabits’ the house.

An inherent computational problem of conceptual blending is to find a common ground, called generic space, between 
the two input concepts [27]. For example, the house-boat blend has the generic space of a person being inside an object that 
is not situated on any medium (or that is situated on a more general medium). Once the generic space has been identified, 
one can develop possible blends by specialising the generic space with elements from the input concepts in a meaningful 
way. However, this is not trivial because the naive union of input spaces can lead to inconsistencies. For example, the 
medium on which an object is situated can not be land and water at the same time. Hence, before combining the input 
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concepts, it is necessary to generalise at least one medium assignment. Another problem is the huge number of possible 
blends, which are often not meaningful. For example, blending house and boat such that the house becomes the passenger 
of the boat – imagine a house-transporting cargo vessel – is not very convincing. Consequently, one has to prune the search 
space by ruling out such low-quality blends.

Conceptual blending is perceived as a milestone in human cultural development [27]. The main motivation behind blend-
ing from an AI perspective is to find a computational interpretation of the human blending process, which could be an 
equally important milestone in the development of intelligent agents and autonomous systems. The value of conceptual 
blending for the development of creative systems has been witnessed by several works in the field of Artificial Intelligence 
and cognitive science, where particular implementations of this cognitive theory have been proposed [83,63,64,33,36].

As we show in our survey in Sec. 5, existing approaches propose computational characterisations of conceptual blending 
by using different formal representations for the input spaces and different techniques for performing the blending oper-
ation, and for the evaluation of the blends. For instance, Goguen and Harrell [33] logically formalise conceptual blending 
in terms of algebraic theories, Pereira [64] uses concept maps and frames, and rules and constraints to implement blend 
evaluation, while Veale and Donoghue [83] focus on the use semantic networks. The survey shows that providing a full 
computational account for conceptual blending is very challenging, in particular for the following two reasons:

• When combining two input spaces, the generic space is of particular importance to steer possible variations of blends. 
However, computing the generic space is a challenging issue (e.g., [76]), especially for expressive representation lan-
guages. Most existing blending frameworks are therefore not capable of computing a generic space automatically.

• Having identified a generic space, there typically remains a huge number of possible combinations to generate blends. 
To prune this result space, blends need to be evaluated. One way to do this is to check their consistency and to apply 
certain quality metrics.

In this paper, we address these issues and ask the following question:

How can we orchestrate the blending of input concepts in a computationally efficient and feasible way, that is faithful to the cognitive 
theory of conceptual blending and can therefore be considered as computationally creative?

To answer this question, we build a general creative computational framework for conceptual blending that allows the 
creation and evaluation of new blended concepts. The main contributions of this paper are as follows:

• We provide a blending framework that accepts input concepts in form of semiotic systems (see Sec. 2.2). Herein, we use 
algebraic specifications similar to those proposed by Goguen [34, Def. 1], with the difference that we assign priorities not 
only to constructors, i.e., operators, but also to sorts, predicates, and axioms. This extra level of knowledge allows us to 
guide the generalisation search process and create meaningful generalisations of the input spaces more efficiently, and 
we also use it for the evaluation of blends.

• We automate the discovery of generic spaces by applying amalgams, a notion known from case-based reasoning [61] (see 
Sec. 2.3). This process coordinates the interleaved generalisation and combination of input concepts as a non-monotonic 
search problem. We solve this search problem by using the declarative framework of Answer Set Programming (ASP) 
(e.g., [2]), as described in Sec. 3.

• We evaluate blends by re-interpreting the optimality principles of Fauconnier and Turner [27] and give them a full 
computational account (see Sec. 2.1 and 3.6). This helps to prune the search space.

• As a proof of concept, we implement our framework as an exploratory creative tool that can create interesting blends in 
the domain of mathematics and music. We also reproduce several blends that can be found in the literature. Finally, we 
show how our framework finds blends that belong to different domains (see Sec. 4).

• We provide a survey to characterise existing computational blending systems (see Sec. 5) and position our own work 
within the state of the art.

2. Preliminaries

Our framework is inspired by the cognitive theory of conceptual blending as presented in Fauconnier and Turner [27], 
whose underlying principles are described in detail in Sec. 2.1. To realise these principles computationally, we follow the 
work by Goguen [34], who provides a category theoretical account of blending (see Sec. 2.2). Moreover, to make Goguen’s 
work computationally feasible, we implement blending as an amalgam-based workflow [61], a notion that was developed in 
case-based reasoning (see Sec. 2.3). The implementation framework for the amalgam-based workflow is Answer Set Program-
ming (ASP), for which we provide a brief background in Sec. 2.4.

2.1. Cognitive principles of blending

Creativity, understood as an unfamiliar combinations of familiar ideas, goes back to the notion of bisociation, the idea 
that creativity is often a result of an intersection and selective combination of rather distinct frames of reference, presented 
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Fig. 1. The ‘houseboat’ blend, adapted from [33].

by Arthur Koestler in his book The Act of Creation in 1964 [46]. Based on these basic intuitions, within the cognitive sciences 
these ideas have been further developed into more concrete approaches of how to produce novel ideas (which may be 
concepts, theories, solutions to problems, works of art, etc.). One particular such approach, known as the theory of conceptual 
blending or conceptual integration has been proposed by Fauconnier and Turner [26] as a kind of primitive or fundamental 
cognitive operation underlying much of everyday thought and language. The process by which two concepts are blended
into a novel idea is seen as a complex event in which particular elements and their relations pertaining to the initial two 
concepts are combined selectively into a new whole, which is understood to be structurally richer, in a sense we will make 
precise below, than the mere commonalities of the two concepts.

Fauconnier’s view of concepts is prior to the notion of blending, and his Mental Spaces Theory is a highly influential 
cognitive theory of meaning construction, developed in [24] and [25]. According to Fauconnier, meaning construction involves 
two processes: (1) the building of mental spaces; and (2) the establishment of mappings between those mental spaces. 
Moreover, the mapping relations are guided by the local discourse context, which means that meaning construction is 
always situated or context-dependent.

Fauconnier and Turner [27] describe several constitutive elements of conceptual blending. These are (i) the input spaces
that are to be blended, (ii) a partial cross-space mapping that connects counterparts in the input mental spaces, (iii) a generic 
space that is an abstraction from what the input spaces have in common, (iv) a blending operation that produces a blend of 
the input spaces and into which the structure of the input spaces is selectively projected, and (v) an emergent structure, i.e., 
structure that is a synergistic gain to the naive sum of the structure of input spaces.

These constitutive elements can be organised in a conceptual integration network, i.e., the network of all input spaces, 
generic spaces and blend spaces together with the selective projections that model a particular blending process. Finally, 
Fauconnier and Turner propose certain optimality principles that govern the blending process, and that can be taken as a 
way to assess the quality of a blend. Let us briefly review these constitutive elements and optimality principles as put forth 
in Fauconnier and Turner’s model, using the house-boat blend depicted in Fig. 1 as an illustrative example.

2.1.1. Constitutive elements of conceptual blending
According to cognitive theory, the conceptual blending process involves the following elements:

• Input Spaces: Fauconnier and Turner [27] consider the input spaces of a blend to be mental spaces – small conceptual 
packets constructed as we think and talk, for purposes of local understanding and action. According to Fauconnier [24], 
mental spaces are connected to long-term schematic knowledge, by means of frames, which model how certain elements 
and relations are organised as a package that we already know about. Often these frames are so-called image schemas
[52], described by Johnson [44] as ‘a recurring, dynamic pattern of our perceptual interactions and motor programs 
that gives coherence and structure to our experience’. Image schemas are also critical for the semantic compositionality 
of language, and they are, therefore, often used by cognitive linguists to implement embodied construction grammars 
[22,23,81].

Moreover, mental spaces are built on-demand, for a particular linguistic situation, resulting in concrete and temporary 
packets of conceptual structure. For example, contrary to a naive view of meaning, there is no fixed understanding of 
the concepts of house and boat: there are mental spaces for house and boat that are constructed in particular linguistic 
situations. Hence, one cannot assume that input mental spaces are the same in all possible output blends, since the 
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content of a mental space is neither constant nor preexisting to the context in which they are used. For example, a house 
in a poor developing country has different properties than a house in a rich urban area. However, many computational 
blending systems (e.g., [37,83]) that emanate from the work by Fauconnier and Turner [27] often simplify this aspect 
of their theory and consider blending to be an operation that takes two input spaces as given and generates one or 
more output spaces, i.e., blends. The approach taken in this paper is to formalise the notion of mental spaces being built 
on-demand, but allowing heuristic generalisation and adaptation of the input spaces, as well as the computation of a 
blend. This is demonstrated in the examples shown in Sec. 4.2 and Sec. 4.3.

• Cross-space mapping: According to [27, p. 41], “[...] a partial cross-space mapping connects counterparts in the input mental 
spaces.” As an example consider the house-boat blend, where the passenger of the boat is mapped to the resident of the 
house, and the ride relation between passenger and boat is mapped to the live-in relation between resident and house.

• Generic Space: The cross-space mapping points to what might constitute the generic space, which essentially contains 
what is common to or shared among the two input mental spaces. For example, the mapping between passenger and 
resident in the house-boat blend suggests a generic space with a concept person that generalises the concepts of passenger
and resident.

• Blend: The most precise statement about the actual blending operation is possibly the following, from Fauconnier and 
Turner [27, p. 47]: “In blending, structure from two input mental spaces is projected to a new space, the blend. Generic spaces and 
blended spaces are related: Blends contain generic structure captured in the generic space but also contain more specific structure, 
and they can contain structure that is impossible for the inputs [...]”

The blend is neither the intersection nor the union of the input spaces. Parts of the input spaces are selectively 
projected into the blend, other parts do not become part of the blend. For example, blending house and boat to house-boat
requires to select the concept water from the boat input space, but not the concept land from the house input space.

The close relationship between the generic and the blend spaces, makes it important for any formal model of blending 
to come to grips how the generic space arises from the blending process as well as what role it plays.

• Emergent Structure – Composition, Completion and Elaboration: The emergent structure refers to additional structure in the 
blend that is not directly copied from the inputs. Emergent structure is built through three processes: composition, 
completion, and elaboration. First, composition simply brings the elements of the input spaces together, without any 
further effect; second, completion is the inference of additional information, obtained from accessing related frames and 
scenarios; and third, elaboration intuitively means simulating the behaviour of the elements in the blend interacting 
among them. As emphasised in Fauconnier and Turner [27, p. 49], “[t]he creative possibilities of blending stem from the 
open-ended nature of completion and elaboration.”

From an Artificial Intelligence viewpoint, composition combines a selective projection of inputs. Completion adds 
background knowledge to the blend, until it is completed, i.e., has all that is needed for the purpose at hand. Elaboration 
involves reasoning or inference, in the sense that background knowledge is used to reason about actions that some ele-
ments can perform, or actions that can be performed on some elements, in order to elucidate the eventual consequences 
of the blended mental space.

• Conceptual Integration Network: As stated in Fauconnier and Turner [27, p. 44], “Building an integration network involves 
setting up mental spaces, matching across spaces, projecting selectively to a blend, locating shared structures, projecting backward 
to inputs, recruiting new structure to the inputs or the blend, and running various operations in the blend itself.”

2.1.2. Optimality principles
Optimality principles play the role of an assessment measure for blends. As we mention earlier, two input spaces can be 

blended together in many different ways, and finding a particular blend that is creative and useful is not trivial.
The optimality principles that Fauconnier and Turner [27] mention compete with each other, and satisfying one princi-

ple may dissatisfy another one. In the following, we summarize how Fauconnier and Turner [26,27] define the particular 
principles that we consider in this paper, and we provide examples by explaining their role in the house-boat blend.

• Topology Principle: “For any input space and any element in that space projected into the blend, it is optimal for the relations of 
the element in the blend to match the relations of its counterpart.” [26]

In terms of the house-boat blend, if the elements passenger and resident are blended to a passenger-resident of a 
house-boat, then the lives-in relation between the resident and the house remains the lives-in relation between the 
passenger-resident and the house-boat.

• Pattern Completion Principle: “Other things being equal, complete elements in the blend by using existing integrated patterns as 
additional inputs. Other things being equal, use a completing frame that has relations that can be the compressed versions of the 
important outer-space vital relations between the inputs.” [27, p. 328]

This principle is related to the work on image schemas by Lakoff [51]. Image schemas are completing frames that 
are abstract versions of the input spaces. For example, in the house-boat blend, the Container image schema is used 
as an abstraction for a house, which is a container for a resident and a boat, which is a container for a passenger. 
The pattern completion principle is related to the emergent structure of a blend, because emergent structure only arises 
through completion and elaboration.

• Integration Principle: “The blend must constitute a tightly integrated scene that can be manipulated as a unit. More generally, 
every space in the blend structure should have integration.” [26]



M. Eppe et al. / Artificial Intelligence 256 (2018) 105–129 109
For example, one could blend a scene of a house and a scene of a boat as the simple union of both scenes, so that 
there is a house with a resident and a boat with a passenger in the blend. However, this is not perceived well as a unit. 
A better blend in terms of integration is the new concept of house-boat, which can be treated much better as a unit.

• Maximisation of Vital Relations Principle: “Other things being equal, maximise vital relations in the network. In particular, max-
imise the vital relations in the blended space and reflect them in outer-space vital relations.”
Intensification of Vital Relations Principle: “Other things being equal, intensify vital relations.” [27, p. 330]1

According to Fauconnier and Turner [27], blending does not only happen to creatively invent new concepts, but it also 
serves as a means to compress the information in the input spaces using so-called vital relations, which are fundamental 
in the particular network of interest. As examples, Fauconnier and Turner [27] mention cause-effect, time, space, identity, 
change, and uniqueness relations. If such relations exist between the input spaces, then blending causes them to reappear 
in compressed form in the blend. Maximising and/or intensifying vital relations in a blend also increases the degree of 
compression that a blend produces. This underpins not only the importance of blending as a means for creativity, but 
also for efficient cognitive operation.

• Web Principle: “Other things being equal, manipulating the blend as a unit must maintain the web of appropriate connections to 
the input spaces easily and without additional surveillance or computation.” [27, p. 331]

This refers to relations between spaces in the network. For example, placing a houseboat into a new environment 
such as a river scene maintains the connections to the input spaces of house and boat: the relation between the resident
of a house and the passenger-resident of a house-boat is still there. As another example, consider the case where some 
form of residential fee has to be paid for a house-boat. If the fee is raised for a house-boat, then one should be able to 
infer that it is also raised for a house.

• The Unpacking Principle: “Other things being equal, the blend all by itself should prompt for the reconstruction of the entire 
network.” [27, p. 332]

For example, by focusing on the concept of a house-boat we still can access the concept of house with its proper-
ties and its relationship to other concepts. Similarly, we can also access the notion of boat with its properties and its 
relationship to other concepts.

• Relevance Principle: This is sometimes also called the Good Reason Principle. Fauconnier and Turner [27, p. 333] describe 
it as follows: “Other things being equal, an element in the blend should have relevance, including relevance for establishing links 
to other spaces and for running the blend. Conversely, an outer-space relation between the inputs that is important for the purpose 
of the network should have a corresponding compression in the blend.”

What eventually constitutes the house-boat concept will very much depend on what we are pursuing when blending. 
So, if the relation live-in is relevant, it should be included in the blend. But maybe another relation (e.g., number-of-rooms) 
might not be relevant, and should, therefore, not be considered in the blend.

In general, the optimality principles are defined in a vague cognitive way, and not meant to be perceived as rigid rules. 
However, if one is to computationalize conceptual blending, then it is necessary to find some way of formalizing the opti-
mality principles. Our attempt to do so results in an encoding of some of the principles as a quantitative evaluation metric, 
as presented in Sec. 3.6.

2.2. A categorical view on blending

Goguen [34] proposes to model the input concepts of blending as semiotic systems, which are essentially algebraic specifi-
cations described in a logical representation language. The main advantage of this approach is being able to provide a general 
enough, but computational feasible representation, while being able to resolve inconsistencies. We represent semiotic sys-
tems using the Common Algebraic Specification Language (CASL) [60], and extend it by considering priority information for 
operators, sorts, predicates and axioms as follows:

Definition 1 (Prioritised CASL specification). A prioritised CASL specification (PCS) is a tuple s = 〈ST , �, O, P, A, prio〉 with:

• a set ST of sorts, along with a preorder � that defines a sub-sort relationship;
• a set O of operators o : s1 × · · · × sn �→ sr that map zero or more objects of argument sorts s1, · · · , sn to a range sort sr ;
• a set P of predicates p : s1 × · · · × sn that map zero or more objects of argument sorts s1, · · · , sn to Boolean values;
• a set A of axioms;
• a function prio : ST ∪O ∪P ∪A �→ N0 that assigns a priority to all elements in a specification. The lower the number, 

the lower the priority.

We refer to the listed constituents of a PCS simply as the elements of a PCS, denoted by e, and we say that two PCS 
are compatible if all of their elements, except the priority function, are equal. Some elements of a PCS are marked as 

1 We here merge ‘maximise/intensify’ of vital relations into one principle as they are not distinguished sharply in the original text.
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Fig. 2. A diagram of an amalgam A = Ī1 � Ī2 from inputs I1 and I2. The arrows indicate the subsumption relation 	.

data-elements to represent a fixed background vocabulary (see e.g. [34, Def.1]). The priority for data elements is always 0, 
where 0 is the lowest priority value.

A good motivation for using priorities can be found in prior work [20]. Intuitively, it is an instrument to express the 
salience level of elements in concept, and it also helps algorithmically to prune the search space, as described in Sec. 3. 
Goguen [34]’s algebraic view on blending suggests to compute the blend of input specifications as their categorical colimit
(see e.g., [69]). The colimit is a general unification operation for categories, similar to the union operation for sets. In this 
case the categories are algebraic signatures, so that the colimit can be used to unify algebraic specifications, as described 
by Mossakowski [57]. The colimit requires morphisms to be defined between the signatures of algebraic specifications, in 
particular between the generic space and the input concepts. Our blending algorithm uses colimit of algebraic specifications 
as the basis for composing input spaces, as described in Sec. 3.5. We do consider priorities when computing the colimit, but 
use them instead as a means to reward the compression of structure in a blend. This supports [27]’s optimality principles, 
as described in Sec. 3.5.

2.3. The notion of amalgams

As shown in [4], the process of conceptual blending can be characterised using amalgams [61], a notion that was devel-
oped in case-based reasoning as an approach to combine solutions coming from multiple cases. According to this approach, 
input concepts are generalised until a generic space is found, and pairs of generalised versions of the input concepts are 
combined to create blends.

Formally, the notion of amalgams can be defined in any representation language L for which a subsumption relation 
(	) between formulas (or descriptions) of L can be defined. We say that a description I1 subsumes another description I2
(I1 	 I2) when I1 is more general (or equal) than I2. Next, for any two descriptions I1 and I2 in L we can define their 
unification, (I1 � I2), which is the most general specialisation of two given descriptions, and their anti-unification, (I1 
 I2), 
defined as the least general generalisation of two descriptions, representing the most specific description that subsumes both. 
Intuitively, a unifier is a description that has all the information in both the original descriptions. The anti-unification I1 
 I2
contains all that is common to both I1 and I2.

An amalgam of two descriptions is a new description that contains parts from these original descriptions. For instance, an 
amalgam of ‘a red French sedan’ and ‘a blue German minivan’ could be ‘a red German sedan’; clearly, there are always 
multiple possibilities for amalgams, like ‘a blue French minivan’. An amalgam of two descriptions is defined as follows.

Definition 2. A description A ∈ L is an amalgam of two inputs I1 and I2 (with anti-unification G = I1 
 I2) if there exist 
two generalisations Ī1 and Ī2 such that (1) G 	 Ī1 	 I1, (2) G 	 Ī2 	 I2, and (3) A = Ī1 � Ī2 and A is consistent.

This definition is illustrated in Fig. 2, where the anti-unification of the inputs is indicated as G , and the amalgam A is 
the unification of two concrete generalizations Ī1 and Ī2 of the inputs.

The generalisation of a description of a language L is usually done by means of generalisation operators [61]. Formally, 
a generalisation operator is defined as:

γ (I) = { Ī ∈ L | Ī 	 I and � Ī ′ s.t. Ī � Ī ′ � I} (1)

Intuitively, a generalisation operator ‘transforms’ a description into a more general (or equal) one. For instance, the descrip-
tion of a ‘red French sedan’ can be generalised to a ‘red European sedan’ but also to a ‘coloured French sedan’ or to a 
‘red French car’, since, typically, more than one generalisation is possible. The anti-unification of our input descriptions – a 
‘coloured European car’ – is obtained by keeping on generalising the descriptions until they are equal. The anti-unification 
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serves as an upper bound of the generalisation space to be explored and plays the role of the generic space in conceptual 
blending, which states the shared structure of both concepts.2

2.4. Answer Set Programming

Answer Set Programming (ASP) is a declarative approach to solve NP-hard search problems (see e.g. [31,2]). ASP is often 
used for realizing the deliberation and problem solving skills of autonomous systems (e.g., [16,19]) and other forms of 
logical reasoning, such as epistemic or abductive inference [18,17], decision making under uncertainty [8], and preference 
reasoning [7]. In this work, we explore its use for Computational Creativity and logical theory generalisation.

An ASP program is similar to a PROLOG program in that it follows a non-monotonic semantics, takes logic programming 
style Horn clauses as input, and uses negation-as-failure (NaF). However, instead of using Kowalski [47]’s SLDNF resolution 
semantics as in PROLOG, it employs Gelfond and Lifschitz [32]’s Stable Model semantics, which makes it truly declarative. 
This means that the order in which ASP rules appear in a Logic Program does not affect the solution. Furthermore, the 
Stable Model Semantics has the advantage that Answer Set Programs always terminate, while PROLOG programs do not. For 
example, given a program not p ← q. and not q ← p., asking whether p holds results in an infinite loop for PROLOG, while 
ASP returns two stable models as solution, namely the sets {p} and {q}.

An ASP program consists of a set of rules, facts and constraints. Its solutions are called Stable Models (SM). In this paper 
we only consider so-called normal rules [2], which are written as:

a0 ← a1, . . . ,a j,not a j+1, . . . ,not an (2)

in which a1, ..., an are atoms and not is negation-as-failure. When n = 0 the rule a0 ← is called a fact and the ← is omitted. 
A constraint is a rule of the form ← a1, . . . , a j, not a j+1, . . . , not an . Constraints are rules that are used to discard some 
models of a logic program.

The stable models of an ASP program are defined in terms of the so-called Gelfond–Lifschitz reduction [32]. Let LP be the 
set of atoms in the language of a normal logic program P , then for any set M ⊆ LP , the Gelfond–Lifschitz reduction P M is 
the definite logic program obtained from P by deleting:

(i) each rule that has a formula not a in its body with a ∈ M , and
(ii) all formulæ of the form not a in the bodies of the remaining rules.

M is called a stable model of P if and only if M is the minimal model of P M . A stable model M of an ASP program P
contains those atoms that satisfy all the rules in the program and, consequently, represents a solution of the problem that 
the program P represents.

ASP is interesting because it can capture complex knowledge representation problems, and also because efficient ASP 
implementations, such as clingo [29], exist. The clingo solver offers a step-oriented, incremental approach that allows to 
control and modify an ASP program at run-time, without the need of restarting the grounding of the solving process 
from scratch. To this end, a program is partitioned into a base part, describing the static knowledge independent of a 
step parameter t , a cumulative part, capturing knowledge accumulating with increasing t , and a volatile part specific for 
each value of t . The grounding and integration of these subprograms into the solving process is completely modular and 
controllable from a scripting language such as Python.

The ASP implementation in this paper follows this methodology of specifying and solving a problem incrementally. For 
further details about incremental solving, we refer to [30], where several examples can be found.

3. Blending with amalgams

We employ an interleaved declarative-imperative amalgam-based workflow to search for generalisations of input spaces 
that produce and evaluate consistent blends. The blending theory in principle allows for any finite number S ≥ 2 input 
specifications, but in the implementation we use S = 2 for simplicity. The notion of consistency in our work refers to logical 
consistency of algebraic specifications.

3.1. System description

The workflow of our system is depicted in Fig. 3. Most of the reasoning is done using Answer Set Programming (ASP) 
by generating a sequence of theory transitions. The ASP implementation is combined with Python scripts that perform 
external information processing if necessary. The main purpose of the implementation is to realize the theory transitions 
that occur during the generalisation process. A theory transition can either be the removal of an element (generalisation) 

2 From a cognitive point of view one could argue if the generic space plays either a central or marginal role in blending. From a mathematical point of 
view, any relationship between input space specifications will determine a generic space. By modelling blending as using amalgams and colimits it makes 
sense to make this generic space explicit and a constituent part of our computational realisation of blending.
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Fig. 3. Amalgam-based workflow.

or the renaming of an element in a specification. Towards this, the input PCS s1, s2 are first translated into ASP facts, as 
described in Sec. 3.2. Second, s1, s2 are undergoing sequences of theory transitions that are guided by an ASP solver until 
a generic space is found. Each transition is represented by a fact exec(γ , s, t), where t is an iterator and γ is a transition 
operator that removes or renames elements in the input specifications (see Sec. 3.3). The execution of transition operators 
is repeated until the generalised versions of the input specifications are compatible in the sense of Definition 1. We write 
s(t) to denote the specification that results form the t-th transition of s. For example, after the first theory transition, the 
house concept might be the concept of a house that is not situated on any medium. Note that in iterative ASP-solving, an 
iterator t causes atoms to be instantiated for a predefined number of steps (see e.g., [28,29]).

In order to find consistent blends, we apply the category-theoretical colimit [57] to compose transitioned input speci-
fications. To this end, we use the HEterogeneous Tool Set (HETS) [58]. The colimit is applied on different combinations of 
transitions, and for each result we query theorem provers such as eProver and darwin, which are embedded in HETS, in 
order to check for consistency. An example for a consistent house-boat blend is the combination of the generalised boat
on the medium water, but without a passenger, and a generalised house with a resident, but without a medium, where 
‘passenger’ in ‘boat’ is renamed to ‘resident’ in house.

To eliminate uninteresting blends from our search process, we consider that more promising blends are those that require 
less generalisations. Consequently, we go from less general generalisations to more general generalisations and stop when 
a consistent colimit is achieved. Thereafter, the result is evaluated using certain metrics that are inspired by Fauconnier 
and Turner [27]’s optimality principles of blending to assess the quality of the blend (see Sec. 3.5). Note that different stable 
models, and therefore different generalisations and renamings, can be found by the ASP solver. Each combination leads to a 
different set of blends.

3.2. Modelling algebraic specifications in ASP

In order to find the generic space and to avoid inconsistencies that arise from the naive combination of input specifica-
tions, we weaken prioritised CASL specifications using transition operators in a step-wise search process. Firstly, renaming 
operators modify specifications by renaming their elements. Secondly, removal operators generalise algebraic specifications 
by removing operators, sorts, predicates or axioms. In the following, we use t to denote a step-counter that represents 
the number of transitions that a specification has undergone. We assume that sorts, operators and axioms for data (in the 
sense of Definition 1) are common among input specifications, so that we do not need to consider them in the ASP-based 
reasoning process. With this, we represent prioritised CASL specifications in ASP as follows:

� For each sort s in a specification s with a parent sort sp we state the facts:

sort(s, s, t) (3a)

hasParent(s, s, sp, t) (3b)

A fact (3a) assigns a sort s to a specification s at a step t , and (3b) assigns a parent sort.
� For each operator o : s1 × · · · × sn �→ sr in a specification s we have:

op(s,o, t) (4a)

opHasSort(s,o, s1,1, t) · · · opHasSort(s,o, sn,n, t) (4b)

opHasSort(s,o, sr, rng, t) (4c)

Facts (4b), (4c) state the argument sorts and the range sorts of an operator. 1 . . .n determine the position of the argument 
sort and rng is simply a constant to denote that the sort is the range sort of the operator.

� Similarly, for each predicate p : s1 × · · · × sn in s we generate the LP facts:

pred(s, p, t) (5a)

predHasSort(s, p, s1,1, t) · · · predHasSort(s, p, sn,n, t) (5b)
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� For each axiom a we determine an equivalence class of that axiom, denoted eqa , by passing the axiom to a respective 
Python function.3 All logically equivalent axioms have the same equivalence class, e.g., ¬a ∨ b has the same equivalence 
class as a → b. We also determine the elements, i.e, sorts, operators and predicates, that are involved in an axiom. This 
information is used in the preconditions of removal operators. For example, operator removal has the precondition that 
there exists no atom that involves the operator. Having computed the equivalence class eqa and determined ne elements 
that are involved in an axiom, we generate the following facts for each axiom a in a specification s.

ax(s,a, t) (6a)

axInvolvesElem(s,a, e1, t) . . . axInvolvesElem(s,a, ene , t) (6b)

axHasEqClass(s,a, eqa, t) (6c)

We represent the priority function prio of a PCS as facts priority(s, e, v p) for each element e in a specification s. Compat-
ibility among two input specifications, as defined in Definition 1, is represented by atoms incompatible(s1, s2, t), which are 
triggered by additional LP rules if, for s1 and s2, at step t , (i) sorts or subsort relationships are not equal, or (ii) operator or 
predicate names are not equal, or (iii) argument and range sorts of operators and predicates are not equal, or (iv) axioms 
are not equivalent.

3.3. Formalising transition operators in ASP

We consider two kinds of transition operators for PCS. The first kind involves the renaming of an element to the name 
of an element in another input specification. Since we consider syntactically equal elements to be conceptually equal in our 
implementation, this can be seen as identifying the commonalities among input spaces. The second kind is generalisation 
and involves the removal of an element in a specification. Generalisation operators are executed after all renaming actions 
have happened. Considering Definition 1, it is trivial to see that removal of elements in a PCS are generalisation operators 
in the sense of Eq. (1).

Each generalisation operator is defined via a precondition rule, an inertia rule, and, in case of renaming operations, 
an effect rule. Preconditions are modelled with a predicate poss that states when it is possible to execute a transition, 
and inertia is modelled with a predicate noninertial that states when an element of a specification stays as it is after a 
transition. Effect rules model how a transition operator changes an input specification. We represent the execution of a 
transition operator with atoms exec(γ , s, t), to denote that a generalisation operator γ was applied to s at a step t .

Removal operators. A fact exec(rm(e), s, t) denotes the removal of an element e from a specification s at a step t . It 
has different precondition rules for removing axioms (7a), operators (7b), predicates (7c) and sorts (7d):

poss(rm(e), s, t) ←ax(s, e, t), exOtherSpecWithoutEqivAx(s, e, t) (7a)

poss(rm(e), s, t) ←op(s, e, t), exOtherSpecWithoutElem(s, e, t), (7b)

0{ax(s, A, t) : axInvolvesElem(s, A, e, t)}0

poss(rm(e), s, t) ←pred(s, e, t), exOtherSpecWithoutElem(s, e, t), (7c)

0{ax(s, A, t) : axInvolvesElem(s, A, e, t)}0,

poss(rm(e), s, t) ←sort(s, e, t), exOtherSpecWithoutElem(s, e, t), (7d)

0{ax(s, A, t) : axInvolvesElem(s, A, e, t)}0

noOpUsesSort(s, e, t),noPredUsesSort(s, e, t),

isNotParentSort(s, e, t)

The precondition (7a) for removing an axiom from a specification is that an atom exOtherSpecWithoutEqivAx(s, e, t) holds. 
Such atoms are produced, if there exists at least one other specification4 that does not have an axiom of the same logical 
equivalence class. For the removal of other elements we have a similar precondition, i.e., exOtherSpecWithoutElem(s, e, t), 
which denotes that an element can only be removed if it is not involved in another specification. Such preconditions 
are required to allow only generic spaces that are least general for all input specifications, in the sense that elements 
can not be removed if they are contained in all specifications. We also require operators, predicates and sorts not to be 
involved in any axiom before they can be removed (denoted by 0{ax(s, A, t) : axInvolvesElem(s, A, e, t)}0). Precondition (7d)
for removing sorts has the additional requirement that no operator or predicate with an argument or range of the sort 

3 Ideally, one would check for logical equivalence of axioms. However, since FOL is generally undecidable we check for syntactic equivalence of normalized 
versions of axioms in the current version of our framework. Logical equivalence would be more difficult to solve due to the undecidability of FOL.

4 We focus on only two specifications in this paper, but the approach can in general also be applied to more than two specifications.
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to be removed exists in the specification, which is implemented with noOpUsesSort and noPredUsesSort facts respectively. 
These are triggered by additional simple LP rules. Another condition for sort removal is that the sort is not the parent sort of 
another sort. Consequently, for sort removal, all axioms, operators and predicate that involve the sort must be removed first, 
and child sorts must also be removed first. The inertia rules for removing elements from a specification are quite simple:

noninertial(s, e, t) ← exec(rm(e), s, t) (8)

All noninertial atoms will cause an element e to remain in a specification (see rule (12)).
Renaming operators. A fact exec(rename(e, e′, s′), s, t) denotes the renaming of an element e of a specification s to 

an element e′ in a specification s′ . In contrast to removal, renaming can only be applied to predicates, operators and 
sorts. Axioms are automatically rewritten according to the renamings of the involved elements. Again, we have different 
preconditions for renaming operators (9a), predicates (9b) and sorts (9c):

poss(rename(e, e′, s′), s, t) ←op(s, e, t),op(s′, e′, t), (9a)

not opSortsNotEquivalent(s, e, s′, e′, t),

not op(s, e′, t),not op(s′, e, t), s �= s′

poss(rename(e, e′, s′), s, t) ←pred(s, e, t), pred(s′, e′, t), (9b)

not predSortsNotEquivalent(s, e, s′, e′, t),

not pred(s, e′, t),not pred(s′, e, t), s �= s′

poss(rename(e, e′, s′), s, t) ←sort(s, e, t), sort(s′, e′, t), (9c)

not sort(s, e′, t),not sort(s′, e, t)

A common precondition for all three renaming operations is that the element e must exist in the specification s, and that e′
must exist in s′ . Furthermore, it must not be the case that e′ is already part of s, and that e is part of s′ . In case of renaming 
operators and predicates, the argument and range sorts of e and e′ must also be equivalent for the renaming to become 
possible. For example, an operator situatedOn : Object �→ Medium can not be mapped to an operator usedBy : Object �→ Person, 
which has a different range sort.

The inertia rules for renaming elements e in a specification are analogous to the inertial rule for removing elements:

noninertial(s, e, t) ← exec(rename(e, e′, s′), s, t) (10)

For renaming, we have the following set of effect rules that assign the new name for the respective element:

sort(s, e′, t + 1) ←exec(rename(e, e′, s′), s, t), sort(s, e, t) (11a)

hasParent(s, s′, sp, t + 1) ←hasParent(s, s, sp, t), exec(rename(s, s′, s′), s, t) (11b)

hasParent(s, s, s′
p, t + 1) ←hasParent(s, s, sp, t), exec(rename(sp, s′

p, s′), s, t) (11c)

opHasSort(s,o, s′,n, t + 1) ←opHasSort(s,o, s,n, t), exec(rename(s, s′, s′), s, t) (11d)

predHasSort(s, p, s′,n, t + 1) ←predHasSort(s, p, s,n, t), exec(rename(s, s′, s′), s, t) (11e)

op(s,o′, t + 1) ←exec(rename(o,o′, s′), s, t),op(s,o, t) (11f)

opHasSort(s,o′, s,n, t + 1) ←opHasSort(s,o, s,n, t), exec(rename(o,o′, s′), s, t) (11g)

pred(s, p′, t + 1) ←exec(rename(p, p′, s′), s, t), pred(s, p, t) (11h)

predHasSort(s, p′, s,n, t + 1) ←predHasSort(s, p, s,n, t), exec(rename(p, p′, s′), s, t) (11i)

axInvolvesElem(s,a, e′, t + 1) ←axInvolvesElem(s,a, e, t), exec(rename(e, e′, s′), s, t) (11j)

In general, the rules state that a specification will contain an element e′ at a step t + 1 if an element e has been renamed 
to e′ at step t . Rules (11a)–(11e) state how renaming sorts affects the generalization. It also considers the effects on parent-
child relations as well as predicate and operator arguments and range. Rules (11f), (11g) and (11h), (11i) describe the effects 
of renaming operators and predicates respectively. Rule (11j) states how the auxiliary predicate axInvolvesElem is affected 
by renaming.

Inertia. In order to use the inertia rules (8, 10), we need the following rules to state that elements e remain in a 
specification s if they are inertial:
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sort(s, e, t + 1) ←not noninertial(s, e, t), sort(s, e, t) (12a)

op(s, e, t + 1) ←not noninertial(s, e, t),op(s, e, t) (12b)

pred(s, e, t + 1) ←not noninertial(s, e, t), pred(s, e, t) (12c)

ax(s, e, t + 1) ←not noninertial(s, e, t),ax(s, e, t) (12d)

Updating axiom equivalence. When operators, predicates or sorts that are involved in an axiom are renamed, then 
the axiom’s equivalent class changes. Determining logical equivalence of FOL axioms is a well understood research domain 
on its own, and we make use of existing theorem proving tools here. Towards this, we use an external Python function 
renameEleAndGetNewEqClass in rule (13) during the ASP solving process, which updates the equivalence class by querying 
theorem proving tools that determine a new equivalence class for an axiom if elements are renamed. This happens by 
accessing an internal dictionary of axioms within Python, that is built dynamically during the ASP grounding process.

axHasEqClass(s,a, eqa
new , t + 1) ←axHasEqClass(s,a, eqa, t), (13)

exec(rename(s, e1, e2, t),axInvolvesElem(s,a, e1, t),ax(s,a, t),

eqa
new = @renameEleAndGetNewEqClass(eqa, e1, e2)

Additional rules that update the axInvolvesElem atoms if elements are renamed are also part of our implementation.

3.4. Transition search process

The search process that we use ASP for, is to find a generic space and transitioned versions of the input specifications 
which lead to a consistent blend. This is done by successively applying transition operators to the input specifications. 
Herein, we first apply only renaming operators to find the commonalities among input specifications. We then ‘cut off’ 
elements that the input specifications do not have in common by applying removal operators. Note that a simple inter-
section operation (as in set theory) is not possible because of the preconditions that the transition operators have. These 
impose a strong restriction on the allowed order in which transition operators may occur and make the problem inherently 
non-monotonic. A sequence of transition operators defines a transition path, which itself consists of a commonalisation path
followed by a removal path.

Definition 3 (Commonalisation, removal, and transition paths). Let S = {s1, . . . , s|S|} be input specifications to be blended. 
Let {γ1, . . . , γn} be renaming operators and t1 < · · · < tn be steps. Then we call a set of atoms C = {exec(γ1, sx, t1), · · · ,

exec(γn, sy, tn)} a commonalisation path of S (with sx, sy ∈ S). Let {γn+1, . . . , γm} be removal operators and tn+1 < · · · < tm

be steps. Then we call a set of atoms R = {exec(γn+1, su, tn+1), · · · , exec(γm, sv , tm)} a removal path of S (with su, sv ∈ S). 
We call C ∪ R a transition path of S .

We refer to transition paths in Section 3.5, when we describe how we combine different transitioned versions of the 
input specifications, which are generated by prefixes of removal paths. Formally, the prefix of a removal path is the subse-
quence of its first l removal operators.

Definition 4 (Removal path prefix). Given a removal path R = {exec(γn+1, su, tn+1), · · · , exec(γm, sv , tm)}, we call R pre =
{exec(γn+1, su, tn+1), · · · , exec(γl, sw , tl)} a prefix of R if l ≤ m (with su, sv , sw ∈ S).

A general problem of amalgams is that the space of possible transition paths and hence also the space of possible blends 
is usually very huge. To prune the search space, we only consider those transition paths where elements with a low priority 
are removed before elements with a higher priority, and where elements with a high priority are commonalised before 
elements with a low priority.5

Since we have separated the commonalisation and removal process we need to decide when we switch from the one 
to the other. The simplest solution would be to switch when all possible commonalities have been found, but this would 
prevent the system from being flexible in that it would not generate blends where not all possible commonalisations are 
considered. As an example, consider blending house and boat to obtain the boat house concept, described in Sec. 4.1. In 
this blend, not all commonalities are considered but the concept of a boat-house is definitely interesting. Hence, we define a 
predicate findCrossSpaceMapPhaseFinished(t) which determines the step t when the search for the cross space mapping, i.e., 
the commonalities is finished. This is used in the following choice rule for the commonalisation search process:

5 To also allow for the consideration of semi-optimal generalisation paths, one could relax the restriction by allowing a limited number of generalisation 
operators within a path that do not respect the cost order.
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1{exec(a, s, t) : renameAct(a, s),poss(a, s, t)}1 ← not findCrossSpaceMapPhaseFinished(t) (14)

The renameAct predicate denotes that a is a renaming operator. The removal and generic space search process is done using 
another choice rule as follows:

1{exec(a, s, t) : removeAct(a, s),poss(a, s, t)}1 ← notGenericReached(t),findCrossSpaceMapPhaseFinished(t). (15)

The predicate notGenericReached is triggered when the generic space has been reached, i.e., when the search terminates 
because the generalised versions of all input specifications are equal. This is the case when all axioms are logically equiv-
alent, and all sorts, predicates and operators are syntactically equal. The removeAct predicate denotes that a is a removal 
operator.

3.5. Composition of transitioned input spaces

The transition part of our framework generates one stable model for each combination of transition paths that leads to 
a generic space. The next step in the amalgam-based workflow is to compose transitioned versions of input specifications 
to generate a candidate blend (see Fig. 3). The key component of this composition process is the categorical colimit [57] of 
the generalised specifications and the generic space. This requires also the morphisms from the generic space to the input 
specifications, which are inherently given with the commonalisation path (see Definition 3). Since the colimit of algebraic 
specification signatures does not consider consistency and priority information, we need to define a composition operation 
for prioritised CASL specification, that is based on the colimit but that also considers priorities and consistency.

Definition 5 (Composition of PCS). The composition c of n PCS S , a generic space g and one total morphisms m : g �→ s for 
each s ∈ S is defined as follows: Let scolimit be the colimit of the PCS without the priorities, i.e., the colimit of the algebraic 
CASL specifications that underly the PCS. Let the morphisms mc

1 : s1 �→ scolimit , . . .mc
n : sn �→ scolimit be defined with respect 

to these specifications. Then the composition c of S is a PCS that is constituted by the colimit scolimit , enriched with the 
following priority function for elements e in the composed PCS:

prio(e) =
n∑

i=1

∑
(es,e)∈mi

prioi(es) (16)

Hence, to assign the priorities for the elements e in the composition, Equation (16) simply adds up the priorities of the 
respective source elements es in the morphisms. The intuition behind this is to give those elements in a blend a higher 
priority that represent compressed structure. For example, if two operators in two input spaces point to the same operator 
in the blend, then the blend compresses the structure imposed by the operators. Similar for axioms, sorts and predicates. 
This supports Fauconnier and Turner [27]’s optimality principles and helps to evaluate the blends, as we explain in Sec. 3.6.

One may argue that also the product or the maximum of the priorities of the input elements could be used instead of 
the sum. However, during our experiments we found that just using the maximum does not reward compression enough, 
and the product rewards compression too much. The intuition of using the sum to add up the priorities is that a single 
compressed target element in a composition should be exactly as important as its individual input elements together.

For example, consider the predicate liveIn : Person× House of the House specification and the predicate ride : Person× Boat
of the Boat specification, as shown in Fig. 4. Both are mapped to the same element in the composition. Note that, due to our 
categorical approach, the syntactic label of that element in the composition is not important. We use either the label of one 
of the input specifications, or we concatenate the symbols of the input specifications with an _ character in a postprocessing 
step, as, e.g., liveIn_ride : Person_Passenger × House_Boat. Since liveIn_ride is commonalised, it carries the information of both 
input spaces and it should therefore also have the joint priority of both input elements, as implemented by summing up 
the priorities of the corresponding operators liveIn and ride in the input spaces (see Definition 5).

3.6. Evaluating blends

The next step in the blending process is to evaluate the composition as a whole, according to several factors that reflect 
the rather informal optimality principles proposed by Fauconnier and Turner [27]. To this end, we take the following three 
evaluation metrics into account:

1. We support blends that keep as much as possible and the most important parts from their input concepts by using the 
priority information of elements in the input concepts. This supports those optimality principles in [27], which imply 
that as much as possible from the input spaces should be projected to the blend, namely at least the so-called unpacking, 
web and integration principles.

2. We support blends that maximise common relations among input concepts as a means to compress the structure of the 
input spaces. Relations are made common by appropriate renamings of elements in the input specification. This supports 
the vital relations principles in [27].
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3. We support blends where the amount of information from the input specifications is balanced. This supports the multi-
scope property of blends, which is described by Fauconnier and Turner [27] as “... what we typically find in scientific, artistic, 
and literary discoveries and inventions.”

The rationale behind choosing the above metrics is to have a simple but effective way to evaluate the blends from two 
perspectives: the informational content and the content structure. On the one hand, we want to favour those blended 
concepts that maintain the information from the input concepts as much as possible. This is done by a first metric defining 
the amount of information of a blend as the sum of the priorities of all its elements. On the other hand, we also want 
to favour those blends that maintain the structure of the input concepts as much as possible. This is done by other two 
metrics, blend compression, which essentially measures how many morphisms were applied to the different elements, and 
blend imbalance, which penalizes those blends created mainly using elements of one of the input spaces. We now define 
these metrics formally.

The amount of information in a PCS is given as:

infoValue(s) =
∑
e∈s

prio(e) (17)

Equation (17) defines the amount of information in a PCS as the sum of the priorities of all of its elements. A measure for 
the compression of structure in a composition c with n morphisms M = {m1 : s1 �→ c, . . . , mn : sn �→ c} is defined as:

compression(c) =
∑
e∈c

eleComp(e) where (18)

eleComp(e) = prio(e) · |{m ∈ M|∃es . (es, e) ∈ m}|
n

(19)

The compression value of the composition c is the sum of the compression values of its individual elements (denoted by 
eleComp). The compression value of an individual element is the priority of that element, multiplied by the number of 
morphisms to it, and normalised by the total number of input morphisms.

We also account for the balance of information from both input specifications. That is, we consider blends to be better 
where the amount of information from the input specifications is similar. Towards this we define an imbalance penalty as 
the half of the difference of the amount of information from the input specification as follows:

imbalance(c) = abs(infoValue(s1) − infoValue(s2))

2
(20)

Taking only the half of the difference as imbalance penalty turned out to be more useful than taking the full difference, 
because this still encourages blends which have more information in total, even if they are imbalanced. The final evaluation 
of a blend is done by summing up the three evaluation metrics and by considering logical consistency as follows:

value(c) =
{

infoValue(c) + compression(c) − imbalance(c) if c is consistent

0 otherwise
(21)

Note that the imbalance penalty can never be bigger than the information value, so that the blend value is always positive. 
An interesting extension of computing the value is to parameterise the different metrics. However, we have so far not 
experimented with this.

The transition path pruning described in Sec. 3.4 supports the information value and compression value metrics because 
by removing low-priority elements before high-priority elements (information value), and by commonalising high-priority 
elements before low-priority elements (compression value), low-value blends are not generated. We have not yet imple-
mented a feasible solution to also consider the imbalance penalty in the pruning mechanism.

The issue of how blends are to be evaluated is an important one in the theory of conceptual blending, and in addition to 
these evaluation metrics, which are generic for any kind of blends, more domain specific criteria can (and eventually should) 
be added to the blending framework. For this reason we have also explored how different audiences and their respective 
values can be brought into the blend evaluation process [12] and we have proposed evaluation techniques that draw from 
argumentation theory [9] and coherence theory [75]. Beyond the evaluation of blends, the Computational Creativity com-
munity has extensively studied how to evaluate the creativity of computational systems in general, and several models have 
been proposed [72,6,45]; we have applied some of these models to the evaluation of our framework [62], as we describe in 
the following Section 4.

4. Proof of concept

To demonstrate our system we first present the use case of the house-boat, which primarily serves illustrative purposes. 
Then we consider several examples from two real-world domains where creativity is important, namely mathematics and 
music. The examples for harmony invention (Sec. 4.2), lemma invention (Sec. 4.3) and cross-domain blending (Sec. 4.4) are 
also illustrated in the supplementary video.
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spec House =
sorts Medium

House < Object
Person < Object

ops house : House
resident : Person
land : Medium

preds liveIn : Person × House
on : Object × Medium

. liveIn(resident,house)

. on(house,land)
end

spec Boat =
sorts Medium

Boat < Object
Person < Object

ops boat : Boat
passenger : Person
water : Medium

preds ride : Person × Boat
on : Object × Medium

. ride(passenger,boat)

. on(boat,water)
end

Fig. 4. The house and boat specifications in CASL.

spec GenericSpace =
sorts Medium

House < Object
Person < Object

ops house : House
resident : Person

preds liveIn : Person × House
on : Object × Medium

. liveIn(resident,house)
end

House ⇐ GenericSpace ⇒ Boat

House ⇐ sort of the containing object ⇒ Boat

house ⇐ containing object ⇒ boat

resident ⇐ contained object ⇒ passenger

liveIn ⇐ relation between contained and the containing object ⇒ ride

Fig. 5. The generic space for the house-boat blend.

spec House_Boat =
sorts Medium

Boat < Object
Person < Object

ops boat : Boat
resident : Person
land,water : Medium

preds liveIn : Person × Boat
on : Object × Medium

. liveIn(resident,house)

. on(boat,water)
end

spec Boat_House =
sorts Medium

House < Object
Boat < Object

ops house : House
boat : Boat
land,water : Medium

preds liveIn : Boat × House
on : Object × Medium

. liveIn(boat,house)

. on(house,land)

. on(boat,water)
end

Fig. 6. The house-boat and boat-house blends.

4.1. The house-boat blend

A classical concept blending example is the blend between the concepts house and boat [34,27]. In Fig. 4 we depict the 
axiomatisation of these concepts which is similar to how they are proposed in [35]. Priorities are equal for all elements in 
the specifications, so we omit them here for brevity. The CASL theories for House and Boat introduce the sorts, operators 
and predicates that form the mental spaces house and boat by focusing on particular properties of these concepts. The pre-
cise formalisation is not critical at this point, different ones exist [35,63], but all provide similar distinctions. In principle, 
the House and Boat specifications could be directly blended (they do not generate any inconsistency), but the blended 
specification is not considered a good blend since it does not maximise the common relations among the two input specifi-
cations. Instead, more interesting blends are created depending on how the House and Boat are transitioned. A house-boat
blend is created when the medium on which a house is situated (land) becomes the medium on which boat is situated 
(water), and the resident of the house becomes the passenger of the boat. In our system, this is achieved using the generic 
space depicted in Fig. 5. This generic space is obtained by removing the on(house, land) axiom from the House specification, 
the water operator and the on(boat,water) axiom from the Boat specification, and by renaming the operators ride to liveIn, 
passenger to resident, boat to house and the sort Boat to House in the Boat specification. The morphisms between the generic 
space and the input spaces are shown in the right part of Fig. 5.

The colimit that results from the generic space and the above morphisms is a theory in which the boat is a house and 
the passenger is a resident of the house-boat (see Fig. 6, left). Our system is also able to generate other classic blends. For 
instance, a boat-house is created which turns the boat into a person by renaming resident to boat and Person to Boat, along 
with some other minor generalisations (see Fig. 6, right). Here, the colimit expresses a blend in which the boat lives in the 
house.
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spec PerfectCad = ChordProg then
op c1Perf : Chord p:10
op c2Perf : Chord p:10
. succ(c1Perf, c2Perf ) p:5
. absNote(c1Perf, 7) p:2
. absNote(c1Perf, 11) p:3
. absNote(c1Perf, 2) p:1
. absNote(c1Perf, 5) p:2
. relNote(c1Perf, 0) p:3
. relNote(c1Perf, 4) p:3
. relNote(c1Perf, 7) p:2
. relNote(c1Perf, 10) p:3
. root(c2Perf ) = 0 p:1
. . .

end

spec PhrygCad = ChordProg then
op c1Phryg : Chord p:10
op c2Phryg : Chord p:10
. succ(c1Phryg, c2Phryg) p:5
. absNote(c1Phryg, 10) p:2
. absNote(c1Phryg, 1) p:1
. absNote(c1Phryg, 5) p:2
. relNote(c1Phryg, 0) p:3
. relNote(c1Phryg, 3) p:3
. relNote(c1Phryg, 7) p:2
. root(c2Phryg) = 0 p:1
. . .

end

Fig. 7. The relevant excerpts of the perfect cadence and the Phrygian cadence specifications. Only the first chord is fully specified here for brevity. The 
second chord is a plain Cmaj in both cadences.

4.2. Harmony invention for music composition

In the music domain we invent novel chord progressions by blending existing ones, and demonstrate how our approach 
extends the musicological framework proposed in our previous work [20]. Specifically, we show how we blend chords to 
invent novel cadences – short chord progressions that can be understood as ‘punctuation’ within a music piece. While the 
system depicted in [20] is limited to blending single chords, we are now able to blend whole chord progressions, as for 
example the perfect cadence and Phrygian cadence. We present the relevant parts, i.e., the first chord of each cadence, as 
algebraic specifications in Fig. 7.

Both specifications are built on a background theory ChordProg about chord progressions, which defines the predicate 
succ to denote the successor relation among chords, the predicate absNote to determine the absolute notes of a chord, and 
the predicate relNote to determine the notes of a chord relative to the root note (indicated by the root operator). Chord-

Prog also contains an axiom hasRelNote(c, n) ⇔ hasAbsNote(c, plus(n, root(c)) that defines the relation between absolute and 
relative notes in the background theory, and that states when a chord is dissonant. Dissonance is captured via axioms that 
forbid certain relative note combinations. For example, they express that a chord cannot have a major third (relative note 
4) and a minor third (relative note 3) at the same time, i.e., ∀c : Chord . ¬(relNote(c, 3) ∧ relNote(c, 4)). Given a C major 
key, the Phrygian cadence involves a B�min chord followed by a C chord, and the perfect cadence is a G7 chord followed 
by a C . The priorities of the axioms that assign notes to the chords are musicologically justified as described in [20], i.e., 
the relatives are given a higher priority, and those absolute notes which are salient within the key are also given a higher 
priority. In addition to these axioms, our system also considers the priority of individual chords which are represented as 
operators c1Perf (G7 chord), c2Perf (C chord), c1Phryg (B�min chord) and c2Phryg (C chord).

Blending the two cadences produces a Tritone substitution cadence as the result with the highest value. The tritone 
substitution was invented in jazz music decades after the Phrygian and perfect cadence. It takes the D� note from the first 
chord of the Phrygian cadence, specified by absNote(c1Phryg, 1), as root of the first chord of the novel Tritone cadence. The 
blending also adds the relative seventh of the G7 chord of the perfect cadence (relNote(c1Perf , 10)), as well as the major 
third (relNote(c1Perf , 4)) and the fifth (relNote(c1Perf , 7)) which are present in both chords. The result is a D�7 chord as first 
chord of the Tritone substitution. The system also allows to blend the second chord of one cadence with the first chord of 
another, so that a novel chord progression of three notes is produced. Note that, due to the renaming operators, this can be 
done on the level of cadences and chord progressions as a whole, and not only on the level of single chords.

4.3. Lemma invention for theorem proving

In the mathematics domain, we present a general approach for using blending to exploit existing creative lemmas in 
a well understood theory, to automatically generate creative lemmas in another less understood theory. For illustration, 
consider the prioritised theories of natural numbers and lists shown in Fig. 8. An illustration and demo of this blending 
application is provided in the supplementary video (after 7:00).

Important elements of these specifications are the constructor operators s, i.e., the successor function, and cons, i.e., the 
constructor for lists. Due to their importance, we give them a high priority. Of particular interest here are also the theorems
(NT) and (LT), which are also given a high priority because they provide important insights about the relation between the 
tail-recursive functions qrev and qsum, and their primitively recursive counterparts rev and sum. Proving such theorems by 
induction is very hard due to the absence of a universally quantified variable in the second argument of the tail-recursive 
version [42]. An expert’s solution here is to use a lemma that generalises the theorem. An example of such a generalisation 
is the eureka lemma (NL) in the naturals, which we assume to be known in this scenario. Discovering such lemmas is in 
general a very challenging and well-known problem – see [56,43] for example. Our goal is to use blending to discover an 
analogous lemma which facilitates the inductive proof of (LT) in List.
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spec Nat =
sort Nat p:3
ops zero : Nat; p:2

s : Nat → Nat p:3
sum : Nat → Nat p:2
qsum : Nat × Nat → Nat p:2
plus : Nat × Nat → Nat p:1

∀ x, y : Nat
(0) . sum(zero) = zero p:2
(1) . sum(s(x)) = plus(s(x), sum(x)) p:2
(2) . qsum(s(x), y) = p:2

qsum(x, plus(s(x), y))
(3) . qsum(zero, x) = x p:2
(4) . plus(zero, x) = x p:1
(5) . plus(s(x), y) = s(plus(x, y)) p:1
(NT) . sum(x) = qsum(x, zero) p:3
(NL) . plus(sum(x), y) = qsum(x, y) p:3

end

spec List =
sorts El p:3

L p:3
ops nil : L; p:2

cons : El × L → L; p:3
app : L × L → L; p:2
rev : L → L; p:2
qrev : L × L → L p:2

∀ x, y : L; h : El
(6) . rev(nil) = nil p:2
(7) . rev(cons(h, x)) = p:2

app(rev(x), cons(h, nil))
(8) . qrev(nil, x) = x p:2
(9) . qrev(cons(h, x), y) = p:2

qrev(x, cons(h, y))
(10) . app(nil, x) = x p:1
(11) . app(cons(h, x), y) = p:1

cons(h, app(x, y))
(LT) . rev(x) = qrev(x, nil) p:3
end

Fig. 8. Specifications of the natural numbers and lists.

The first step of blending is to find a generic space. However, this is problematic because the constructor s(n) in the 
naturals is unary, whereas the constructor cons(h, l) in lists is binary. In order to resolve this problem we take inspiration 
from a classical set theoretic construction of the naturals as the cardinality of a set (see [1] for example). That is, we 
describe the theory of the naturals as a theory of lists of exactly the same element.6 As a result, we generalise the theory of 
naturals by adding an extra argument to the successor function, i.e., s(n) becomes s(c, n) where c is some canonical element 
of a canonical sort C . The definition of plus, for example, then simply becomes plus(s(c, n), m) = s(c, plus(n, m)). This way 
we obtain a correctly typed generic space by interpreting the renaming and removal operators from the ASP solver, which 
allows us to associate the constructors of Nat and List with the following generalisation paths7:

PNat = {
exec(rename(Nat, L, List),Nat,0), exec(rename(zero,nil, List),Nat,1),

exec(rename(C, El, List),Nat,2), exec(rename(s, cons, List),Nat,3),

exec(rename(sum, rev, List),Nat,4), exec(rename(qsum,qrev, List),Nat,5),

exec(rename(plus,app, List),Nat,6),

exec(rm(4),Nat,7), exec(rm(5),Nat,8), exec(rm(1),Nat,9),

exec(rm(2),Nat,10), exec(rm(c),Nat,11), exec(rm(N L),Nat,12)}
PList = {
exec(rm(10), List,0), exec(rm(11), List,1), exec(rm(9), List,2), exec(rm(7), List,3)}

After applying the respective renamings and removals, a generic space is reached, using the symbols from the List theory. 
Note, that even though the symbols of the lists theory are used in the generic space, their meaning is now much more gen-
eral because they map to both, the List and the Nat theory, and represent now analogies between both theories as depicted 
in Table 1. That is, the generic space is a general theory with sorts for the constructed data types and their elements, a bi-
nary constructor, a terminal element, a primitively recursive function, and a tail-recursive function which is defined in terms 
of the auxiliary function. After finding the generic space, our framework iterates over different combinations of transitioned 
input specifications and computes the colimit. It then checks the colimit’s consistency and computes the blend value. In 
this example, the highest composition value for a consistent colimit is 90, where the specifications that result from the 4th 
transition of List and the 8th transition of Nat are used as input. The result is a theory of lists with the newly invented 
lemma app(rev(x), y) = qrev(x, y) which can be used successfully as a generalisation lemma to prove (LT).

4.4. Cross-domain blending

So far we only considered input concepts from the same domains, i.e., we blend chord progressions with chord progres-
sions and mathematical theories with mathematical theories. However, one of the biggest challenges in creative systems 

6 The future work part in Sec. 6 elaborates on this way to recursively construct data structures.
7 In the expressions rm(4), rm(5), rm(1), etc., natural numbers correspond to the labels of the axioms in the input specifications in Fig. 8.
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Table 1
The generic space and its mappings to the theories List and Nat.

Nat Generic Space List

Nat Constructed datatype L
C Constructed datatype element El
zero terminal element nil
s constructor cons
sum recursive function rev
qsum tail-recursive function qrev
plus auxiliary function app

spec CyclicGroup =
sorts Nat

Ele
Group

ops zero : Nat
s : Nat → Nat
ele : Ele
group : Group
binop : Ele × Ele → Ele
binops : Ele × Nat → Ele
ident : Ele
inv : Ele → Ele

pred hasElement : Group × Ele
(1) . hasElement(group,ele)
∀ g: Ele, n: Nat
(2) . binops(g, zero) = ident
(3) . binops(g,s(n)) = binop(g,binops(g,n))
(4) . hasElement(group,binops(ele,n))
∀ g: Ele. ∃ n: Nat
(5) . binops(ele, n) = g
.
.
.

end

spec GeneratorChord =
sorts Chord

Note
ops chord : Chord

gennote : Note
root : Chord → Note
plus : Note × Note → Note
nextNote : Note × NoteNote

preds hasRelNote : Chord × Note
hasAbsNote : Chord × Note

(6) . hasRelNote(chrod,gennote)
∀ c : Chord. ∃ n : Note

(7) . root(c) = n ∧ hasAbsNote(c,n)
∀ c : Chord, n : Note

(8) . hasRelNote(c,n) ⇔hasAbsNote(c,plus(root(c),n))
.
.
.

end

Fig. 9. Specifications of the cyclic groups and generator chord theories.

is being able to deal also with concepts coming from different domains. Generally, in cross-domain blending, one aims to 
transfer the knowledge of the two domains, to create something new, possibly by some adaptation. Blending multi-domain 
concepts is challenging, since different domains contain different knowledge and different symbols and representations that 
need to be cross-mapped in order to find new meaningful blended concepts. Our framework is general enough to blend 
concepts from different domains, and in this example, we show how we can blend chords with mathematical theories. We 
refer to our supplementary video for a detailed illustration (after 8:30) and for audio samples (after 18:00).

In what follows we construct theories via blending which specify a logical hull. This means that the definitions in the 
theories need to be evaluated in order to determine the contents of the theory. In particular we make use of recursive 
functions. Evaluating these on all inputs gives facts about the theories about which we can reason.

4.4.1. Group theory and chord construction
Consider the case of blending the specification of cyclic groups of elements with a specification for chords defined via 

intervals between their notes, as shown in Fig. 9.
The general theory of a group in mathematics is the combination of a set of elements G and a binary operation ∼. 

A group (G, ∼) has the following axioms:

∀x, y ∈ G. x ∼ y ∈G (22)

∃e ∈G. ∀x ∈ G. x ∼ e = x (23)

∀x ∈G. ∃x−1 ∈ G. x ∼ x−1 = e (24)

∀x, y, z ∈G. x ∼ (y ∼ z) = (x ∼ y) ∼ z (25)

Extending the notion of group to a cyclic group, involves restricting the set of elements to be finite, and to introduce the 
notion of a generator element. The size of the set is then given by an order o. Elements of the group can be constructed with 
successive applications of the binary operation on the generator element and we introduce the shorthand λx, y.xy to denote 
successive application; for example g3 = g ∼ (g ∼ g). We then add the following axioms about a cyclic group,

∃g ∈G.∀x ∈ G.∃n ∈N.(0 ≤ n < o) ∧ x = gn (26)
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spec CyclicGroupChordBlend =
sorts Note

Chord
Nat

ops plus : Note × Note �→ Note
binops : Note × Nat �→ Note
chord : Chord
gennote : Note
ident : Note
root : Chord �→ Note
s : Nat �→ Nat
zero : Nat

preds hasAbsNote : Chord × Note
hasAbsNote : Chord × Note

. hasRelNote(chord,gennote)
∀ gc : Chord, en : Note, n : Nat
. hasRelNote(chord,binops(gennote,n))
. binops(en,s(n)) = plus(en, binops(en,n))
. hasRelNote(gc,en) ⇔hasAbsNote(gc,plus(root(gc),en))
. binops(en,zero) = ident
∀ gc : Chord, ∃ en : Note
. root(gc) = en ∧ hasAbsNote(gc,en)
∀ en : Note, ∃ n : Nat
. binops(gennote,n) = en

Fig. 10. The blend of cyclic groups and generator chords.

Table 2
The generic space and its mappings to the theories CyclicGroup and GeneratorChord.

CyclicGroup Generic Space GeneratorChord

Group Constructed datatype Chord
Ele Constructed datatype element Note
binop Binary operation between elements plus
group Instance of constructed datatype chord
ele Generator element gennote
hasElement Predicate denoting membership hasRelNote

This axiom means that the inverse (x−1) of an element x can be constructed also from the generator element, as can the 
identity element e.

In the CASL theories shown in Fig. 9, we model these axioms in the specification CyclicGroup and can compute the 
elements of the cyclic group using the function binop for ∼ and introduce the recursive function binops for the successive 
application operator (λx, y. xy). We also introduce a predicate hasElement which defines the elements of the cyclic group.

In the case of the generator chord specification shown also in Fig. 9 we extend the notion of chord previously defined 
in Sec. 4.2 to include a “generator note” which is included as a relative note in the chord. Thus a generator chord with 
generator note 3 will always contains a minor third. We also introduce the notion of adding an interval with the operator 
plus.

In our case, the generic space was computed as depicted in Table 2. During blending we used a priority of 1 for all 
elements. This leads to the blend specification show in Fig. 10.

Conceptually this blend corresponds to a specification of a chord, whose notes are generated using the axioms of a 
cyclic group of order 12 – the number of notes in a scale. The specification alone does not define the notes in the chord 
– it defines a way of calculating the specific notes given a generator note or interval. Calculating the logical hull of the 
specification given a particular instantiation of gennote gives us the notes in the chord. Specifically evaluating the func-
tion binops over the natural numbers generates the notes which exist relatively in the logical hull by virtue of the axiom 
hasRelNote(chord, binops(gennote, n)).

A theorem of cyclic group theory is that if the prime factors of the generator do not divide the cardinality of the set, 
then it will generate every member of the set. In this case, the numbers which do not divide 12 – the number of notes in a 
scale – is the set {1, 5, 7, 11}. Let us first discuss the significance of the chord specifications generated using generated notes 
which do divide 12 and hence form subgroups, These are itemised here by the axiom which is added to the specification to 
generate chord by calculating the logical hull.

. gennote = 2
This corresponds to adding a relative major second to the specification. The logical hull of adding this axiom 
to the CyclicGroupChordBlend gives us the relative notes {0, 2, 4, 6, 8, 10} which is a chord constructed from 
the whole tone scale. This can sometimes be used as an altered chord. For example in the key of C this gives 
us {C, D, E, F #, A�, B�}. Generalising this chord by removing some elements allows us to create various potential 
chords including a C7�13, a C augmented or even a C9.
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. gennote = 3
This corresponds to adding a relative minor third to the specification. The logical hull of adding this axiom to the
CyclicGroupChordBlend gives us the relative notes {0, 3, 6, 9} which specifies a diminished chord. For example, 
in the key of C, this is {C, Eb, F #, A}, which is a diminished chord. This is interesting as it forms the top 4 notes of 
an A�7�9 chord, which is a modified dominant chord used very often in jazz to resolve to the key of D�. Because 
the chord is naturally cyclic (on account of the blend with cyclic group theory), it can equally be used to transition 
to the keys of E, G or B� meaning that its function is very versatile. Bach used this versatility of the diminished 
chord to perform seemless but unexpected key changes in his pieces very often.

. gennote = 4
This corresponds to adding a relative major third to the specification. The logical hull of adding this axiom to the
CyclicGroupChordBlend gives us the relative notes {0, 4, 8} which specify an augmented chord. In the key of C 
this is {C, E, A�}. This is often used as a transition chord.

. gennote = 6
This corresponds to adding a diminished fifth to the specification. This only produces the two notes {0, 6} and as 
such is not particularly interesting except to provide a means for dissonance within a piece.

. gennote = 8
This is equivalent to the situation where we add . gennote = 4

. gennote = 9
This is equivalent to the situation where we add . gennote = 3

. gennote = 10
This is equivalent to the situation where we add . gennote = 2

Sequences generated from the remaining numbers involve every note in the scale. This would simply generate chords 
consisting of all 12 notes which does not seem very interesting. However, if we slightly extend the theory and consider 
the order in which the notes are produced, we notice the reproduction of a very creative technique in modern jazz, namely 
voicing. With this, the specifications of the chords become indeed quite feasible. As an example, consider the chord specified 
by the note sequence {0, 3, 7, 10, 2} – this is a minor ninth. As we have no notion of voicing this represents playing the 
notes {C, D, E�, G, B�}. In reality one would often place the D above the B� – an octave and a second above the root. If 
we now consider the construction of these sequences as being monotonically increasing, then we can introduce a notion of 
voicing by allowing the notes always to be higher in pitch than the previous in the list. Let us consider the construction of 
the sequence created by adding these numbers.

. gennote = 1
This is conceptually uninteresting as the chord is formed sequentially by playing the chromatic scale, and hence 
almost immediately too dissonant to have function.

. gennote = 5
This corresponds to adding a perfect fourth, thus generating the sequence of relative notes {0, 5, 10, 3, 8, 2, 6, 11, 4,

9, 2, 7}. This corresponds to the way in which tetrachords are formed. For example in C one could play {C, F , B�, E�}
– as specified by the initial 4 notes in this sequence. This is the sort of chord that McCoy Tyner uses often to create 
a modern accompanying sound.

. gennote = 7
This corresponds to adding a perfect fourth, thus generating the sequence of relative notes {0, 7, 2, 9, 4, 11, 6, 1, 8,

3, 10, 5}. This corresponds to playing chords constructed by incrementing intervals of 5ths. For example in C one 
could play {C, G, D, A} – as specified by the initial 4 notes. This constitutes a suspended type of chord.

. gennote = 11
This corresponds to adding a major 7th incrementally, thus generating the sequence of notes {0, 11, 10, 9, 8, 7, 6, 5,

4, 3, 2, 1}. Enforcing the constraint that the constructed chord must consist of increasing intervals makes it un-
playable and very dissonant. We do not know of any piece where this type of chord is employed.

4.4.2. Progression theory and constructing Coltrane changes
In a similar way to chord construction, one can construct chord progressions using blends which involve cyclical groups. 

The only difference is that each number is associated either with a chord or the tonal centre of a cadence. Fig. 11 shows 
how the cyclic group can be defined using the specification of list given in Fig. 8. Polymorphism is modelled here using the 
CASL with operator where the elements of the list in the list spec can be defined as a particular sort.

spec ListNote =
List with El �→ Note, L �→ LN

end

spec ListChord =
List with El �→ Chord, L �→ LC

end

In order to model cyclic groups in a more computational way, we introduce a function calc_subseq which calculates a list 
of elements in a group of a certain order. The binary operation associated with the group is constrained by introducing a 
partial minus operation into the natural numbers. The idea is then that a list of elements of a cyclic group can be associated 
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Table 3
The generic space and its mappings to the theories Cyc12 and Progression.

Cyc12 Generic Space Progression

GroupElement Constructed Datatype Chord
subseq Input List lin

SPEC Progression =
PerfCadence

then ListNote

then ListChord

then ops c1, c2 : Chord
op p : Perf
op lin : LN
op lout : LC
op calc_prog : LN → LC
. calc_prog(nil) = nil
∀ h : Note; t : LN
. calc_prog(cons(h, t))
= cons(pre(p, h), cons(post(p, h), calc_prog(t)))

. lout = calc_prog(lin)
end

spec Cyc12 =
CyclicGroup

then op gen : G
. gen = 4 as G
. order = 12 as G
. subseq = calc_subseq(gen)

end

spec CyclicGroup =
NatSuc

then sort G < Nat
then List with El �→ G, L �→ ListG
then op subseq : ListG

op binop : G × G → G
op ident : G
op inv : G → G
pred gen : G
op order : Nat
op calc_subseq : G → ListG
op calc_subseq_r : G × G → ListG
∀ x, y, z : G
. binop(x, binop(y, z)) = binop(binop(x, y), z)
. binop(x, ident) = x
. binop(x, inv(x)) = ident
. order < plus(x, y) ⇒ binop(x, y) = minus(plus(x, y), order)
. x = y ⇒ calc_subseq_r(x, y) = nil
. ¬ x = y
⇒ calc_subseq_r(x, y)

= cons(binop(x, y), calc_subseq_r(x, binop(x, y)))
. calc_subseq(x) = calc_subseq_r(x, x)

end

Fig. 11. Specifications of the progression and cyclic groups as lists theories.

with tonal centres to form a progression. The tonal centre can be simply a chord, or as is shown in Fig. 11, a perfect 
cadence. The progression has a function calc_prog which shows how to compute a list of chords defining the progression. 
The operator lin defines a list of input tonal centres. This way, the list of tonal centres defined by computing different 
cyclic groups of order 12 can generate interesting progressions. For example, Fig. 11 shows a refined specification Cyc12, 
which defines an order of 12, and a generator element of 4. The blend then produces a theory which has successive perfect 
cadences at tonal centres determined by the list of elements of the group. The Generic space and morphisms is shown in 
Table 3. Depending on the choice of value for gen, and the choice of cadence, different progressions are generated. In the 
case of the Cyc12 specification we generate a progression known in jazz as Coltrane Changes. With a generator of 4, subseq is 
calculated as 0,8,4. If these are interpreted as the tonal centres of progressive perfect cadences as is specified by the blend, 
then in the key of B major this becomes | F#7 B | D7 G | B�7 E� | which is (excepting the initial dominant F#7) exactly 
how the iconic John Coltrane tune Giant Steps is started.

Other examples of progressions depend on the choice of cadence and the choice of gen and include for example:

. gen = 3; Cadence = Perfect
An example of such a progression (with F as root) is | C7 F | A7 D | F#7 B | Eb7 Ab | – a progression exploited in 
the piece maths by jazz group Algorhythmical.

. gen = 2; Cadence = Phrygian
An example of such a progression (with C as root) is | Bb- C | A�- Bb | F#- A f lat | E- F# | D- E |. As far as the 
authors know this has not been used in any existing composition.

. gen = 5; Cadence = Tritone
An example of such a progression (with C as root) is | D�7 C| F#7 F | B7 B� | E7 E� | A7 A� | D7 D� | G7 F# | C7 B |
F7 E | B�7 A | E�7 D | A�7 G |. As far as the authors know this has not been used in any existing composition.

The above examples show that using this approach both recreates existing creative leaps in the theory and composition of 
jazz progressions, and also creates some previously unused progressions, which cannot be discovered in existing compo-
sitions. The technique of employing conceptual blending allows elements of music theory to exist in the blend, together 
with elements from the mathematical theory of cyclic groups. Had the system simply picked notes from integer sequence 
generation, the constraints from music theory that exist within the ListChord theory would not have been expressed, and 
notions of cadences (as discussed in Sec 4.2) and their associated constraints would have rendered an entirely unconstrained 
chord and progression theory. The restriction of the resulting blends to musically surprising, yet viable progressions can be 
attributed directly to the approach taken in this paper.
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5. Related work

Several approaches of formal and computational models for conceptual blending have been proposed [11,13,12,20,21,49,
35,83,63,64,33,36]. Many of these models are inspired by the work of Fauconnier and Turner [27], but there are also other 
approaches emanating from analogical reasoning [76] and neuroscience [79].

Amalgam-based conceptual blending have been developed to blend EL++ concepts in [10,11,13]. In these works, the 
generalisation of an EL++ concept is achieved by means of a generalisation refinement operator. This line of work has also 
been extended to the general debugging problem for ontologies combining ideas from social choice theory and general-
isation operators [70]. The refinement operator is implemented in ASP as a step-wise transition process – similar to the 
one presented in this paper – that looks for a generic space between two (or more) concepts. The operator generalises a 
concept by taking the TBox knowledge (terminology) into account. Good blends are selected by re-interpreting some op-
timality principles. Blending ontologies rather than concepts has been explored in the ontological blending framework of 
Kutz et al. [49], where blends are computed as colimits of blending diagrams specified according to the Distributed Ontology 
Language (DOL) [59], a recent OMG international ontology interoperability standard. In that framework, the blending pro-
cess is not characterised in terms of amalgams, nor are input concepts generalised syntactically. Rather, the generic space is 
assumed to be given and mapped to the input ontologies via theory interpretations.

Confalonieri et al. [12] propose a general process model for concept invention that extends the conceptual blending 
theory of Fauconnier and Turner [27]. Apart from the blending mechanism modelling the creation of new concepts, the 
authors focus on two extra dimensions that are typically not addressed in computational approaches of concept blending. 
On the one hand, they describe how a Rich Background supports the discovery of input concepts to be blended. On the 
other hand, they show how arguments, promoting or demoting the values of an audience, to which the invention is headed, 
can be used to evaluate candidate blends. Besides, in Schorlemmer et al. [75], the evaluation of new blended concepts is 
achieved by taking the computational theory of conceptual coherence by Thagard [78] into account. In this setting, newly 
invented concepts are evaluated with respect to a background ontology of conceptual knowledge so as to decide which of 
them are to be accepted into a system of familiar concepts. A similar approach has been taken more recently in [14] for 
determining the joint coherence of ALC concepts w.r.t. a background ontology.

The Alloy algorithm [35] for conceptual blending incorporates many ideas of the algebraic semiotics approach by 
Goguen [34] and the conceptual blending theory by Fauconnier and Turner [27]. Alloy has been integrated in the Griot 
system for automated narrative generation [35,39,38]. Apart from the primary conceptual blending approach realised with 
Alloy, Griot also uses a secondary structural blending mechanism that blends the dynamic elements of natural language 
narratives to generate poetry. The input spaces of the Alloy algorithm are theories defined in the algebraic specification 
language BOBJ (see e.g., [53]). This allows one to represent sorts, operators, constants and axioms. The blending algorithm 
generates two binary trees that are based on the input graph. The two trees represent (i) the space of possible mappings of 
relations and (ii) the space of possible mappings of constants respectively. The trees are then combined in the sense that 
the leaves of the constants-tree are applied to the relations-tree. The resulting combined tree has leaves that represent all 
possible sort-preserving mappings of relations and constants, i.e., all possible blends. During the tree generation, certain 
optimality principles are applied to prune the space. The authors do not explicitly account for a cross-space mapping. How-
ever, the edges between relations and constants from different theories can be understood as a weak form of a cross-space 
mapping. Alloy uses these edges (and hence the potential cross-space mapping) to determine a generic space.

Sapper was originally developed by Veale and Keane [84] as a computational model of metaphor and analogy. It com-
putes a mapping between two separate domains – understood as graphs of concepts – that respects the relational structure 
between the concepts in each domain. Strictly speaking, Sapper does not produce blends, but structural mappings between 
input concepts. It can, however, be seen as a computational model for conceptual blending, because the mappings between 
the pairs of concepts that constitute its output can be manipulated as atomic units, as blended concepts [83]. Further-
more, Sapper does not work with a priori given input spaces. It is the structure mapping algorithm itself which, given two 
domains to be mapped, determines the set of concepts and relations between these concepts that constitute the spaces 
that are blended. It does so by searching within its semantic memory for the largest substructures (bounded by a previously 
fixed size) at the root concepts of these domains that are isomorphic as with respect to their relational structure, and whose 
concepts are metaphorically related. Semantic memory is represented as a semantic network [71], a graph whose nodes rep-
resent concepts and whose edges represent binary relations between concepts. The actual correspondence or blend between 
concepts is computed by applying a spreading activation algorithm according to which Sapper locates pairs of paths that 
are structurally isomorphic (of equal length and constituted by the same sequence of semantic relations) and that terminate 
at concepts that Sapper considers semantically bridgeable. In Sapper, most of the optimality principles are captured and 
serve to rank and filter the correspondences that comprise the mappings computed by the algorithm. Veale [82] also pro-
poses a web-based approach to generate more loosely defined blends that he calls conceptual mash-ups. Inconsistencies and 
evaluation metrics are not addressed in this work; instead, the author focuses on the Internet as a provider for the massive 
amount of background information that is required to generate meaningful blends.

The research in [65–67] led to the development of Divago [63,68,64], probably the first complete implementation of 
conceptual blending. Pereira draws the terminology and definitions for his formal and computational model from Wiggin’s 
formalisation of creative systems [86]. The implementation of Divago is realised in Prolog. The Divago’s architecture includes 
different modules. A knowledge base contains different micro-theories and their instantiations. Of these, two are selected 
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for the blending by the user or randomly. A mapper then generates the generic space between the inputs, and passes it to a 
blender module which generates the ‘blendoid’, i.e., a projection that defines the space of possible blends. Blending in Divago 
is done on a pair of concepts, taken from the multi-domain8 knowledge base of the system. A factory component is used to 
select the best blends among the blendoid by means of a genetic algorithm. A dedicated module implements the optimality 
principles. Given a blend, this module computes a measure for each principle. These measures yield a preference value of 
the blend that is taken as the fitness value of the genetic algorithm. Recent works [87,55] describe the use of Divago as a 
blending component within a computational creativity infrastructure, and discuss the relevance of the optimality principles 
in the Divago’s architecture.

Guhe et al. [36] present an approach to use Heuristic-Driven Theory Projection (HDTP) [76] for blending and concept 
invention. HDTP is originally a framework for analogical reasoning, using a many-sorted first order language to represent 
conceptual spaces. In HDTP-based analogical reasoning, knowledge is mapped and transferred from a usually well-known 
source domain S to a target domain T . This happens in two phases. In the mapping phase, source and target are compared 
to find commonalities. In particular, HDTP uses second-order anti-unification, which is restricted in way that renders the 
process decidable. In the transfer phase, unmatched knowledge in source is mapped to the target to establish new hypothe-
ses. The blending of two theories happens in three steps. First, core blend laws are applied, second, preferred conjectures 
are added, and third, extra conjectures are added. The authors do not directly account for the optimality principles by Fau-
connier and Turner. However, the preferred and extra conjectures can be seen as alternative optimality principles, similar to 
the structural optimality principles proposed by Goguen and Harrell [35], that guide the algorithm to select useful blends 
among the huge space of possible blends.

A complementary approach to syntactic-driven approaches, such as HDTP, is to focus on the cognitively inspired notion 
of image schemas, as mentioned in Sec. 2.1.1. The theory of image schemas was developed within cognitive linguistics, and 
has been extremely influential since Lakoff & Johnson’s work in the late 1980s. In cognitive science, image schemas are 
identified as fundamental pattern of cognition, that are perceived, conceptualised and manipulated spatially and temporally 
[54]. Examples of image schemas, proposed in the literature, are containment, support, and source_path_goal. The core 
idea is that after an image schema has been formed, it can be generalised and the structure can be transferred through 
analogical reasoning to other domains with similar characteristics [54]. From a formal perspective, previous research on 
image schemas (e.g., [48,85,77]) has provided a valuable portfolio of approaches that can be build on further. The relation 
of image schemas and conceptual blending – and, particularly, their role in computational concept invention – have been 
explored in [40,41,74]. In this setting, image schemas are conceived as a set of theories ordered by logical entailment that 
can be used to guide the search for a generic space and as heuristics for the creation of new concepts.

The combinatorial kind of creativity [3] that we are interested in has been investigated from a neurological perspective 
by Thagard and Stewart [80]. The major motivation of their approach is to explain and to model the Aha! or Eureka! effect 
that occurs when humans make serendipitous discoveries by means of creative thinking. The authors build their work 
on findings from neuroscience and approaches to realise human thinking with neural networks [79]. The key idea is to 
represent mental concepts as activity patterns of vectors of neurons and to perform a convolution operation to combine 
these patterns. Activity patterns of neurons are mathematically represented as vectors of numbers that represent the firing 
rate of neurons. According to Thagard and Stewart [80], a mental concept can then be represented as a huge but finite vector 
of such numbers. The blend is generated by mathematical convolution of vectors. The underlying mathematical model is 
based on the so-called LIF model of neuronal activity (see e.g., [79]). It accounts for various details on the neuronal level, 
such as neuron voltage, input current, membrane time, direction vector of neuron patterns, and synaptic connection weights. 
Thagard and Stewart [80] do not use Fauconnier and Turner’s optimality principles to distinguish reasonable blends within 
the huge space of possible blends. Instead, they combine the blend of two input spaces with another space representing 
emotional reaction to assess blends. However, the authors do not provide a detailed description how to model the emotional 
input spaces computationally.

6. Conclusion

We present a computational approach for conceptual blending and implement the generalisation of algebraic speci-
fications using a transition system semantics of preconditions and postconditions within ASP. This allows us to access 
generalised and commonalised versions of the input specifications, which let us find useful blends. By using theorem solvers, 
we are able to generate only logically consistent blends. To the best of our knowledge, there exists currently no other blend-
ing framework that can resolve logical inconsistencies. Except for [13], we have not seen another blending framework that 
automatically finds a generic space, while using a similarly expressive representation language. On top of the ASP-based 
implementation, we propose metrics to evaluate the quality of blends, based on the cognitive optimality principles by Fau-
connier and Turner [27].

As overviewed in our related work section, a number of researchers in the field of computational creativity have 
recognised the value of conceptual blending, and particular implementations of this cognitive theory have been pro-

8 A domain for Pereira is a set of concepts such that all of them relate to a unique, underlying concept.
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posed [83,63,64,33,36,20]. The existing approaches that we investigated lack a sophisticated evaluation to determine formally 
how ‘good’ a blend is, with the exception of [63,64], which also use optimality criteria based on [27]’s theory.

The described amalgam-based workflow for conceptual blending is part of a bigger computational framework, the Cobble

system,9 implementated within the COINVENT project [73]. A fairly comprehensive overview of the results of the COINVENT 
project can be found in [15].10 A prototypical implementation of the system can be accessed online.11

While the proof-of-concept in Section 4 demonstrates some interesting examples, it is by no means close to a solid em-
pirical evaluation. Running the system on a multitude of concept definitions, e.g. from ontology databases such as Ontohub
[50,5], and developing an evaluation method to quantify the quality of generated blends is subject to future work.

Another more theoretical branch of future work is to generalise our approach to discover creative ‘eureka lemmas’ in 
mathematics for more elaborated data structures. For example, a general form of describing a data structure is to define a 
constructor as c : list(τ ) × list(σ ) → σ . This is to say that a constructor can take any number of non-recursive and recursive 
arguments to form another version of itself. In the example of naturals, the constructor is s([], [x]) ≡ s(x) and for lists 
cons([h], [l]) ≡ cons(h, l). For binary trees with data at the nodes where the constructor is t::([h], [l1, l2]) since there are 
two recursive arguments. This allows us to find a mapping in the generic space between constructors, and hence to use the 
techniques expressed in this paper to discover eureka lemmas in new theories.

7. Previous work

This work is based on and extends the publications [20,21] and the COINVENT project deliverable [4]:

• In Eppe et al. [20], published at the International Joint Conference on Artificial Intelligence (IJCAI), we started exploring 
blending in the music domain and performed first experiments to blend single chords. This paper shows how whole 
chord progressions are blended.

• In Eppe et al. [21], published at the International Conference on Logic Programming and Nonmonotonic Reasoning (LP-
NMR), we presented a first version of the amalgam-based workflow. The system was extended substantially in the present 
paper. Besides performance improvements, the evaluation metrics were improved. Furthermore, we now separate the 
generalisation path in the amalgam-based workflow into a removal path and a commonalisation path, which eliminates 
duplicate generic spaces.

• In Bou et al. [4], we provide the theoretical background to demonstrate in how far an amalgam-based workflow can be 
seen as blending with colimits using Goguen [34]’s approach. In this paper, we go a step further and implement the 
theory.

In addition to the above considerations, we extend our previous work by presenting cross-domain blending examples.
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[87] M. Ẑnidarŝiĉ, A. Cardoso, P. Gervas, P. Martins, R. Hervas, A. Alves, H. Oliveira, P. Xiao, S. Linkola, H. Toivonen, J. Kranjc, N. Lavraĉ, Computational 
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