
Arguments and Couterexamples
in Case-based Joint Deliberation

Santiago Ontañón1 and Enric Plaza2

1 MAIA, Department of Applied Mathematics and Analysis
UB, University of Barcelona, Gran Via de les Corts Catalanes, 585

08007 Barcelona, Catalonia, Spain.
santi@maia.ub.es

2 IIIA, Artificial Intelligence Research Institute
CSIC, Spanish Council for Scientific Research

Campus UAB, 08193 Bellaterra, Catalonia, Spain.
enric@iiia.csic.es

Abstract. Multiagent learning can be seen as applying ML techniques
to the core issues of multiagent systems, like communication, coordi-
nation, and competition. In this paper, we address the issue of learn-
ing from communication among agents circumscribed to a scenario with
two agents that (1) work in the same domain using a shared ontology,
(2) are capable of learning from examples, and (3) communicate using
an argumentative framework. We will present a two fold approach con-
sisting of (1) an argumentation framework for learning agents, and (2)
an individual policy for agents to generate arguments and counterargu-
ments (including counterexamples). We focus on argumentation between
two agents, presenting (1) an interaction protocol (AMAL2) that allows
agents to learn from counterexamples and (2) a preference relation to
determine the joint outcome when individual predictions are in contra-
diction. We present several experiment to asses how joint predictions
based on argumentation improve over individual agent’s prediction.

1 Introduction

Argumentation frameworks for multiagent systems can be used for different pur-
poses like joint deliberation, persuasion, negotiation, and conflict resolution. In
this paper, we focus on argumentation-based joint deliberation among learning
agents. Argumentation-based joint deliberation involves discussion over the out-
come of a particular situation or the appropriate course of action for a particular
situation. Learning agents are capable of learning from experience, in the sense
that past examples (situations and their outcomes) are used to predict the out-
come for the situation at hand. However, since individual agents experience may
be limited, individual knowledge and prediction accuracy is also limited. Thus,
learning agents that are capable of arguing their individual predictions with
other agents may reach better prediction accuracy after such an argumentation
process.

In this paper we address the issue of joint deliberation among two learning
agents using an argumentation framework. Our assumptions are that these two
agents work in the same domain using a shared ontology, they are capable of
learning from examples, and they interact following a specific interaction pro-
tocol. In this paper, we will propose an argumentation framework for learning
agents, and an individual policy for agents to generate arguments and counter-
arguments.

Existing argumentation frameworks for multiagent systems are based on de-
ductive logic. An argument is seen as a logical statement, while a counterar-
gument is an argument offered in opposition to another argument. However,
these argumentation frameworks are not designed for learning agents, since they
assume a fixed knowledge base. Learning agents, however may induce several
generalizations that are consistent with the examples seen at a particular mo-
ment in time; the bias of the generalization technique used determines which of
the valid generalizations is effectively hold by a learning agent.

Agents having learning capabilities allows a new form of counterargument,
namely the use of counterexamples. Counterexamples offer the possibility of
agents learning during the argumentation process, and thus improving their
performance (both individual and joint performance). Moreover, learning agents
will allow us to design individual agents policies to generate adequate arguments
and counter arguments. Existing argumentation frameworks focus on how to deal
with contradicting arguments, but few address the problem of how to generate
adequate arguments. Thus, their focus is on the issue defining a preference re-
lation over two contradicting arguments; however for learning agents we will
need to address two issues: (1) how to define a preference relation over two con-
flicting arguments, and (2) how to define a policy to generate arguments and
counterarguments.

In this paper we present a case-based approach to address both issues. The
agents use case-based reasoning (CBR) to learn from past cases (where a case is
a situation and its outcome) in order to predict the outcome of a new situation;
moreover, the reasoning needed to support the argumentation process will also
be based on cases. In particular, both the preference relation among arguments
and the policy for generating arguments and counterarguments will be based
on cases. Finally, we propose an interaction protocol called AMAL2 to support
the argumentation process among two agents to reach a joint prediction over a
specific situation or problem.

In the remainder of this paper we are going to introduce the multi-agent
CBR (MAC) framework in which we perform our research (Section 2). In this
framework, Section 2.1 introduces the idea of justifications. After that, Section
3 provides a specific definition of arguments and counterarguments that we will
use in the rest of the paper. Then, Section 4 defines a preference relation be-
tween induced arguments. Sections 5 and 5.1 presents specific policies to generate
both arguments and counterarguments. Using the previous definitions, Section
6 presents a protocol called AMAL2 to allow two agents to solve a problem in
a collaborative way using argumentation. Finally, Section 7 presents an empir-

Traffic_light: red
Cars_crossing: No

PROBLEM

Traffic_light

Cars_crossing Wait

WaitCross
Traffic_light: red

JUSTIFICATION

SOLUTION: Wait

redgreen

yesno

Fig. 1. An example of justification generation using a decision tree.

ical evaluation of the argumentation protocol presented. The paper closes with
related work and conclusions sections.

2 Multi-Agent CBR Systems

In this section we are going to define the multi-agent learning framework in
which our research is performed [8].

Definition 1. A Multi-Agent Case Based Reasoning System (MAC) M =
{(A1, C1), ..., (An, Cn)} is a multi-agent system composed of A = {Ai, ..., An}, a
set of CBR agents, where each agent Ai ∈ A possesses an individual case base
Ci.

Each individual agent Ai in a MAC is completely autonomous and each
agent Ai has access only to its individual and private case base Ci. A case base
Ci = {c1, ..., cm} is a collection of cases. Each agent has (in general) its own
CBR method(s) to solve problems using the cases stored in its individual case
base. Agents in a MAC system are able to individually solve problems, but they
can also collaborate with other agents to solve problem in a collaborative way.

In this framework, we will restrict ourselves to analytical tasks, i.e. tasks, like
classification, where the solution of a problem is achieved by selecting a solution
class from an enumerated set of solution classes. In the following we will note the
set of all the solution classes by S = {S1, ..., SK}. Therefore, a case c = 〈P, S〉
can be defined as a tuple containing a case description P and a solution class
S ∈ S. In the following, we will use the terms problem and case description
indistinctly. Therefore, we can say that a case consists of a case description plus
a solution class, or that a case is a problem/solution pair. Moreover, we will use
the dot notation to refer to elements inside a tuple. e.g., to refer to the solution
class of a case c, we will write c.S.

2.1 Justifications in Multi-Agent Systems

Many expert and CBR systems have an explanation component [13]. The ex-
planation component is in charge of justifying why the system has provided a

specific answer to the user. The line of reasoning of the system can then be
examined by a human expert, thus increasing the reliability of the system.

Most of the existing work on explanation generation focuses on generating
explanations to be provided to the user. However, in our approach we will use
explanations (or justifications) as a tool for improving communication and coor-
dination among agents. In our work, we are interested in justifications since they
can be used as arguments. For that purpose, we take benefit from the ability
of some machine learning methods to provide more information than just the
solution class, i.e. the ability to provide justifications.

Definition 2. A justification built by a CBR method to solve a problem P that
has been classified into a solution class Sk is a description that contains the
relevant information that the problem P and the retrieved cases C1, ..., Cn (all
belonging to class Sk) have in common.

For example, Figure 1 shows a justification build by a decision tree for
a toy problem. In the figure, a problem has two attributes (traffic light, and
cars crossing), after solving it using the decision tree shown, the predicted so-
lution class is wait. Notice that to obtain the solution class, the decision tree
has just used the value of one attribute, traffic light. Therefore, the justification
must contain only the attribute/value pair shown in the figure. The values of
the rest of attributes are irrelevant, since whatever their value the solution class
would have been the same.

In general, the meaning of a justification is that all (or most of) the cases in
the case base of an agent that satisfy the justification (i.e. all the cases that are
subsumed by the justification) belong to the predicted solution class. In the rest
of the paper, we will use v to denote the subsumption relation. In our work, we
use LID [1], a CBR method capable of building symbolic justifications. LID uses
the feature term formalism to represent cases (Feature Terms (or ψ-terms) are
a generalization of the first order terms).

When an agent provides a justification for a prediction, the agent generates
a justified prediction:

Definition 3. A justified prediction is a tuple 〈A,P, S,D〉 containing the prob-
lem P , the solution class S found by the agent A for the problem P , and the
justification D that endorses S as the correct solution for P .

Justifications can have many uses for CBR systems [6, 7]. In this paper, we
are going to use justifications as arguments, in order to allow agents to engage
learning based argumentation processes.

3 Argumentation in Multi-agent Learning

Let us start by presenting a definition of argument, that we will use in the rest
of the paper:

+

?

J = 〈Ai,P,+,D〉 J = 〈Ai,P,+,D〉 J = 〈Ai,P,+,D〉

c = 〈P1,+〉 c = 〈P1,−〉 PPP c = 〈P1,−〉

a) b) c)
+ +

+ - -? ?

Fig. 2. Relation between cases and justified predictions. The case c is a counterexample
of the justified prediction J in c), while it is not in a) and b).

Definition 4. An argument α generated by an agent A is composed of a state-
ment S and some evidence E that endorses that S is true.

In the remainder of this section we will see how this general definition of
argument can be instantiated in specific kind of arguments that the agents can
generate. In the context ofMAC systems, agents argue about the correct solution
of new problems and can provide information in two forms:

– A specific case: 〈P, S〉,
– A justified prediction: 〈A,P, S,D〉.

In other words, agents can provide specific cases or generalizations induced
from that cases, since we are in an learning framework. Using this information,
and having in mind that agents will only argue about the correct solution of
a given problem, we can define three types of arguments: justified predictions,
counterarguments, and counterexamples.

– A justified prediction α is generated by an agent Ai to argue that Ai believes
that the correct solution for a given problem P is α.S, and the evidence
provided is the justification α.D. In the example depicted in Figure 1, an
agent Ai may generate the argument α = 〈Ai, P,Wait, T raffic light =
red〉, meaning that the agent Ai believes that the correct solution for P is
Wait because the attribute Traffic light equals red.

– A counterargument β is an argument offered in opposition to another ar-
gument α. In our framework, a counterargument consists of a justified pre-
diction 〈Aj , P, S

′, D′〉 generated by an agent Ai with the intention to rebut
an argument α generated by another agent Aj , that endorses a different
solution class than α for the problem at hand and justifies this with a jus-
tification D′. In the example depicted in Figure 1, if an agent generates
the argument α = 〈Ai, P,Walk, Cars crossing = no〉, an agent that thinks
that the correct solution is Stop might answer with the counterargument
β = 〈Ai, P, Stop, Cars crossing = no ∧ Traffic light = red〉, meaning
that while it is true that there are no cars crossing, the traffic light is red,
and thus the street cannot be crossed.

– A counterexample c is a case that contradicts an argument α. Specifically, for
a case c to be a counterexample of an argument α, the following conditions
have to be met: α.D v c and α.S 6= c.S. Figure 2 illustrates the concept of
a counterexample. In this figure, justified predictions are shown as triangles
and the bottom of the triangles represents the specific cases subsumed by
the justified predictions. Figure 2 presents three illustrations: In a) c is not a
counterexample of α since the solution of c is the solution predicted by α; in
b) c is not a counterexample of α since c is not subsumed by the justification
α.D; finally, in c) c is a counterexample of α).

Moreover, when two agents provide conflicting arguments (i.e. justified pre-
dictions that endorse different solution classes), a preference relation is required
to decide which of both is considered the valid one. A typical preference rela-
tion used in argumentation is the specificity criterion [9], that basically says that
the argument that contains more information should be preferred. However, in
this paper we are going to present a preference relation specifically designed for
learning agents (explained in Section 4).

Finally, notice that when an agent generates a counterargument β to an
argument α, it does so with the expectation that the counterargument β is
preferred to α. Thus, the agents need a specific policy to generate preferable
counterarguments. In this paper we are going to propose a specific policy to
generate such counterarguments (explained in Section 5.1).

By exchanging arguments, counterarguments and counterexamples, agents
can argue about the correct solution of a given problem. However, in order to
do so, they need a specific interaction protocol, a preference relation between
arguments, and a decision policy to generate counterarguments. In the following
sections we will present these three elements.

4 Preference Relation

The argument that an agent provides might not be consistent with the informa-
tion known to other agents (or even to some of the information known by the
agent that has generated the justification due to noise in training data). For that
reason, we are going to define a preference relation over contradicting justified
predictions based on cases. Intuitively, we will define a confidence measure for
each justified prediction (that takes into account the cases owned by each agent),
and the justified prediction with the highest confidence is the preferred one.

The confidence of justified predictions is assessed by the agents via an ex-
amination procedure. The idea behind examination is to count how many of the
cases in an individual case base endorse the justified prediction, and how many
of them are counterexamples of that justified prediction. The more endorsing
cases, the higher the confidence; and the more the counterexamples, the lower
the confidence.

Specifically, to examine a justified prediction α, an agent obtains the set of
cases contained in its individual case base that are subsumed by α.D. The more

of these cases that belong to the same solution class α.S predicted by α, the
higher the confidence will be. After examining a justified prediction α, an agent
Ai obtains the aye and nay values:

– Y Ai
α = |{c ∈ Ci| α.D v c.P∧α.S = c.S}| is the number of cases in the agent’s

case base subsumed by the justification α.D that belong to the solution class
α.S proposed by α,

– NAi
α = |{c ∈ Ci| α.D v c.P ∧ α.S 6= c.S}| is the number of cases in the

agent’s case base subsumed by justification α.D that do not belong to that
solution class.

When two agents A1 and A2 want to assess the confidence on a justified
prediction α made by one of them, each of them examines the predictions and
sends the aye and nay values obtained to the other agent. Then, both agents
have the same information and can assess the confidence value for the justified
prediction as follows:

C(α) =
Y A1

α + Y A2
α + 1

Y A1
α + Y A2

α +NA1
α +NA2

α + 2

i.e. the confidence on a justified prediction is the number of endorsing cases di-
vided by the number of endorsing cases plus counterexamples found by each of
the two agents. Notice that we add 1 to the denominator, the reason is to avoid
excessively high confidences to justified predictions whose confidence has been
computed using a small number of cases (in this way, a prediction endorsed by
2 cases and with no counterexamples has a lower confidence than a prediction
endorsed by 10 cases with no counterexamples). Notice that this correction fol-
lows the same idea than the Laplace correction to estimate probabilities (only
that we are just interested on preventing overestimation of the confidence).

Thus, the preference relation used in our framework is the following one: a
justified prediction α is preferred over another one β if C(α) ≥ C(β).

5 Generation of Arguments

In our framework, arguments are generated by the agents using learning algo-
rithms. Any learning method able to provide a justified prediction can be used to
generate arguments. For instance, decision trees and LID [1] are suitable learning
methods.

Thus, when an agent wants to generate an argument endorsing that a specific
solution class is the correct solution for a given problem P , it generates a justified
prediction as explained in Section 2.1.

5.1 Generation of Counterarguments

When an agent Ai generates a counterargument β to rebut an argument α, Ai

expects that β is preferred over α. With that purpose, in this section we are

PPP

a) b) c)

J1 = 〈A1,P,+,D1〉 J1 = 〈A1,P,+,D1〉 J1 = 〈A1,P,+,D1〉

J2 = 〈A2,P,+,D2〉J2 = 〈A2,P,−,D2〉 J2 = 〈A2,P,−,D2〉

+ + +

+- -

? ? ?

J1 J1 J1

J2 J2 J2

Fig. 3. Relation between arguments.

going to present a specific policy to generate counterarguments based on the
specificity criterion [9].

The specificity criterion is widely used in deductive frameworks for argu-
mentation, and states that between two conflicting arguments, the most specific
should be preferred since it is, in principle, more informed. Thus, counterargu-
ments generated based on the specificity criterion are expected to be preferable
(since they are more informed) to the arguments they try to rebut. However,
notice that since in this work we use a preference relation based on confidence
we cannot guarantee that counterexamples generated based on specificity are
always going to be preferred.

Therefore, when an agent wants to generate a counterargument β to an ar-
gument α, it will generate a counterargument that it is more specific than α.
Figure 3 illustrates this idea. In Figure 3.c) β is a counterargument of α, and is
more specific than α. However in Figure 3.a) β is not more specific than α and
in Figure 3.c) both arguments endorse the same solution, and thus β is not a
counterargument of α.

The generation of counterarguments using the specificity criterion impose
some restrictions over the learning method, although LID or ID3 can be easily
adapted to generate counterarguments. For instance, to adapt LID we can do
the following: LID is an algorithm that generates a description starting by the
empty term and heuristically adding features to that term. Thus, at every step,
the description is more specific, and the number of cases that are subsumed by
that description is reduced. When the description only covers cases of a single
solution class, LID terminates and predicts that solution class. To generate a
counterargument to an argument α LID just has to use as starting point the
description α.D instead of the empty term. In that way, the justification provided
by LID will always be subsumed by α.D, and thus the resulting counterargument
will be more specific than α. However, notice that LID may sometimes not be
able to generate counterarguments, since may be the description α.D cannot be

specified any further, or because the agent does not contain any cases subsumed
by α.D to run LID.

Moreover, notice that agents can also try to rebut the other agent’s arguments
using counterexamples. Specifically, in our experiments, when an agent Ai wants
to rebut an argument α, uses the following policy:

1. The agent Ai tries to generate a counterargument β more specific than α (in
our experiments agents use LID). If the Ai succeeds, β is sent to the other
agent as a counterargument of α.

2. If not, then Ai searches for a counterexample c ∈ Ci of α in its individual
case base Ci. If a case c is found, then c is sent to the other agent as a
counterexample of α.

3. If no counterexamples are found, then Ai cannot rebut the argument α.

Next section presents the interaction protocol we propose to perform argu-
mentation in our learning framework.

6 Argumentation-based Multi-Agent Learning

In this section we will present the Argumentation-based Multi-Agent Learning
Protocol for 2 agents (AMAL2). The idea behind AMAL2 is to allow a pair of
agents to solve a problem using learning methods, and that the joint solution
provided is coherent with the information known by both agents.

At the beginning of the protocol, both agents will make their individual
predictions for the problem at hand. Then, the protocol establishes rules so
that if one of the agents does not agree with the prediction of the other, it can
provide a counterargument. Then, the other agent can respond with another
counterargument, and so on.

In the remainder of this section we will present all the elements of the AMAL2
protocol. First, we will formally present the specific performatives that the in-
dividual agents will use in the AMAL2 protocol, that will allow them to state a
prediction, to rebut an argument, and to withdraw an argument that the other
agent’s arguments have rendered invalid. Then, we will present the AMAL2 pro-
tocol.

6.1 Protocol Performatives

During the AMAL2 protocol, each agent will propose arguments and counterar-
guments to argue about which is the correct solution for a specific problem P .
The AMAL2 protocol consists on a series of rounds. In the initial round, both
agents state with are their individual predictions for P . Then, at each iteration
an agent can try to rebut the prediction made by the other agent, or change
its own prediction. Therefore, at each iteration, each of the two agents holds a
prediction that it believes is the correct one.

We will use Ht = 〈α1, α2〉 to note the pair of predictions that each agent
holds at a round t. When at a certain iteration an agent changes its mind and

changes the prediction it is holding (because the counterarguments of the other
agent has convinced him), it has to inform the other agent using the withdraw
performative.

At each iteration, agents can send the following performatives to the other
agent:

– assert(α): meaning that the justified prediction that the agent is holding for
the next round will be α.

– rebut(α, β): meaning that the agent has found a counterargument or a coun-
terexample α to the prediction β.

– withdraw(α): meaning that the agent is retiring a justified prediction α, since
the counterarguments presented by the other agent have render it invalid.

In the next section the AMAL2 protocol is presented that uses the perfor-
matives presented in this section.

6.2 Argumentation Protocol

The AMAL2 protocol among two agents A1 and A2 to solve a problem P works
in a series of rounds. We will use t to denote the current round (initially t = 0).
The idea behind protocol is the following one: initially, each agent makes its
individual prediction. Then, the confidence of each prediction is assessed, and
the prediction with the highest confidence is considered the winner. However, if
the agent that has provided the prediction with lower confidence doesn’t agree,
it has the opportunity to provide a counterargument. Agents keep exchanging
arguments and counterarguments until they reach an agreement or until no agent
is able to generate more counterexamples. At the end of the argumentation, if
the agents have not reached an agreement, then the prediction with the highest
confidence is considered the joint prediction.

Notice that the protocol starts because one of the two agents receives the
problem to be solved, and that agent sends the problem to the other agent
requesting him to argue about the correct solution of the problem. Thus, after
both agents know the problem P to solve, round t = 0 of the protocol starts:

1. Initially, each one of the agents individually solves P , and builds a justified
prediction (A1 builds α0

1, and A2 builds α0
1). Then, each agent Ai sends

the performative assert(α0
i) to the other agent. Thus, both agents know

H0 = 〈α0
1, α

0
2〉.

2. Then, the agents use the preference relation (presented in Section 4) to
determine which of the two arguments in Ht is the preferred argument.
After that, the agent that has provided the non preferred argument may
try to rebut the other agent’s argument. Each individual agent uses its own
policy to rebut arguments:
– If an agent Ai generates a counterargument αt+1

i , then it sends the
following performatives to the other agent, Aj , in a single message:
rebut(αt+1

i , αt
j), withdraw(αt

i), assert(α
t+1
i). This message starts a new

round t+ 1, and the protocol moves back to step 2.

– If an agent Ai selects a counterexample c of the other agent’s justified
prediction, then, Ai sends the following performative to the other agent,
Aj : rebut(c, αt

j). The protocol moves to step 3.
– If no agent provides any argument, the protocol ends, and the prediction

of Ht with the higher confidence is considered the joint prediction.
3. The agent Aj that has received the counterexample c retains it, and generates

a new argument αt+1
j that takes into account the new case. To inform Ai of

the new argument, Aj sends Ai the following performatives: withdraw(αt
j),

assert(αt+1
j). This message starts a new round t+1, and the protocol moves

back to step 2.

Moreover, in order to avoid infinite iterations, if an agent sends twice the
same argument or counterargument, the protocol ends.

7 Experimental Evaluation

In this section we empirically evaluate the AMAL2 argumentation protocol. We
have made experiments in two different data sets: sponge, and soybean. The
sponge data set is a marine sponge classification problem, contains 280 marine
sponges represented in a relational way and pertaining to three different orders
of the Demospongiae class. The soybean data set is a standard data sets from
the UCI machine learning repository. Specifically, the the soybean data set has
307 examples pertaining to 19 different solution classes.

In an experimental run, training cases are distributed among the agents with-
out replication, i.e. there is no case shared by two agents. In the testing stage
problems arrive randomly to one of the agents. The goal of the agent receiving
a problem is to identify the correct solution class of the problem received.

Each experiment consists of a 10-fold cross validation run. Specifically, an
experimental run consists of the following steps:

1. The training set is distributed among the two agents.
2. The testing cases are send one by one to one of the two agents at random.
3. Notice that during argumentation, each of the agents may learn new cases

(send as counterexamples by the other agent). In our experiments, each
agent forgets all the cases learned during the solution of a problem after
each argumentation protocol. This is done since the retention of cases in the
initial cases of the test set may alter the answers that the agents provide for
the ulterior cases of the test set (it remains as future work to see how the
agents evolve as they learn new cases by solving problems together).

Moreover, we have made experiments in four different scenarios: in the first
scenario, a 100% of the cases of the training set are distributed among the agents;
in the second scenario, the agents only receive a 75% of the training cases; in
the third scenario, they only receive a 50%; finally in the fourth scenario agents
only receive a 25% of the training cases. We have made those experiments to

Sponge data set

50

55

60

65

70

75

80

85

90

95

100% 75% 50% 25%

individual
maxconf
IBA2A

Soybean data set

50

55

60

65

70

75

80

85

90

95

100% 75% 50% 25%

individual
maxconf
IBA2A

a) b)

Fig. 4. Classification accuracy results in the Sponge and Soybean domains.

see how the argumentation protocol (and how the argument generation policies)
work when the agents have different amount of data.

Figures 4.a and 4.a show the classification accuracy achieved by agents us-
ing the AMAL2 argumentation protocol in the sponge and soybean data sets.
For each of the 4 scenarios (100%, 75%, 50% and 25%) three bars are shown:
individual, maxconf and AMAL2. The individual bar represents the classifica-
tion accuracy achieved by agents solving problems individually, the maxconf
bar represents classification accuracy of the two agents using the following sim-
ple strategy: both agents solve the problem individually, then they evaluate the
confidence of both predictions, and the prediction with the highest confidence
is selected (notice that this is equivalent to using the AMAL2 protocol without
any agent providing any counterargument). Finally, the AMAL2 bar represents
the classification accuracy of the two agents using the AMAL2 protocol.

Figures 4.a and 4.b show several things. First, that using collaboration is
always beneficial, since both maxconf and AMAL2 systematically outperform
the individual agents in terms of accuracy. Moreover, both figures also show
that the accuracy achieved by AMAL2 is higher than the accuracy achieved
by maxconf in most of the experiments (in fact, AMAL2 is better or equal
than maxconf in all the experiments except in the 100% scenario of the sponge
data set). Moreover, the less data the individual agents have the greater the
benefits of AMAL2 are. When each individual agent has enough data, then
predictions and confidence estimations are reliable, and thus little or nothing is
gained form the argumentation. However, when agents have access to limited
data, the argumentation process helps them finding predictions that take into
account more information, thus making them more accurate.

8 Related Work

Research on MAS argumentation focus on several issues like a) logics, proto-
cols and languages that support argumentation, b) argument selection and c)
argument interpretation. Approaches for logic and languages that support ar-

gumentation include defeasible logic [2] and BDI models [12]. Although argu-
ment selection is a key aspect of automated argumentation (see [11] and [12]),
most research has been focused on preference relations among arguments. In our
framework we have addressed both argument selection and preference relations
using a case-based approach.

Concerning CBR in a multiagent setting, the first research was on “negotiated
case retrieval” [10] among groups of agents. Our work on multiagent case-based
learning started in 1999 [4]; later Mc Ginty and Smyth [5] presented a multi-agent
collaborative CBR approach (CCBR) for planning. Finally, another interesting
approach is multi-case-base reasoning (MCBR) [3], that deals with distributed
systems where there are several case bases available for the same task and ad-
dresses the problems of cross-case base adaptation. The main difference is that
our MAC approach is a way to distribute the Reuse process of CBR (using a
voting system) while Retrieve is performed individually by each agent, while the
other multi-agent CBR approaches focus on distributing the Retrieve process.

9 Conclusions and Future Work

In this paper we have presented a learning framework for argumentation. Specif-
ically, we have presented AMAL2, a protocol that allows two agents to argue
about the solution of a given problem. Finally, we have empirically evaluated it
showing that the increased amount of information that the agents use to solve
problems thanks to the argumentation process increases their problem solving
performance, and specially when the individual agents have small amount of
information.

The main contributions of this work are: a) an argumentative framework for
learning agents; b) a case based preference relation over arguments, based on
computing an joint confidence estimation of arguments (this preference relation
has sense in this learning framework since arguments are learnt from examples);
c) a specific and efficient policy to generate arguments and counterarguments
based on the specificity relation (commonly used in argumentative frameworks);
and d) a principled usage of counterexamples in the argumentation process e)
a specific argumentation protocol for pairs of agents that collaborate to decide
the correct solution of a given problem.

Moreover, the work presented in this paper concerns only pairs of agents.
However, as future work we plan to generalize the AMAL2 protocol to work
with a larger number of agents. A possibility to do that is a token based protocol
where the agent owner of the token engages on 1-to-1 argumentation with every
other agent that disagrees with him. When all this 1-to-1 argumentation have
finished, the token passes to the next agent. This should continue until no agent
engages any 1-to-1 argumentation. Then, from the outcome of all the 1-to-1
argumentation processes, a joint solution will be predicted.

Acknowledgments. This research was partially supported by the CBR-ProMusic
project TIC2003-07776-C02-02.

References

[1] E. Armengol and E. Plaza. Lazy induction of descriptions for relational case-based
learning. In Proceedings of the 10th European Conference on Machine Learning,
ECML’2001, pages 13–24, 2001.

[2] Carlos I. Chesñevar and Guillermo R. Simari. Formalizing Defeasible Argumen-
tation using Labelled Deductive Systems. Journal of Computer Science & Tech-
nology, 1(4):18–33, 2000.

[3] D. Leake and R. Sooriamurthi. Automatically selecting strategies for multi-case-
base reasoning. In S. Craw and A. Preece, editors, Advances in Case-Based Rea-
soning: Proceedings of the Fifth European Conference on Case-Based Reasoning,
pages 204–219, Berlin, 2002. Springer Verlag.

[4] Francisco J. Mart́ın, Enric Plaza, and Josep-Lluis Arcos. Knowledge and experi-
ence reuse through communications among competent (peer) agents. International
Journal of Software Engineering and Knowledge Engineering, 9(3):319–341, 1999.

[5] Lorraine McGinty and Barry smyth. Collaborative case-based reasoning: Applica-
tions in personalized route planning. In I. Watson and Q. Yang, editors, ICCBR,
number 2080 in LNAI, pages 362–376. Springer-Verlag, 2001.

[6] Santi Ontañón and Enric Plaza. Justification-based multiagent learning. In Int.
Conf. Machine Learning (ICML 2003), pages 576–583. Morgan Kaufmann, 2003.

[7] Enric Plaza, Eva Armengol, and Santiago Ontañón. The explanatory power
of symbolic similarity in case-based reasoning. Artificial Intelligence Review,
24(2):145–161, 2005.

[8] Enric Plaza and Santiago Ontañón. Ensemble case-based reasoning: Collaboration
policies for multiagent cooperative cbr. In I. Watson and Q. Yang, editors, In
Case-Based Reasoning Research and Development: ICCBR-2001, number 2080 in
LNAI, pages 437–451. Springer-Verlag, 2001.

[9] David Poole. On the comparison of theories: Preferring the most specific expla-
nation. In IJCAI-85, pages 144–147, 1985.

[10] M V Nagendra Prassad, Victor R Lesser, and Susan Lander. Retrieval and rea-
soning in distributed case bases. Technical report, UMass Computer Science De-
partment, 1995.

[11] K. Sycara S. Kraus and A. Evenchik. Reaching agreements through argumenta-
tion: a logical model and implementation. Artificial Intelligence Journal, 104:1–69,
1998.

[12] N. R. Jennings S. Parsons, C. Sierra. Agents that reason and negotiate by arguing.
Journal of Logic and Computation, 8:261–292, 1998.

[13] Bruce A. Wooley. Explanation component of software systems. ACM CrossRoads,
1998.

