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Abstract

This paper describes an extension of semantic match-
making that aims at maximizing the reuse of agent capa-
bilities over new application domains. Our approach is to
use an Agent Capability Description Language (ACDL) not
only to describe the requests and the advertised capabil-
ities, but also to describe the domain-models characteriz-
ing specific application domains. The description of tasks
and capabilities is independent of any particular domain,
though a capability can specify the knowledge requirements
to be verified by the application domain. Therefore, capa-
bilities can be used by a team to solve a request whenever
theirs knowledge requirements are satisfied by the applica-
tion domain.

1. Introduction and motivation

The usual approach to overcome the interoperability
problems arising in open MAS environments is based on
middle agents [5] which mediate between requesters and
providers, e.g. matchmakers [6], facilitators [7, 11] and
brokers[19]). Typically, the function of a middle agent is
to pair requesters with providers that are suitable for them,
and this process is calledmatchmaking. To enable match-
making, both providers and requesters share a common lan-
guage to describe the requests (tasks or goals) and the ad-
vertisements (capabilities or services) in order to compare
them. This language is called an Agent Capability Descrip-
tion Language (ACDL).

Matchmaking is the process of verifying whether a ca-
pability specification “matches” the specification of a re-
quest (e.g. a task to be solved): two specifications “match”
if their specifications verify somematchingrelation, where
the matching relation is defined according to some criteria
(e.g. a capability being able to solve a task). Matchmaking
allows to verify whether a capability can solve a new type of
problem, but the reuse of existing capabilities over new ap-
plication domains is difficult because capabilities are usu-
ally associated to a specific application domain.

We aim at extending matchmaking in order to maximize
the reuse of capabilities and tasks over new domains. Our
proposal to achieve this goal is the use of a Knowledge
Modelling Framework (KMF) as the basis of an Agent Ca-
pability Description Language (ACDL). Within this frame-
work agent capabilities are described independently of any
specific domain, but a capability can declare the type of
knowledge it requires and the properties to be verified by
the application domain in order for the capability to be sen-
sibly used. Therefore, in addition to use atask-capability
matchingrelation during the matchmaking process, we pro-
pose a new kind of matching relation calledcapability-
domain matching. This matching relation compares a ca-
pability with a collection of domain-models characterizing
the application domain, and has the purpose of deciding
whether the capability can be sensibly applied using knowl-
edge from that domain.

Furthermore, our work addresses the composition of ca-
pabilities in order to solve complex tasks that cannot be
achieved by a single capability. This process has been de-
signed and implemented as a search process over the space
of possible capability compositions, and is called Knowl-
edge Configuration. The proposed matching relations are
used by the Knowledge Configuration process to decide
whether a capability is suitable to solve a task. The re-
sult of the Knowledge Configuration process is a task-
configuration, a hierarchical decomposition of a target task
into subtasks, and capabilities bound to tasks according to
the allowed matching relations, such that the resulting con-
figuration satisfies the global problem requirements. A task-
configuration is used as a team-design that guides the team
formation process and reduces its complexity, thus allow-
ing the team to be customized on-demand, according to the
problem at hand.

Both the KMF and the Knowledge Configuration pro-
cess are part of theORCAS framework, a multi-layered
framework for the design, development and deployment of
Cooperative MAS. An overview of theORCAS KMF is
presented in section§2. Our proposal to extend matchmak-
ing by introducing a capability-domain matching relation is
presented in§3, and a brief description of the Knowledge
Configuration process is presented next. Finally, some re-
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lated work is discussed in§5.

2. Overview of the Knowledge Modelling
Framework

The ORCAS framework a new model of the team for-
mation process at two levels: the knowledge level and the
operational layer (figure 1).

• Team formation at the knowledge level refers to the
design of a team in term of tasks, capabilities and do-
main models satisfying the problem at hand. We call
this process Knowledge-Configuration, and the result
is called atask-configuration, a hierarchical tree that
decomposes a task into a subtasks, where each task
is bound to a capability suitable for it, and option-
ally some domain-models satisfying the knowledge re-
quirements of the capability.

• Team formation at the operational level refers to the
process of forming a team of agents to solve a problem
in a cooperative way, according to a task-configuration.
This process is performed by allocating tasks to agents
and instructing selected team members on the capabil-
ities to use and the agents to cooperate with.

The ORCAS Knowledge Modelling Framework pro-
poses a conceptual description of Multi-Agent Systems at
the knowledge level[18], abstracting the specification of
components from implementation details. The purpose of
theKnowledge Modelling Framework(KMF) is twofold: on
the one hand, the KMF is a conceptual tool to guide devel-
opers in the analysis and design of Multi-Agent Systems in
a way that maximizes capability reuse across different do-
mains; on the other hand, the KMF provides the basis for an
Agent Capability Description Language (ACDL) support-
ing the automatic, on-demand configuration of agent teams
according to stated problem requirements.

The ORCAS KMF consist of three main elements,
namely: theAbstract Architecture, the Object Language,
and theKnowledge Configurationprocess:

• TheAbstract Architecturedefines the types of compo-
nents in the model, the features required to describe
each component, and the matching relations constrain-
ing the way in which components can be connected.

• The Object Languagedefines the representation lan-
guage used to formally specify component features.
Several languages can be used as the Object Language,
as far as they endorse an inference mechanism en-
abling automated reasoning over component specifica-
tions.

• TheKnowledge Configurationprocess is a search pro-
cess aiming at finding a configuration of components
(tasks, capabilities and domain-models) such that the
requirements of a problem are satisfied. The result of
the Knowledge Configuration process is a hierarchi-
cal decomposition of a target task into subtasks called
a task-configuration.

The Abstract Architecture specifies which are the com-
ponents used to build an application (tasks, capabilities and
domain-models), and the way in which these components
can be connected (the matching relations) in order to pro-
duce a valid application.

TheORCAS Abstract Architecture is based on the Task-
Method-Domain paradigm prevailing in existing Knowl-
edge Modelling frameworks, which distinguish between
three classes of components:tasks, Problem-Solving Meth-
ods(PSM) anddomain-models. In ORCAS there are tasks
and domain models, while PSMs are replaced by agent ca-
pabilities, playing the same role than a PSM, but includ-
ing agent specific features, like the agent communication
language and the interaction protocol required to commu-
nicate with an agent. Adopting such a KMF we expect the
ORCAS Abstract Architecture to provide an effective or-
ganization for constructing libraries with large “horizontal
cover”1, thus maximizing reusability and avoiding the brit-
tleness of traditional, monolithic libraries[17].

Figure 2 shows the components we use to describe a
MAS, and table 1 summarizes the main features characteriz-
ing each component. Tasks are used to describe the types of
problems that a Multi-Agent System is able to solve, while
capabilities are different methods agents are equipped with
to solve tasks. While tasks are generic problem specifica-
tions abstracted from any particular implementation, agent
capabilities refer to concrete, implemented methods to solve
problems. Finally, domain-models are used to represent ap-
plication domain knowledge, whether the knowledge is pro-
vided by a shared repository, hold by an agent, or provided
by an external information source.

1 Horizontal cover refers to the range of problem solving behaviors sup-
ported by a library. Actually, several libraries of problem-solving com-
ponents have been described using this approach, like search, classifi-
cation, diagnosis and parametric design [1, 25, 16]
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There are three types of components at the knowledge-
level, namely:task, domain-modeland capability, which
have two further subtypes:skill and task-decomposer. The
description of any component contains a customizable spec-
ification of pragmatics aspects (e.g. name, description, cre-
ator, publisher, evaluation, etc.) and the ontologies provid-
ing the terminology used to specify component features,
plus a variable number of component specific features. Ta-
ble 1 sums up the features used to specify each component,
wherest are subtasks (st ⊂ T ); in, out, kr are inputs, out-
puts and knowledge-roles, specified assignature-elements
in the Object LanguageO; pre, post, asm are precondi-
tions, postconditions and assumptions, specified as formu-
lae inO; andprop, mk are properties and meta-knowledge
respectively, also specified by formulae inO. There are
other features that have not been included here, like the
communication and the operational description of a capa-
bility, since they play no role in our definition of the match-
ing relations.

Task T = 〈in, out, pre, post〉
Capability C = 〈in, out, pre, post, asm, kr〉
Task-decomposer D = 〈in, out, pre, post, asm, kr, st〉
Skill S = 〈in, out, pre, post, asm, kr〉
Domain Model M = 〈kr, prop, mk〉

Table 1. Types of knowledge components and
their main features

In this framework, both capabilities and tasks are de-
scribed independently of a particular application domain.
The point is that a capability declares the type of knowl-
edge and the assumptions to be verified by the applica-
tion domain, therefore any knowledge base providing the

required type of knowledge and verifying the assumptions
of the capability can be sensibly used by the capability.
It should be remarked that domain-models do not contain
knowledge, they are mere descriptions of knowledge types
and properties verified or assumed to be true by a particular
knowledge-base. Let’s see an example fromWIM (the Web
Information Mediator) [12], a configurable MAS that is able
to perform complex information search tasks in the Web.
There is a capability called Generalize-query that takes a
query as input and produces a collection of more general
queries using hypernyms of the keywords in the input query.
The hypernyms used by the capability are not included as an
input, because they are considered domain knowledge, and
as such they will depend on the specific application domain.
The capability is then independent of any application do-
main, like medicine or engineering, but it declares the type
of knowledge it requires, a thesaurus. In addition, this ca-
pability imposes two assumptions to be verified by a the-
saurus: providing hypernyms and having no cycles (in gen-
eral a thesaurus may be a graph). Any thesaurus is a poten-
tial candidate, but only those thesaurus complying with the
assumptions of the capability can be sensibly used. For in-
stance, the MeSH thesaurus satisfies those properties for the
medical domain.

Each component in the Abstract Architecture is charac-
terized by some features, but the particular language used
to specify these features is independent of the Abstract Ar-
chitecture, and is called theObject Language. The differ-
ent components in the Abstract Architecture and the fea-
tures characterizing them have been conceptualized and
represented explicitly as an ontology, called the Knowl-
edge Modelling Ontology (KMO). Although the KMO is
not dependent of any particular Object Language, it de-
clares two concepts that should be further refined by the
Object Language to yield a precise, computer interpretable
meaning:Signature-elementandFormula. Two examples of
expressive languages that can be used as the Object Lan-
guage are DAML-OIL and OWL. However, the decision on
which language to use should take into account not only
the expressiveness, instead a trade-off between expressive-
ness and efficiency is preferable so as to use the language in
practice.

In theORCAS KMF, components can be described us-
ing their own, independent ontologies [10]. Because of this
conceptual decoupling, ontology mappings may be required
to match components when there is a ontology mismatch
between two specifications. Nevertheless, we focus here
on the matching relations, assuming that either the neces-
sary ontology mappings are already built or all components
share the same ontologies. This is a reasonable assumption,
since it seems feasible and convenient to build the map-
pings beforehand, previously to make a component avail-
able for its use. Actually, existing agent infrastructures for



open MAS also rely upon this assumption.

3. Matching relations

In addition to provide a Knowledge Modelling Ontol-
ogy for describing tasks, capabilities and domain-models,
the Abstract Architecture imposes some architectural con-
straints, specified asmatching relations. These relations re-
strict the way components can be connected when build-
ing a task-configuration during the Knowledge Configura-
tion process.

Matchmaking is the process of verifying wether a match-
ing relation (also referred as a “match”) between two com-
ponents holds. Figure 2 shows the components in the Ab-
stract Architecture and the matching relations than can be
established among components. Matching relations are ver-
ified by comparing two specifications, and have the goal of
determining whether two software components are related
in some way, e.g. two software components “match” if they
are substitutable or if one component fits the requirements
of another. We extend the usual approach to matchmaking
in two ways: firstly, in addition to atask-capability match-
ing we include also acapability-domain matching; and sec-
ondly, we introduce a Knowledge Configuration process
that goes beyond basic component matchmaking to provide
the basis for an automated design of agent teams satisfy-
ing stated problem requirements. These are the two types of
matching relations:

• A Task-capability matchingrelation is defined be-
tween a task and a capability. Intuitively, a task-
capability matching denotes asuitability relation: a
task-capability relation is verified (is evaluated as
true) when the capability is suitable for the task. In
other words, a task “matches” a capability if the ca-
pability is able to solve the type of problems defined
by the task. This relation compares the inputs, out-
puts and competence of a task against the correspond-
ing features of a capability to determine wether the
application of the capability is able to achieve the post-
conditions of the task, whenever the preconditions of
the task hold.

• A Capability-domain matchingrelation is defined be-
tween a capability and a collection of domain mod-
els characterizing the application domain knowledge.
Since a capability may include many knowledge-roles,
then a domain-model would be required to fill in
each knowledge-role. Intuitively, a capability-domain
matching denotes a relation ofsatisfiability: a capa-
bility “matches” a set of domain-models when the
knowledge characterized by those domain-models sat-
isfies the knowledge requirements (theassumptions)
of the capability for every knowledge-role.

The definition of a matching relation between compo-
nents is built upon the definition of a more basic rela-
tion between component features. Since component fea-
tures are specified using an Object Language, matching re-
lations should be further refined in term of a basic rela-
tion between elements (signature-elements and formulae)
expressed in the Object Language. Hence, in order to max-
imize the reuse of the Abstract Architecture over different
Object Languages, we introduce two levels in the defini-
tion of a matching relation: theabstract-level matchingand
theobject-level matching.

• The abstract-level matchingis situated at the level of
the Abstract Architecture. Matching relations at this
level are based on anabstract relationbetween com-
ponent features. Therefore, any system using theOR-
CAS Abstract Architecture can use the matching re-
lations as defined at the abstract level. We will focus
here on the abstract-level matching.

• Theobject-level matchingis concerned with the Object
Language. Matching relations at this level are defined
as a refinement of the matching relations at the abstract
level. This refinement is achieved by replacing the ab-
stract relation by an specificobject relationthat is de-
fined among elements (signature-elements and formu-
lae) in the Object Language.

Our approach to component matching is based on a
combination ofsignature matching[26] and specification
matching[27], that we prefer to callcompetence matching.
Signature matching relations compare the interface of two
components in terms of the types of information they use
(inputs and knowledge-roles) and produce (output). Com-
petence matching relations compare the preconditions and
postconditions of two components to determine wether two
components are substitutable, or wether a component satis-
fies the requirements of another.

3.1. Task-capability matching

We define aTask-capability matchas the conjunction of
a Generalized Type Matchover the input signature specifi-
cation, aSpecialized Type Matchover the output signature
specification [26], and aPlug-in Match[27] over the com-
petence specification.

Definition 1 (Task-capability match)
µ(T, C) = (Tin ≥ Cin) ∧ (Tout ≤ Cout) ∧ (Tpre ⇒
Cpre) ∧ (Cpost ⇒ Tpost), whereT is a task andC is a ca-
pability,

The Generalized Signature Matchover the input signa-
ture (Tin ≥ Cin) means that the capability has an input sig-
natureCin equal or more general than the task input sig-
natureTin. Inversely, theSpecialized Signature Matchover



the output signature (Tout ≤ Cout) means that the capabil-
ity has an output signature more specific than the task out-
put signature. This combination of generalized and special-
ized match has the following justification: on the one hand,
a capabilityC with a more general input than a taskT im-
plies that all the information required byCin can be ob-
tained fromTin. However, ifCin is more specific thanTin

(with more information), thenC is not assured to obtain all
the input information fromTin, which can result on a capa-
bility being incorrectly applied. On the other hand, a capa-
bility with an output signatureCout more specific thanTout

means thatCout is able to provide all the information spec-
ified by Tout, which is not guaranteed whenCout is more
general (with less information) thanTout.

Moreover, the Plug-in Match ((Tpre ⇒ Cpre) ∧
(Cpost ⇒ Tpost)) requires a capabilityC to have equal or
weaker preconditions than a taskT and equal or stronger
postconditions thanT . The reason to use that kind of match-
ing is the following: we want to use capabilities that are
suitable for (able to solve) a task, thus we want that when-
ever the preconditions specified by the task holds, the se-
lected capability guarantees that the postconditions of the
task will hold after applying the capability.

The demonstration of the former property from the def-
inition is follows: if Tpre holds thenCpre holds (because
of the first conjunct of the Plug-in Match). Since we inter-
pret C to guarantee thatCpre ⇒ Cpost, we can infer that
Cpost will hold after executingC. Finally, since, the sec-
ond conjunct isCpost ⇒ Tpost, then we are assured that
Tpost will hold after executingC.

3.2. Capability-domain matching

Whilst task-capability matching is defined between a
task and a capability, capability-domain matching is defined
between a task and one or several domain-models. A ca-
pability may introduce more than one knowledge-role, and
each knowledge-role may be filled in by a different domain-
model, thus several domain-models would be required to
satisfy the knowledge requirements of a single capability.

If a capability introduces only one knowledge-role, then
we can say that a capability matches a domain model when:
(1) the domain-model provides the kind of knowledge char-
acterized by the capability knowledge-role, and (2) satisfies
the assumptions established by the capability. However, if
a capability specifies more than one knowledge-role, there
should exist at least one domain-model matching the speci-
fication of the capability for each knowledge-role.

Let’s represent the set of knowledge-roles of a capa-
bility as Ckr = {Ci

kr : i = 1 . . . n}, and let’s repre-
sent the set of assumptions of a capability over a particu-
lar knowledge-role asCi

asm. A matching relation between
a single knowledge-role of a capability (Ci

kr ∈ Ckr) and

a domain-modelM is called apartial capability-domain
match, and is defined such that the signature specification
of the domain-model knowledge-roles (Mkr) is equivalent
or more specific than the signature specification of the ca-
pability knowledge-role (Ci

kr), and the assumptions of the
capability for that roleCi

asm are satisfied by the union
of the properties and meta-knowledge specifications of the
domain-model (Mprop ∪Mmk), as follows:

Definition 2 (Partial Capability-domain match)
µp(C,M,Ci

kr) = (Ci
kr ≤ Mkr) ∧ (Mprop ∪ Mmk ⇒

Ci
asm), whereCi

kr is a knowledge-role of a capabilityC,
andM is a domain-model;Mprop andMmk are theproper-
tiesandmeta-knowledgeof M , andCi

asm are the assump-
tions ofC for the knowledge-roleCi

kr.

In this definition, apartial capability-domain matchis
expressed as a combination of aSpecialized Type Matchbe-
tween the knowledge roles (Ci

kr ≤ Mkr), and a new kind
of matching defined between the specification of the as-
sumptions of a capability for a single knowledge-role, and
the properties and meta-knowledge of the domain-model
(Mprop ∪Mmk ⇒ Ci

asm).
The reason to use aSpecialized Type Matchhere is that

we must ensure the knowledge-roles characterized by a
domain-modelM can provide at least all the information
required by a knowledge-role of a capabilityCi

kr. This con-
dition is guaranteed when the signature specification of the
knowledge-roles of the domain-model is equal or special-
izes the signature specification of the capability knowledge-
role(Ci

kr ≤ Mkr). If Mkr was more general thanCi
kr, then

it may occur that some of the information required byCi
kr

cannot be provided by the knowledge characterized byMkr,
and thus the capability cannot sensibly use that knowledge.

Moreover, in order for a capability to use the informa-
tion characterized by a knowledge-role (Ci

kr), the domain-
model providing that knowledge-role should guarantee that
the assumptions of the capability over that role (Ci

asm) are
satisfied byM . The specification of a domain-model is
divided in two parts calledproperties(Mprop) and meta-
knowledge(Mmk), consequently we define that the assump-
tions of a capability for a knowledge-roleCi

asm are satisfied
by a domain-model when these assumptions can be inferred
from the union of the properties and meta-knowledge of the
domain-model(Mprop ∪Mmk ⇒ Ci

asm).
Now we can define a matching relation between a capa-

bility and a collection of domain modelsM that satisfyC as
a conjunction of matching relations between pairs consist-
ing of a knowledge-role (a signature element) and a domain
model that matches it, such that there is a domain-model
matching for every knowledge-role specified by the capa-
bility.

Definition 3 (Capability-domain match)



µ(C,M) = ∀Ci
kr ∈ Ckr : ∃M ∈ M|µp(C, M, Ci

kr),
where C is a capability,M is a set of domain-models;
Mprop andMmk are the properties and meta-knowledge of
M , andCasm are the assumptions ofC.

4. Capability composition: the Knowledge
Configuration process

The Knowledge Configurationprocess has the goal of
finding a configuration or composition of application tasks,
agent capabilities and domain-models, in such a way that
the requirements of the problem at hand are satisfied.

The input for the Knowledge Configuration process is
twofold: on the one hand it takes aquery specifying the
problem requirements and the application domain, and on
the other hand it uses alibrary of tasks and capabilities as a
“yellow-pages service”. The result of the Knowledge Con-
figuration process is atask-configurationthat, if complete
and correct, verifies the following: a) each task is bound at
least to one capability that can achieve it, b) each capabil-
ity requiring knowledge is bound to domain-models satis-
fying its assumptions, and c) the whole configuration com-
plies to the problem requirements.

A query specifies the application task that better charac-
terizes the type of problem to be solved, a set of domain-
models characterizing the application domain, and a collec-
tion of problem requirements: input and output signatures
describing the type of data available and the type of data
expected, preconditions that are stated to be true, and post-
conditions to be achieved.

Definition 4 (Query) A queryQ ∈ Q is represented as a
tupleQ = 〈T0, in, out, pre, post, dm〉; whereT0 is the ap-
plication task;in, out are the input and output signatures,
pre, postare preconditions and postconditions respectively,
and dm⊂ M is the set of domain-models characterizing
the application domain.

Notice that the domain knowledge required by an ap-
plication is not provided within the query, which contains
just an abstract specification of available domain knowl-
edge, as specified by the domain models in the query,Qdm.
This specification is sufficient to perform capability-domain
matchings, but in addition, the agent providing a certain ca-
pability must have real access to that knowledge in order to
apply the capability. This issue is not addressed here, since
we are dealing with matchmaking and capability composi-
tion at the knowledge level, while the way an agent access
a particular knowledge-base is considered an operational is-
sue, and thus it is kept out of the KMF.

A Library is a collection of tasks and capabilities speci-
fied using some Object Language. A Library is independent
of the domain because both tasks and capabilities are de-

scribed in terms of their own ontologies, and not in terms of
the domain ontology.

Definition 5 (Library) A library L is a repository of com-
ponents specified as a tupleL = 〈T , C,O〉, whereT is a set
of tasks,C is a set of capabilities, andO is the Object Lan-
guage.

Since a task-configuration is a complex structure we
need first to define its constituent elements, called config-
uration schemas. We noteκ ∈ k as a configuration schema
and the set of all configuration schemas; moreover, we note
(T .= U) ∈ B as abindingand the set of all bindings, where
a binding is a link between a task and a capability or a con-
figuration schema that is selected to solve that task. More
formally:

Definition 6 (Binding) A binding (T
.= U ) is a pair with a

taskT ∈ T in theheadand either a capabilityC ∈ C or a
configuration schemak ∈ k in thetail: U ∈ C ∪ k

A binding isvalid iff two matching relations hold: (1) a
task-capability matchµ(T, C), and (2) a capability-domain
matchµ(C, Qdm), whereQdm is a set of domain-models
specified in the query.

Definition 7 (Configuration schema) A configuration
schemaκ ∈ k is a pair 〈(T .= C), {(Ti

.= κji)}i=1...n〉
whereT, T1, . . . , Tn ∈ T , C ∈ C, andκj1 , . . . , κjn ∈ k,
andT1, . . . , Tn ∈ Cst.

A configuration schema specifies in theheadof the pair
a binding between a taskT and a capabilityC (T .= C).
Thetail of the configuration schema is a set of (valid) bind-
ings from Cst (the subtasks ofC) (which will be empty
if C is a skill, since skills have no subtasks) to other con-
figuration schemas. A configuration schema can be com-
plete or partial, defined as follows:Complete(κ) ⇔ ∀Ti ∈
Cst ∃κji : (Ti

.= κji) ∈ tail(κ), i.e. if all subtasks ofC
are bound to another schema in the tail; otherwiseκ is par-
tial.

We define aconfiguration relationR among configura-
tion schemas as follows:

Definition 8 (Configuration relation)R(κ, κ′) ⇔ ∃(Ti
.=

κ′) ∈ tail(κ); i.e. two schemas are related if one of them is
bound to a subtask in the tail of the other.

Noting R∗ the closure ofR we can now define atask-
configurationas follows:

Definition 9 (Task-configuration)A task-configuration is
defined in terms of configuration schemasConf(κ) =
{κ′ ∈ k|R∗(κ, κ′)}. A task-configurationConf(κ) can
be complete or partial:Complete(Conf(κ)) iff ∀κ′ ∈
Conf(κ) : Complete(κ′); otherwiseConf(κ) is partial.



Thus, atask-configurationis a collection of interrelated
configuration schemas, starting from a root schemaκ. We
will note K ∈ K a task-configuration and the set of all the
task-configurations. The Knowledge Configuration search
process starts with a queryQ and an empty configuration,
and searches new states that model more detailed config-
urations by adding configuration schemas and recursively
configuring them until a complete and valid configuration
is found.

A task-configurationK is completewhen all schemas
belonging toK are complete, andK is valid if all the task-
capability bindings are valid.K is valid for a particular
queryQ if, in addition to have all the task-capability bind-
ings valid, the root schema ofK has the application taskT0

in the binding of its head (K is a configuration ofT0 and all
the requirements specified byQ are satisfied byK).
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Figure 3. Task-configuration example

Figure 3 shows an example of a task-configuration for
the Information-Search task, which is used within theWIM
application. This task is being decomposed into four tasks
by the Meta-search task-decomposer: Elaborate-query,
Customize-query, Retrieve and Aggregate, which is fur-
ther decomposed by the Aggregation capability in two
subtasks: Elaborate-items and Aggregate-items. The ex-
ample shows some skills requiring domain knowledge,
e.g. the Query-expansion-with-thesaurus requires a the-
saurus (e.g.MeSH, a medical thesaurus), and the Re-
trieval and Query-customization skills require a description
of the information source to be queried.

The search space isK(L), the set of possible (partial and
complete) configurations given a component libraryL and a
query containing the requirements of the problem (Q). This
search process adds configuration schemas until a complete
configurationK is reached, and then checks whetherK sat-
isfies the requirements in: if correct then a solution has been
found and the process terminates, otherwise the search al-
gorithm proceeds exploring other branches.

Three strategies have been implemented for the Knowl-
edge Configuration process: theSearch and Subsume
configuration mode implements a depth first strategy
for searching; TheConstructive Adaptionstrategy ap-
plies a best-first search process in the state space [20]
using Case-Based Reasoning (CBR) (a measure of similar-
ity between the current state and past configuration cases);
and theInteractive Configuration, that uses CBR to sug-
gest the best options to the user who is then free to decide
the next step.

5. Related work and discussion

Most of the languages used for describing agent capabil-
ities in open environments are based on logical deduction
languages like Prolog. Two well known examples are the In-
terface Communication Language (ICL) used in the Open
Agent Architecture [13, 2], and LDL++, used in the In-
foSleuth infrastructure [19]. These languages support infer-
ences about whether an expression of requirements matches
a set of advertised capabilities, but they do not take into
account the reuse of capabilities over new domains. Some
steps to overcome this limitation have been introduced with
LARKS, the language used within the RETSINA frame-
work [24]. LARKS incorporates application domain knowl-
edge in agent advertisements and requests, specified as lo-
cal ontologies in the concept language ITL (the concept lan-
guage is equivalent to our notion of the Object Language).
The ORCAS KMF goes a step beyond by stating a clear
separation of tasks and capabilities from the domain, as pro-
posed by the KMF community, and introducing a new type
of matching between the capabilities and the application do-
main.

With the introduction of the knowledge level [18] in
the development of Knowledge-Based Systems, the knowl-
edge acquisition phase turns from a knowledge transfer ap-
proach to a model construction approach [3, 23]. Knowl-
edge Modelling Frameworks propose methodologies, archi-
tectures and languages for analyzing, describing and devel-
oping knowledge systems [22, 14, 21, 9]. The goal of a
KMF is to provide a conceptual model of a system which
describes the required knowledge and inferences at an im-
plementation independent way. This approach is intended to
support the engineer in the knowledge acquisition phase [4]
and to facilitate reuse [8].

However, KMFs have rarely been applied in the field
of MAS to deal with the reuse and interoperation issues
in open environments. TheORCAS framework explores
the use of a KMF for describing and composing agent
capabilities with the aim of maximizing capability reuse.
The ORCAS KMF is a conceptual tool for the solution
of the “bottom-up design problem” in the field of cooper-
ative Multi-Agent Systems. The “bottom-up design prob-



lem” is an open issue of software composition defined as:
given a set of requirements, find a set of components within
a software library whose combined behavior satisfies the re-
quirements [15]. In our approach this problem is more pre-
cisely defined as: given a set of requirements and domain-
models, find a combination of agent capabilities whose ag-
gregated competence (and knowledge) satisfies the require-
ments. The solution to this problem enables a compositional
approach to software development in general and agents
teams in particular. TheORCAS KMF is currently being
used as an ACDL within theORCAS agent infrastructure,
which achieved a third price in the Agentcities Agent Tech-
nology Competition (Infrastructure category).
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