

MASTER IN COMPUTER VISION AND ARTIFICIAL INTELLIGENCE

REPORT OF THE RESEARCH PROJECT
ARTIFICIAL INTELLIGENCE

Optimizing a Diplomacy Bot Using
Genetic Algorithms

Author: Dave de Jonge
Date: 26 August 2010
Advisor: Carles Sierra

Optimizing a Diplomacy Bot Using Genetic Algorithms

Optimizing a Diplomacy Bot Using Genetic Algorithms

Dave de Jonge dave de jonge@hotmail.com

IIIA-CSIC

Campus de la UAB

08193 Bellaterra, Catalonia (Spain)

Editor: Carles Sierra

Abstract

We give a short explanation of the game Diplomacy and an overview of the currently
existing projects regarding artificial intelligence applied to Diplomacy. Then we make an
analysis of the DumbBot, which is one of the simplest existing bots that can play Diplomacy
at a reasonable level; we analyze its strategy and its parameters. Our goal is to optimize the
parameters of the DumbBot, and therefore we repeat the basics of optimizing functions of
many variables and show when and why one can use a genetic algorithm to do this. Also we
propose a new alternative variant of the genetic algorithm that might lead to better results
in our specific optimization problem. This alternative increases the exploration of lower
order schemas, at the expense of a decrease of the exploitation of higher order schemas.
We argue that this decrease is not a loss, because it is impossible for us to explore higher
order schemas sufficiently in the first place. Finally we optimize the parameters using three
different methods: hill climbing, a standard genetic algorithm and our alternative genetic
algorithm.

1. Introduction

Diplomacy is a strategy game that distinguishes itself from other strategy games in that
players continuously need to negotiate with the other players in order to be successful.
To play well, a player needs to be an expert not only in strategy, but also in negotiation
and argumentation and should be able to estimate whether its negotiation partners can be
trusted or not. These typical human skills make it especially challenging for research in
artificial intelligence. Moreover, Diplomacy is a game without random moves in which all
players take their turn simultaneously, which make it an ideal environment for researchers.

Another advantage is that it has been played for decades, by many people and there-
fore there is a lot of data and expertise available. Many of these players meet in online
communities where they share their knowledge and there is even an online community for
Diplomacy bot developers (DAIDE) where many examples of Diplomacy bots are already
available. This all makes it very easy to compare your results with other bots and human
players. Therefore, the IIIA-CSIC in Barcelona has developed a framework called DipGame
for the development and testing of Diplomacy bots, which serves as testbed for multiagent
systems.

In order for users of this framework to have something to compare their results with, we
need an example of a very simple bot that is able to play the game at a reasonable level.
One such a bot already exists from the DAIDE community, which is called the DumbBot.

1

Dave de Jonge

In order to make it compatible with DipGame we use a copy of the DumbBot that is based
upon the DipGame framework. The parameters of this bot are however chosen purely by
intuition; no attempts have been made by its creator to find the best values1. So our goal
is to improve this bot by optimizing them, using genetic algorithms.

Genetic algorithms form a technique that is inspired directly from nature. They imitate
the natural selection process that has successfully been applied by nature for millions of
years with highly optimized creatures as a result. Genetic algorithms imitate this process by
considering arrays of parameters as chromosomes. Many versions (individuals) of the same
program are initialized with different values for their parameters and then the performance
of each of these programs is evaluated. This performance (or ‘fitness’) is used to apply a form
of natural selection. Also, chromosomes from different individuals are cut into pieces and
pasted together, in order to create new individuals that have so inherited their features from
several ‘parent’ programs. Comparable to the way in which in nature genetic information
is passed on and recombined from generation to generation.

2. The Main Rules of Diplomacy

Diplomacy is a board game that appeared during the 50’s. It is a game without random
choices and in which all players take their turn simultaneously. It distinguishes itself from
other strategy games in the fact that it is essential to negotiate with your opponents, making
it a very “human” game. The game can be played in many variants, but throughout this
thesis we will only consider the standard variant.

2.1 The Map and the Units

We will only explain the most basic rules here. For a complete documentation of the rules we
refer the reader to the Diplomacy Rulebook (Ava, 2000). Diplomacy is situated in Europe
at the beginning of the 20th century. The play board is a map of Europe, which is divided
into seventy-five provinces. The game is played by seven players, that each represent one of
the seven great powers of that time: England, France, Turkey, Russia, Italy, Germany, and
Austria. Each player begins with three units (except Russia, who begins with four units)
that can be moved through the map. A unit always occupies one of the provinces, and each
province can be occupied by maximally one unit. During a turn, a player can try to move a
unit from one province to another if both provinces are adjacent to each other on the map.
For example: a unit in Holland could only try to move to Kiel, Ruhr, Belgium, North Sea,
or Helgoland Bight, because these are the provinces adjacent to Holland (see Figure 2).

Thirty-four of the provinces contain a so called supply center. A supply center is said
to be owned by a certain power if the last unit that occupied it after a fall turn (explained
below) was a unit of this power. The goal of the game is to own at least eighteen of these
supply centers. The location of each supply center and their initial distribution among the
powers is fixed. The supply centers that a power occupies at the beginning of the game are
referred to as its home supply centers.

1. The source code of the DumbBot contains the following comments regarding the parameters: “These
are just values that seemed right at the time - there has been no attempt to optimise them for best play.”
The source code can be downloaded from David Norman’s Diplomacy AI page.

2

Optimizing a Diplomacy Bot Using Genetic Algorithms

Figure 1: The Diplomacy map. The colored circles are the units at their initial positions.

Figure 2: Holland has five neighbors.

The units are divided in two types: armies and fleets, while the provinces are divided in
three types: inland provinces, sea provinces, and coastal provinces. An inland province can
only be occupied by an army and a sea province can only be occupied by a fleet. A coastal
province can be occupied by either type of unit. A coastal province has one or more coasts.
When a fleet is located in a coastal province, it is explicitly located at one of its coasts. This
is because a fleet can only move from one coast to another if these two coasts are adjacent,
rather than if the two provinces they belong to are adjacent. In Figure 1 we see for instance
that Spain has two coasts: the north coast, bordering to the Mid-Atlantic Ocean, and the
south-east coast, bordering to the Western Mediterranean and the Gulf of Lyon. A fleet at
the south-east coast can move for instance to Marseille, but not to Gascony, while a fleet
at the north coast of Spain could move to Gascony, but not to Marseille.

To simplify the language, instead of talking a about coasts we will talk about regions.
A region refers to either an inland province, a sea province, a coast of a coastal province, or
the inner territory of a coastal province. Therefore each unit is located at a certain region,
rather than at a certain province or coast.

3

Dave de Jonge

Figure 3: The home supply centers of England.

The game begins in the spring of the year 1901. Every year is divided into five phases:
spring, summer, fall, autumn and winter. The players can move their units during spring
and fall and they can retreat their units during summer and autumn (see below). During
the winter phase powers can build new units (see below).

2.2 Movement of Units

During spring and fall (the movement phases), each player secretly writes down movement
orders for his units and then all orders are revealed simultaneously. For example, England
might want to move his fleet from London to Wales and his fleet in Edinburgh to the North
Sea, while he wants his army in Liverpool to stay where it is (see Fig. 3). If a unit is
ordered to stay where it is, it is called a hold order.

An order might or might not succeed, depending on the moves that the opponents have
ordered for their own units. If a unit is ordered to move into an empty province and no
other unit is ordered to go into the same province, then the move will succeed. If however
two units are ordered to move into the same province, the strongest unit will succeed and
will indeed move to that province, while the weakest unit will stay where it was. Although
each unit is in principle equally strong, a unit’s strength is increased if it is supported by
another unit, which we will explain below. If two equally strong units are trying to move
into the same province they both fail.

2.3 Support

Instead of ordering a unit to move from one region to another, a player can also order his
unit to support another unit. This means that the supporting unit will stay in the region
where it is, while the supported unit will become stronger. The strength of a unit is simply
given by the number of units that support it. A unit a can only give support to a unit b if
b is ordered to move into a region that is adjacent to the region where a is located.

For example: England can order his army in Liverpool to move to Wales and can order
his fleet in London to give support to this army. However, if England orders his army in
Liverpool to Clyde, this army cannot be supported by the fleet in London, because Clyde
is not adjacent to London (see Fig. 3).

4

Optimizing a Diplomacy Bot Using Genetic Algorithms

A unit can be supported by an unlimited amount of other units, but a unit can only
give support to one other unit. The supported unit and the supporting unit do not have to
belong to the same power.

2.4 Retreat

As said before, when a unit does not succeed in moving to another region, it will stay in its
original region. However, it might happen that during the same turn this region is invaded
by another unit. In that case, the unit that failed can not stay in its original location and it
has to retreat to another one. This happens during the summer or autumn phase following
the movement phase. During these phases each unit that has to be retreated is ordered by
its owner to move to some available region, adjacent to its original location. If there is no
region available to go, the unit will be disbanded, which means that it is removed from the
game.

2.5 Build

In the last phase of the year, winter, the players get the opportunity to build new units.
The number of units a power can own after the winter phase is maximally the number of
supply centers it owns, so a power can only build new units if it currently owns more supply
centers than units. A power can only build a new unit in one of its home supply centers
and only if he currently owns this supply center, but does not occupy it (because a province
can only be occupied by one unit at the same time).

For example: suppose England currently has only five units, but owns seven supply
centers. This means it can build two new units. England’s home supply centers are London,
Edinburgh and Liverpool, so each new unit can be build only in one of these provinces. If
for instance London is occupied however, it can only build one unit in Edinburgh and one
unit in Liverpool (assuming that these supply centers are still owned by England).

If a power owns less supply centers than units, during the winter phase it has to disband
a number of its units, such that it again owns as many supply centers as units. If a unit is
built in a coastal province then the power can choose whether the new unit will be an army
or a fleet. When a power builds a new fleet in a province with more than one coast it has
to specify at which coast the new fleet will be located.

3. Existing Projects

Diplomacy has been used before by many other people to do experiments in the field of AI
Here follows a short overview of the existing projects.

3.1 DAIDE

The main community on internet that focusses on writing AI bots that play Diplomacy is
the Diplomacy AI Development Environment (DAIDE). They have developed a game server
and several bots that are capable of playing the game, with various skills of negotiation.
You can let these bots play against each other by starting the game server and letting the
bots connect to this server via a TCP/IP connection. Furthermore they provide several
development kits to start building your own bot. Also they have developed a language

5

Dave de Jonge

for communication between the bots. This language is built up of 15 layers, of which
the complexity increases with each level. Level 0, is the no press level, in which there is
no communication between the players, while level 14 is the free text level, in which the
players communicate with each other in natural language. Most currently existing bots
are able to communicate in level 0 language exclusively and only a few bots are capable of
communicating at level 1.

3.2 The DumbBot

One of the bots provided by the DAIDE community is the DumbBot by David Norman.
This is a very simple bot that applies a basic strategy, but nevertheless performs quite well
against human opponents. It is not able to communicate with other players, so it is a level
0 bot. One could consider the DumbBot as the simplest non-trivial bot.

3.3 DipGame

DipGame is an open source project from the Artificial Intelligence Research Institute of
the Spanish Scientific Research Council (IIIA-CSIC) in Barcelona. It is meant as a sci-
entific testbed for multiagent systems and has its own infrastructure, but is compatible
with DAIDE. A big difference is that DipGame intends to make everything available for all
platforms, while the tools of DAIDE are almost exclusively developed for windows.

Currently the main component of the DipGame project is a framework, written in java,
that makes it easy to develop new bots. Also some tools are under development to test
your bots and to analyze their progress and results.

4. Analysis of the DumbBot

In this section we explain how the DumbBot of David Norman works. This analysis is based
only on the source code that David Norman has published on his website (Norman). We
will explain the strategy that the DumbBot uses and analyze its parameters. Finally, we
will give some suggestions on how it could be improved.

4.1 Strategy of the DumbBot

The strategy that the DumbBot uses is based on the following principle: It is better to
steal supply centers from strong enemies than from weak enemies. The reason for this is
that the more supply centers a power owns, the easier it is for it to gain even more of
them. Therefore it is vital to stop strong powers as soon as possible. So, whenever the
DumbBot has to choose which supply center to attack, it favors the one which is owned
by the strongest power, analogously, whenever the DumbBot has to choose which supply
center it has to defend, it favors the one which might be attacked by the strongest power.
In the ideal case the supply centers that are not owned by us are homogeneously divided
among our opponents.

6

Optimizing a Diplomacy Bot Using Genetic Algorithms

4.1.1 Power Size

The DumbBot needs a way to measure the strength of a power. This measure is called the
power size. The power size Sp of a power p is determined by the number of supply centers
it owns, which we shall denote by xp.

xp = number of supply centers owned by power p

xp ∈ [0, 17]

According to the basic strategy defined above, we want to express that when a power
captures a new supply center, it gains more strength if it is already very strong then when
it is weak. Therefore, the power size is defined as a quadratic function of the number of
supply center the power owns:

Sp = A · x2p +B · xp + C (1)

where A, B, and C are real-valued constants that have the following values in the source
code: A = 1, B = 4, C = 16. The fact that power size should be quadratic in the number
of units can be seen in the following way: we can consider the negative of the sum of the
power sizes of our six opponents as a form of utility (the stronger our opponents are, the
lower our utility).

u = −
6∑

p=1

Sp ' −
6∑

p=1

x2p

If we then steal a supply center from power number 1, the increase δu of our utility would
be:

δu ' −((x1 − 1)2 − x21) = 2x1 − 1 .

So we see that our gain of utility is increasing with the size of the power from which we
steal the supply center. In other words: our utility increases more if we steal from a strong
power than if we steal from a weak power.

It is easy to see that if power size would be linear in the number of supply centers, it
wouldn’t make any difference whether this enemy were a strong or a weak power, so our
preference for equally strong opponents wouldn’t be reflected in the utility.

4.1.2 Attack- and Defense- Value

At the beginning of each turn the DumbBot has to choose which regions to attack. There-
fore, we need to assign a value to each region that determines how much a region is worth to
attack. This value is called the attack value and it is defined such that the province which is
the most valuable to attack has the highest attack value. As stated above, a supply center
is more valuable if it is owned by a stronger power. Also a province that contains a supply
center is more valuable than a province that does not contain a supply center. Therefore
we define the attack value avr of a region r as follows:

avr =


0, if region r does not have a supply center.

0, if region r has a supply center, but we already occupy it.

Sp, if region r has a supply center and is occupied by opponent p.

7

Dave de Jonge

At the same time, we also need to determine how much the regions that we occupy are
worth to defend. According to the same principle as for attacking, we prefer to defend the
regions that could be attacked by strong powers. So to evaluate how much a region r is
worth to defend we define its defense value as follows:

dvr =


0, if region r does not contain a supply center.

maxp∈att{r} Sp, if region r contains a supply center and is occupied by us.

0, if we do not occupy region r.

where att{r} is defined as the set of powers that are able to attack region r. In other words:
the defense value of a region that contains a supply center and is occupied by us, is equal
to the power size of the strongest power that might attack it.

4.1.3 Proximity Map

These definitions assume that the regions that do not contain a supply center are worthless.
Of course, they indeed do not directly contribute to a victory, since only the number of
supply centers owned determines who wins. However, they do have value in an indirect
manner, since conquering such a region might give you a strategic advantage. That is: a
region might border to other regions that do contain supply centers. Therefore, in order
to determine how valuable a region is, we must not only take into account the attack- and
defense value of the region itself, but also the attack- and defense values of its neighbors.
Moreover, a region might also be valuable because its neighbors have neighbors that have
supply centers, etc.

For this reason the value of a region is a weighted sum of its own attack- and defense
values and those of all nearby regions. The contribution from its own attack value and
defense value is called the zeroth order proximity map, pm0

r and is defined as follows:

pm0
r = aw · avr + dw · dvr

Here, aw and dw are constants that we respectively call the attack weight and the defense
weight. Notice that avr and dvr are never both non-zero at the same time, so we can
equivalently write:

pm0
r =


0, r does not contain a s.c.

aw · avr, r contains a s.c. and is not occupied by us.

dw · dvr, r contains a s.c. and is occupied by us.

or:

pm0
r =


0, r does not contain a s.c.

aw · Sp, r contains a s.c. and is occupied by opponent p.

dw ·maxp∈att{r} Sp, r contains a s.c. and is occupied by us.

(2)

The contribution to the value of a region from the attack- and defense values of the region’s
neighbors is called the first order proximity map, pm1

r . It is defined as the average of the

8

Optimizing a Diplomacy Bot Using Genetic Algorithms

zeroth order proximity maps of the region itself and its neighbors:

pm1
r =

1

5
· (pm0

r +
∑

q∈adj{r}

pm0
q)

where adj{r} is the set of all neighbors of region r. And in general, the i-th order proximity
map pmi

r is defined as:

pmi
r =

1

5
· (pmi−1

r +
∑

q∈adj{r}

pmi−1
q) .

The factor 1
5 in these formulas is included to take the average value over all neighbors of r

and r itself, so in fact it should actually be 1/(|adj{r}|+1), but to simplify the calculations
David Norman chose to simply always divide by 5, because the average number of neighbors
a region has is approximately 4.

4.1.4 Competition- and Strength Value

Furthermore, we should also take into account how difficult it is to defend or attack a region.
For example: region a might be more valuable than region b, but if we have a much bigger
chance to succeed in capturing region b than to succeed in capturing region a, it could be
better to try to attack region b. Therefore, we define the strength value and the competition
value. The strength value svr is the number of units that we own in regions adjacent to
region r:

svr = |occ ∩ adj{r}| ∈ [0, 7]

where occ is the set of all regions that are currently occupied by us. So the strength value
is the maximum amount of units that we could use to attack region r.

The competition value cvr is the maximum number of units that any opponent has
adjacent to region r:

cvr = maxp { |occp ∩ adj{r}| } ∈ [0, 7]

where occp is the set of regions currently occupied by opponent p In other words: the
competition value is the maximum number of units that any opponent could use to attack
region r.

4.1.5 The Destination Value

Now, to determine which regions we should attack and which we should defend, we need
a formula based on the proximity map values and the competition- and strength- values.
We take a weighted sum of all these values and this is then called the destination value of
region r:

DVr =

n∑
i=0

pwi · pmi
r + sw · svr − cw · cvr (3)

with pwi, sw and cw the weights that determine how important each variable is. They have
separate values for spring turns and for fall turns. The value n (let’s call it the proximity

9

Dave de Jonge

depth) determines how far ahead we look. If this value is set too high the calculations take
too much time while the contribution of high order proximity values is relatively small. If
it is too small however, we would neglect the strategic value of a region r due its proximity
to other regions that contain a supply center. In the source code of the DumbBot this value
is set to n = 9 without any justification.

To get a bit of an idea of what range of values the destination values can take on
and of the way in which they are influenced by the values of the weights we can make an
approximation of equation (3). If we define x as the average number of units any power
has, and y as the average number of units that any power has adjacent to region r. Then
we have:

Sp ' x2

pm0
r ' 1

2
(aw + dw)x2

pmi
r ' pm0

r

such that Equation (3) is approximated as:

DVr ' 5 · pwi · (aw + dw) · x2 + (sw − cw) · y

with:
x ∈ [0, 17], y ∈ [0, 7]

4.2 Determining Moves

After calculating the destination value for each region, every unit tries to move into its best
adjacent region, but with a random chance of moving into the second best, third best, and
so on. It is possible that the chosen destination is the region in which the unit is already
located, in which case the unit holds. If the chosen destination is already occupied by one
of our own units or if another of our units is moving there, it either supports that unit or
moves elsewhere, depending on wether the other unit is guaranteed to succeed or not.

4.2.1 Ordering the Next Move

The procedure that chooses which move a unit is ordered to make works as follows. At first,
we make a list of all adjacent regions that our unit could move into, including the region
where it currently is. We select the region with the highest destination value from this list
as our destination. However, with a certain probability we will replace this choice by the
next best region. The chance of picking the next best destination is calculated with:

next province chance =
(DVa −DVb)

DVa
· 500 (4)

Where DVa is the value assigned to the first destination (the destination with highest value)
and DVb the value assigned to the next best destination.

A random number between 0 and 100 is generated. If this number is higher than the
threshold play alternative (which is set to 50 by default) or lower than next province chance,

10

Optimizing a Diplomacy Bot Using Genetic Algorithms

the currently selected destination will be the definitive destination for the current unit.
Otherwise, we will pick the second best destination, but with a certain chance of replacing
it by the third best destination. The probability of this is again calculated with the same
formula (4), only this time with DVa and DVb referring to the second best and third
best destination values respectively. This process is repeated until we have a definitive
destination.

4.2.2 Build, Remove, Retreat and Support

For the removal of units (if necessary) the bot follows the same recipe as for moving units:
for every unit the value of its location is calculated (the winter destination value) and then
one or more units are randomly chosen to be removed, but with the probability of being
chosen decreasing with the value of the location (the higher the value, the lower the chance
of being removed). The winter destination value for a region i is given by:

WDVi =
n∑

i=0

pwi · pmi
r + dw · dvr

with special values for pw and dw that are specific for the removal phase (“winter values”).
The weights that are involved in calculating pmi

r however, have their “spring value”.

Choosing a location to build a unit, or a location to retreat to, works exactly the same,
only with the chance of a location being chosen getting higher, as the destination value gets
higher.

If the algorithm described in Section 4.2.1 determines that one of our units should hold,
the bot checks whether this unit can give support to one of the other units. To do this,
it first checks to which units it could give support and whether these units need it. Then,
from all units that can get support and need support it chooses the one that tries to move
into the region with the highest destination value.

4.3 Analysis of the Values of the Weights

We will first give the values that are given to the weights in the source code, and then we
will discuss them. The default values of the weights are:

weight spring fall winter
strength weight (sw) 1000 1000 -

competition weight (cw) 1000 1000 -
attack weight (aw) 700 600 -
defense weight (dw) 300 400 1000

For the fall and winter values of the proximity weights we have:

pw0 = 1000 pw5 = 5
pw1 = 100 pw6 = 4
pw2 = 30 pw7 = 3
pw3 = 10 pw8 = 2
pw4 = 6 pw9 = 1

11

Dave de Jonge

The spring values of the proximity weights are exactly the same, except that the values of
the first two weights are interchanged: pw0 = 100 and pw1 = 1000. Finally, the values of
the constants A, B and C that define power size in (1) have the following values:

A = 1 B = 4 C = 16

4.3.1 Competition- and Strength Value vs. Proximity Map

One interesting observation is that the competition weight, the strength weight, and the
highest proximity weight all have the same value, namely 1000. This means that in equation
(3) the two terms concerning strength- and competition value are relatively small compared
to the proximity map, because, if x denotes the average number of supply centers owned by
a power, the proximity map variables are proportional to power size, which is proportional
to x2, while the strength and competition values are proportional to x. Moreover, because
of the minus sign in (3) the competition- and strength values tend to cancel each other
out, making their contribution even smaller. This is striking, because it means that the
contributions of the strength- and competition value are negligible.

Let’s illustrate this with the following example. Suppose we want to attack a certain
supply center. We assume that we have only one unit next to it, while an enemy has 4 units
next to it. We have:

pw0 · pm0
r = pw0 · aw · avr = 1000 · 600 · Sp ' 600, 000 · x2p

while

sw · svr − cw · cvr = 1000 · 1− 1000 · 4 = −3000

We see here that the last two terms of (3) are very small indeed compared to the proximity
map. Now if the province we’d like to attack is unoccupied we’d have that pm0

r would be
zero, but even in that case the higher order values of the proximity map would be very big
compared to the strength and competition values.

4.3.2 Spring Proximity Weights

The fact that the first two proximity weights for spring are interchanged with respect to
their fall and winter counterparts might seem strange at first but it does make some sense.
This is probably because you can only build new units if you own new supply centers after a
fall turn. So during the fall turn it is important to obtain new supply centers, while during
the spring turn it is more important to have a strategic position so that you have a better
chance of obtaining new supply centers during the following fall turn. The value of a region
during spring is therefore more determined by the supply centers it borders to, than by its
own supply center.

4.3.3 Attack- and Defence Weights

Another interesting observation is that the attack weights are higher than the defense
weights, and that the difference between them is smaller during fall than during spring.
This means that apparently the bot considers attacking new supply centers more important
than defending currently owned supply centers. One reason might be that, by just defending

12

Optimizing a Diplomacy Bot Using Genetic Algorithms

your own supply centers you might retain them, but you will never increase your number
of supply centers. However, by attacking a province you might simultaneously achieve the
goals of gaining a new supply center and defending the one you already posses, because if
you succeed, the attacked province will not be able to attack you. To say it simpler: attack
is also a form of defense, while defense is never a form of attack.

The fact that the difference between attack weight and defense weight is smaller during
fall, makes sense. After all, losing a supply center during spring is not so bad, because you
might be able to re-capture it during fall without any consequences. While if you loose a
supply center during fall, you will be able to build one unit less.

4.4 Discussion

In this subsection we will discuss our findings with regard to the DumbBot and make some
suggestions on how it might be improved.

4.4.1 Power Size Reviewed

In Section 4.1.1 we argued that power size should be a quadratic function of the number of
supply centers owned. However, there is a subtle point that we would like to point out about
this. One should notice that, if we would neglect the competition- and strength- values and
the higher order values of the proximity map, it would not matter whether the power size
were quadratic or linear. Since in that case, the region with the highest destination value
would always be the one which were occupied by the power with the highest number of
supply centers, regardless of the question whether the power size were quadratic or linear
in the number of supply centers. Mathematically: if Sp is any monotonically increasing
function of xp, then we have:

arg maxp{Sp(xp)} = arg maxp{xp}

(notice that we take the arg max with respect to p, rather than xp). Since we do not use
the actual value of the destination value, but only the arg max of the destination value, it
would not matter whether the power size were quadratic or linear.

The fact that the power size is quadratic does play a role however, when calculating the
higher order proximity map values. Remember that if we want to capture a supply center,
then pm0

r is proportional to the attack value of the province, which is the power size of the
power that owns it (see Equation (2)), so pm0

r ∝ Sp for some power p. Then for pm1
r we

have:
pm1

r ∝ Sp +
∑

j∈adj{r}

Sj

With Sj standing for the power size of the power that owns region j. It is because of the
summation in this equation that non-linearity of the power size matters, because a linear
power size would give different results than a quadratic power size, even after taking the
arg max. In general we have:

arg maxr {x2r +
∑

j∈adj{r}

x2j} 6= arg maxr {xr +
∑

j∈adj{r}

xj}

with xr standing for the number of units belonging to the power that occupies region r.

13

Dave de Jonge

4.4.2 Suggestions for Improvement

The values of the weights that the DumbBot uses have been chosen merely by intuition.
David Norman has not tried to optimize them in any way. We have seen for instance that
the values of the strength weight and the competition weight seem to be much smaller than
one would expect them to be. Therefore the DumbBot might be able to perform better if
we could optimize the parameters. This is exactly what the rest of this thesis is devoted to.

The DumbBot was just intended as a very simple bot that applies some kind of basic
strategy. Therefore, there are a lot of things that the DumbBot does not take into account,
which a seriously competitive bot would need to.

For instance, the bot does not make any predictions of what its opponents will do. Its
strategy is purely based on what move is the best assuming that each move would succeed
and that the opponents’ positions remain the same. Also, the bot does not have any long
term strategic plan. Every turn is treated separately and therefore the bot ignores any
future consequences of a move.

Furthermore, except from the concept of “being near to a supply center” the DumbBot
ignores the fact that some provinces have strategic locations. A province can for instance
be valuable because by occupying it, you might block the way for your opponents to move
to other provinces.

Finally, one important ability that the DumbBot lacks is the ability to coordinate the
moves between its units. Every unit is treated individually. For this reason the DumbBot
is unable to perform one very important move, which is the self standoff. This is one of
the basic moves that every novel player learns. The self standoff is a move in which two
units of the same power try to move into the same province with the goal of defending three
provinces at the same time with only two units.

5. Searching With Genetic Algorithms

The goal of our work is to optimize the parameters of the DumbBot, which we will try to do
using a genetic algorithm. Therefore, in this section we first describe how a general genetic
algorithm (GA) works. Then, to compare it with simpler algorithms we will look at tech-
nique that we will call näıve optimization. We will then derive a mathematical foundation
for the GA. Also we argue when and why a genetic algorithm is a good search algorithm.
Finally, in the last subsection we explain why the advantages of the GA mentioned before
are not very useful for our purposes, and therefore we propose a new variant of the genetic
algorithm that might be better suited to our needs.

5.1 The Standard Genetic Algorithm

The goal of a genetic algorithm is to search for the optimum of a function in a high-
dimensional space. A point in such a space is called an instance or an individual. The
function that we want to optimize is called the fitness function. We suppose that we have
an encoding scheme with which we can encode each point in the search space as a row
vector. Such a vector is called a chromosome. Each entry of the vector is called a gene and
a specific value at a specific entry is called an allele.

14

Optimizing a Diplomacy Bot Using Genetic Algorithms

So for example we have an instance x0 of our search space that can be encoded as a
vector in a 4-dimensional space:

x0 = (1, 2, 3, 4)

The row vector (1, 2, 3, 4) is the chromosome, and since it is a 4-dimensional vector, it
consists of four genes. If f is the fitness function, than f(x0) is the fitness of x0 and the
goal of the algorithm is to find arg maxx{f(x)}, or at least an instance x1 for which f(x1)
is close to the global maximum of f .

The idea is that after having evaluated a certain set of individuals (the initial popula-
tion), we pick the ones with the highest fitness and let them interchange their genes, so that
hopefully we combine the best features of one individual with the best features of another
individual. The newly created individuals will then partly replace the initial population.
The process of exchanging genes is called cross-over. The individuals that will be crossed
over are selected randomly, but the probability for an individual to be selected is increasing
with its fitness (usually it is proportional to the fitness, but not necessarily. For exam-
ple, it might be necessary to re-scale the fitness function to make sense as a probability
distribution).

Crossing over works as follows: we have two individuals (the parents) and we cut both
their chromosomes into two pieces (both are cut in exactly the same place, for example:
between the second and the third gene). The place where we cut the chromosomes is
chosen randomly. Then the first part of the first chromosome is pasted together with the
second part of the second chromosome and vice versa. This way we have created two new
individuals that have inherited genes from both their parents. For example, suppose the
parents are

(1, 2, 3, 4) and (5, 6, 7, 8)

and we cut both chromosomes exactly in the middle, then we obtain the following two
children:

(1, 2, 7, 8) and (3, 4, 7, 8)

(This is called single point cross-over, because we cut the chromosomes at one point. Al-
ternative variants of GA might use multi point cross-over.)

After crossing over, a few of the new individuals are randomly selected for mutation.
That is: for each selected individual one of its genes is selected randomly and its value
(its allele) is replaced by some random other value. The selection of the individuals, the
selection of the gene to mutate and the selection of its new value are all made with a
uniform probability distribution. By applying mutation we make sure that alleles that have
disappeared from the population have a chance to come back, or that alleles that weren’t
present in the original population still might appear into it.

If we have already found some good solutions in the initial generation, we want to keep
them. Therefore, of each generation the best few individuals will be copied into the next
generation. Making copies of individuals into the next generation is called reproduction. In
the special case that these individuals are the best of the current generation it is known as
elitism.

So finally the initial population is replaced by the new individuals that were produced
by cross-over and mutation, plus the best few individuals of the initial population. This

15

Dave de Jonge

process is then repeated several times, such that the population will contain better and
better individuals.

Summarized, a genetic algorithm works as follows:

1. We choose a random population of individuals.

2. We evaluate their performances and assign a ‘fitness’ to each instance, which describes
how well it has performed.

3. We randomly choose a set of individuals from the population to be crossed-over. The
chance for an individual to be selected for cross-over is increasing with its fitness.

4. We randomly choose some of the newly created individuals to be mutated.

5. The new individuals that were created by cross-over and mutation form a new gener-
ation, together with the best individuals of the previous generation.

6. We then we repeat steps 2-5 for a certain amount of time and finally we pick the
individual with the highest fitness of the last generation and consider it as the solution
of our optimization problem.

5.2 Näıve Optimization

Our goal is to show that the problem of finding an optimum can indeed be solved by applying
a genetic algorithm, under certain assumptions. Therefore we will first look at a much
simpler way of optimizing a function, which is, what we will call here, näıve optimization.
The analysis that we make here will be relevant for the following sections.

By näıve optimization we mean: first find the best value for the first variable while
holding all the other variables fixed, and then continue by optimizing with respect to the
second variable, while holding the others fixed, etc. In some very simple cases, after having
optimized all variables separately, one might have found the global optimum of the function.
However, in general this is not true, since we have only optimized all variables under the
condition that the other variables had a certain value. In reality the optimal value of one
variable might be highly dependent on the values of other variables.

So when does näıve optimization work? This is easy to answer if we can describe the
evaluation function f as a polynomial of several variables, for instance:

f(x, y) = x+ y + x2 + y2

In this case we can write

f(x, y) = f1(x) + f2(y)

with

f1(x) = x+ x2

f2(y) = y + y2 .

We can separate the function f here into two functions: one that is purely dependent on
x and one that is purely dependent on y, because f does not contain any mixed terms:

16

Optimizing a Diplomacy Bot Using Genetic Algorithms

each term only contains either x or y but not both of them. This implies that if x0 =
arg max{f1(x)} and y0 = arg max{f2(y)} then we also have (x0, y0) = arg max{f(x, y)}.

On the other hand, we can show that if f does contain mixed terms, the optimum of f
with respect to x depends on the value of y. This can easily be seen by differentiating.

g(x, y) = x+ xy + y

∂g

∂x
= 1 + y

We see that the mixed term causes the fact that the derivative of g with respect to x depends
on y. And since the optimum can be found by setting the derivative to zero, the maximum
value of g with respect to variable x depends on the value of y. In general we can state
that a function f depending on variables x and y can be optimized by näıve optimization

if ∂2f
∂x∂y = 0. If this holds we say that x and y are uncorrelated.

Definition 1 Two variables x and y are uncorrelated if ∂2f
∂x∂y = 0. If | ∂

2f
∂x∂y | is high we say

that their correlation is high, and if it is low, we say their correlation is low.

It is however important to realize that we might be able to choose our variables such
that they have low correlation. Take for instance the function f = xy. According to our
previous analysis we can not apply näıve optimization here. However, if we change our
variables to α and β with x = α+ β and y = α− β then we see: f = α2− β2 and therefore
it is possible to optimize f by näıve optimization, as long as we do this with respect to the
variables α and β instead of x and y.

Of course, in reality we don’t know the function f , because if we would know it, it would
be much easier to find its optimum by setting the derivative to zero, than to apply näıve
optimization. However, this is just to show quantitatively how and when näıve optimization
can be used.

The fact that näıve optimization works only when x and y are uncorrelated can be
overcome, by repeating it many times. So after all parameters have been optimized the
algorithm doesn’t stop, but starts over again with the first parameter. This continues until
a local optimum is reached or until a certain amount of time has passed. This is then what
we call hill climbing. The lower the variables are correlated, the better this will work.

5.3 Searching Through High Dimensional Spaces

As we stated before, a genetic algorithm is an algorithm to find the optimal value (or a
nearly optimal value) of some function f on a high dimensional vector space V ∼= Rn.

f : V → R

(At least, from a theoretical point of view. In many computer science problems the entries
of the vectors can take on only discrete values with a limited range: f : [0,m]n → R. This
is also the case in our problem.)

Since the search space for most practical problems is huge, it is usually impossible to
simply evaluate all points and then keep the one with the highest value. So what we could

17

Dave de Jonge

try to do is to evaluate a lot of randomly chosen instances and stop after a certain amount
of time. The chance that we would find the optimum in this way is very small, but we
might be able to improve our chances if we could make some kind of educated guess about
where in the space we have a bigger chance of finding high values.

The trick is that, instead of looking directly for the best vectors, we try to look for the
best subspaces of V . This means we try to find subspaces of V on which the average value
of the function is high. If we then have a few of these ‘good’ subspaces, we continue our
search on the intersections of these subspaces, expecting that the vectors there are even
better. In the following we will make this more clear.

We use the following notation to specify subspaces:

(1, ·, ·, ·)

for example, stands for the 3-dimensional subspace of all vectors that have the value 1 in
their first entry, while for example

(·, 4, 7, ·)

stands for the 2-dimensional subspace of all vectors that have the value 4 in their second
entry and the value 7 in their third entry (technically, these subspaces are affine linear
subspaces, that is: linear subspaces, but without the requirement that they should contain
the null vector). These specifications are called schemas.

Definition 2 A schema is a row vector for which some of the entries have a · instead of a
value.

Definition 3 The entries of a schema that contain a · are called the undefined entries and
the entries that contain a value are the defined entries.

Definition 4 The number of defined entries in a schema is called the order of the schema.

So our first example (1, ·, ·, ·) is a schema of order one, while (·, 4, 7, ·) is a schema of order
2. The dimension d of the subspace that is defined by a schema is equal to the number of
undefined entries, which is equal to the dimension n of the entire space minus the order o
of the schema.

d = n− o

(Notice that the notion of an allele coincides with the notion of a schema of order 1).
Sometimes we will talk about an “o-schema” when we mean a schema of order o. Also we
will sometimes use the term “schema” when we are actually refering to the subspace defined
by this schema.

Definition 5 Given a schema, the distance between the two defined entries that are located
farthest away from each other is called the defining length.

So for example the schema (5, ·, ·, 8) has defining length 3, while the schema (·, 5, 8, ·) has
defining length 1. A vector is said to satisfy a certain schema, if the values of the defined
entries of this schema are equal to those of the vector. For example: the vector (3, 4, 7, 9)
satisfies the schema (·, 4, 7, ·). Notice that every n-dimensional vector satisfies 2n different
schemas.

18

Optimizing a Diplomacy Bot Using Genetic Algorithms

In this way we can not describe all subspaces of V , but only a very limited subset of all
its subspaces. For instance: the linear subspace that satisfies the relation x+ y = 0, where
x and y denote the first and second entry respectively, can not be described by a schema.
However, if we would use the variables α and β of Section 5.2 this same subspace would be
defined by α = 0, which can be described by a schema. This means that when we choose
the variables that we will use to encode the search space as a vector space, we implicitly
choose the set of subspaces that can be described by a schema.

Now the key point is that we want to choose our subspaces such that we can make the
following assumption:

Assumption 1 Suppose we have a subspace U ⊂ V that can be described by a schema, and
a point x ∈ U for which f(x) is high (low). Then we assume that the values f(x′) of other
points x′ ∈ U are on average high (low) too.

(The question of when we can make this assumption will be addressed at the end of this
subsection.) For example, if f is optimal for some vector x0, say x0 = (2, 5, 6, 3), then we
assume that f(x) will be relatively high for any vector x with a value of 2 in its first entry.
That is, the subspace

(2, ·, ·, ·)

will be a good subspace. And the same holds for the subspaces

(·, 5, ·, ·), (·, ·, 6, ·) and (·, ·, ·, 3)

Notice that the optimum x0 is the intersection of these four subspaces. Also, this assumption
implies that if we have a few good subspaces, then the chance is big that the points that
lie on the intersection of these subspaces are also good. So what we have to do, is to find
good subspaces and then continue our search by looking at the points where these subspaces
intersect.

The advantage of looking for good subspaces instead of good vectors, is that the number
of subspaces defined by a low order schema is a lot smaller than the number of vectors.
Suppose for instance that our space is 4-dimensional and for every dimension we consider
ten possible values. Then we have in total 104 different vectors, but only 4 · 10 different
1-schemas. In general the number of o-schemas of an n-dimensional space with m different
possible values for each entry, is given by:(

n

o

)
·mo or, equivalently, by:

(
n

d

)
·mn−d (5)

where d = n− o is the dimension of the corresponding subspace. In particular, notice that
there is exactly one 0-schema: (·, ·, ·, ·), which defines the entire space itself, and that there
are mn 4-schemas, which are simply the vectors.

But how do we find good subspaces? Notice that each vector can be considered as
a sample of all the schemas it satisfies (as said before, each vector satisfies 2n different
schemas). So the fitness of a vector can also be considered as an indication of the fitness
of all the schemas that it satisfies. The idea is that when we have evaluated a number of
random vectors (the initial population), we have simultaneously evaluated all the schemas

19

Dave de Jonge

that are satisfied by these vectors. We can then continue our search by sampling new vectors
that lie on the intersections of the good schemas.

This is in fact exactly what cross-over does: every time we choose two individuals for
cross-over and choose where to cut their chromosomes, we are in fact selecting some schemas
to be copied into the new generation, some schemas to be deleted and some new schemas to
be sampled. For example, in the example of Section 5.1 the schemas (1, 2, ·, ·) and (·, ·, 3, 4)
survive, while the schema (·, 2, 3, ·) is deleted and the schema (·, 2, 7, ·) is created. Since the
chance of an individual to be selected for cross-over is increasing with its fitness, the good
schemas have a high chance of survival, while bad schemas are more likely to disappear.

Like in any other search algorithm, there is a trade-off between exploration and ex-
ploitation. The fact that good schemas have a bigger chance of survival means that they
are exploited, while the fact that new schemas are created by cross-over means we are also
exploring new subspaces. Moreover, mutation adds some extra exploration to the algorithm.

Notice however, that there is no guarantee that the intersection of two good subspaces
will really be a good subspace too. After all, as we have seen in Section 5.2 it is very well
possible that some values only perform well in combination with other values. Therefore
the subspaces (3, ·, ·, ·) and (·, 5, ·, ·) might both perform poorly, while their intersection
(3, 5, ·, ·) might be very good. Therefore, it is not enough simply to find the best 1-schemas
and combine them into the best possible combination (which would be equivalent to näıve
optimization). Some combinations of bad 1-schemas might lead to good 2-schemas, so it is
important not to immediately discard bad 1-schemas. Therefore we should not just explore
and exploit the 1-schemas, but we should also make sure that there is enough exploration
of 2-schemas. And the same holds of course for higher order schemas. In fact there is a
trade-off: exploring and exploiting low-order schemas is faster, because there are a lot less
of them. But exploring and exploiting high-order schemas is more accurate.

Notice that especially schemas of low defining length have a better chance of survival
than schemas with a high defining length, because the smaller the defining length, the
smaller the chance that the cross-over will cut the schema in two. It is therefore essential that
we encode the points of our search space into rowvectors in such a way that closely correlated
features are encoded as vector entries that lie next to each other on the chromosome (more
about this at the end of this subsection). This is called the building block theorem, see for
instance Falkenauer (1998).

On one hand, one could consider this a disadvantage, because we need to put prior
knowledge about the problem into our encoding in order to make the algorithm successful.
On the other hand, if we know how to do this, the GA gives us a way of including our prior
knowledge into the search algorithm, making it more effective than a simple hill climbing
or random search.

Now we still need to address the question of when we can actually make the assumption
that we made above. The simplest example is again a function that can be written as the
sum of two functions of different variables.

f(x, y) = f1(x) + f2(y)

It is obvious that, for any y, an increase of the value f1(x), while holding y fixed leads to
an increase of the entire function f(x, y) and therefore we can say that if we randomly pick
a value y then the chance of finding a high value for f(x, y) is bigger as f1(x) is higher.

20

Optimizing a Diplomacy Bot Using Genetic Algorithms

The situation is quite similiar to näıve optimization. Because what we want is that the
value of a vector that satisfies a certain 1-schema is representative for the whole schema,
which is almost the same as saying that finding the optimum of one variable is independent
of the values of the other variables.

The difference however, is that näıve optimization only explores 1-schemas, while the
genetic algorithm explores many schemas of any order at the same time. Another difference
is that näıve optimization evaluates only one sample for each 1-schema, while GA explores
many different samples.

So just as with näıve optimization and hill climbing, we want to choose our variables
such that they are correlated as least as possible. But, because the GA allows exploration
of 2-schemas, we can still have highly correlated variables as long as these highly correlated
variables are placed next to each other on the chromosomes, so that they can be exploited
without being destroyed the cross-over mechanism.

So suppose we have a function of four variables:

f(v, w, x, y) = 6 · vw + 80 · xy + 3 · vx+ 4 · wy

∂2f

∂x∂y
= 80

it is clear that in this function the variables x and y are highly correlated with each other,
while other pairs of variables are less correlated, so it makes sense to model the points in
our search space as vectors of the form: (v, w, x, y), with the variables x and y next to each
other. Notice that the value of f in this example is mainly determined by the values of x
and y, and therefore we have indeed that the fitnesses of all vectors that satisfy the schema
(·, ·, x0, y0) are similar.

If we would model our problem using vectors of the form (x, v, w, y) on the other hand,
the genetic algorithm would probably be a lot less effective, because when we discover that
the schema (x0, ·, ·, y0) is very good, the chances are big that any instance of this schema
will be destroyed by cross-over.

Of course in reality we don’t know the expression for f , but we might be able to guess
which features of a problem are related to each other, from our knowledge of the problem.
That is: closely related variables should be encoded as genes that lie close to each other on
the chromosome.

What we can conclude from this is that a genetic algorithm might perform better than
a random search, because we can put some prior knowledge into the search by choosing
our representation vectors carefully. On the other hand, if we do not put this information
into the problem in the right way, or if we simply don’t have this kind of information, the
algorithm is probably not going to work so well.

5.4 An Alternative Genetic Algorithm

The problem with the standard form of the genetic algorithm is that one needs a lot of
samples in order to have an accurate estimation of the average fitness of high order schemas.
Since in our project it takes a long time to accumulate samples we argue that it is useless
to look at these high order schemas. We argue that in our case it might be better to

21

Dave de Jonge

concentrate on the lower order schemas and combine them in a more clever way than the
standard algorithm does.

We propose the following new algorithm that we have developed ourselves. It was
designed for problems in which the evaluation of individuals is so slow that we don’t have
the time to explore high order schemas sufficiently. Therefore it spends more computing
time on the exploration more low order schemas, while spending less computing time on
the exploitation of high order schemas.

It consists of two phases. The first phase works as follows:

1. We choose a random population

2. We evaluate the fitness of each individual.

3. For each schema of order 1 we calculate its average fitness, that is: the average of the
fitnesses of all individuals that satisfy this schema.

4. We create a ‘bag of alleles’, in which the order 1 schemas with high average fitness
occur more often than the ones with low average fitness.

5. We create new individuals by randomly selecting 1-schemas from the bag and com-
bining them. So each new individual might be created from alleles of n different
individuals.

6. steps 2-5 are repeated until we have accumulated enough samples of order 1 schemas.
We then continue the algorithm with phase 2.

Phase 2 works the same, only everything works with 2-schemas instead of 1-schemas. So
at step 3 we calculate the average fitness of the 2-schemas and our ‘bag of alleles’ at step 4
consists of instances of 2-schemas. At step 5 we create new individuals by pasting 2-schemas
together, and therefore each new individual might be created from genes of n/2 different
individuals.

Our variant is different from the standard algorithm in two ways: first, cross-over does
not involve cutting two chromosomes into two pieces, but instead we combine the alleles
from many different individuals (during phase 1 we apply n-1-point cross-over and during
phase 2 we apply n/2-1-point cross-over). The reason for this is that, as stated above,
we think it does not make much sense to exploit high order schemas. Therefore, we want
to explore as much low order schemas as possible, even if this means that we can exploit
less high order schemas. Cutting a chromosome into many pieces means that higher order
schemas have no chance of survival, but it also means that we create a lot more new low-
order schemas. So we increase the exploration of lower-order schemas, with the consequence
that we decrease the exploitation of higher order schemas.

The second difference is that the abundance of a schema in the next generation is
calculated from the average fitness of all instances satisfying this schema in the current and
all previous generations (notice that one schema can be satisfied by multiple individuals
in one generation). While in the standard GA each occurrence of a schema has a certain
chance of survival, based only on the fitness of the specific individual that satisfies it.

For example: suppose that there is a bad schema p that by coincidence appears many
times in the current population (that is: there are many individuals that satisfy this

22

Optimizing a Diplomacy Bot Using Genetic Algorithms

schema). Say there are 10 instances of p with each a fitness of 0.2 and two instances
of a good schema q with a fitness of 0.5. This means that in the next generation we expect
10 · 0.2 = 2 individuals satisfying p, while we only expect 2 · 0.5 = 1 individual satisfying
schema q. Although the bad performance of p indeed leads to a big decrease of its presence,
still it will be more present than schema q even though q has a much higher fitness. It
will take several generations before this effect fades away. Therefore, in our algorithm the
fitness of a schema is much better reflected in its presence, than it is in the standard genetic
algorithm. It takes a little bit more calculation time, but this is negligible compared to the
time necessary to evaluate each individual of the population.

The statement that we have too little samples of high order schemas to seriously take
them into account is supported with the following calculations. Suppose we have n param-
eters that we want to optimize and each one can take on m different values. We have 6
computers running in parallel and we need about 40 seconds to play a game (more about
this later in Section 6), so we can play 9 games per minute and we can evaluate maximally
7 individuals in one game (because Diplomacy is played by 7 players). However, to evaluate
an individual we need to play a lot of games, because there is a lot of randomness in the
strategy of the DumbBot. So an individual needs to play about 30 games before we can
accurately assign it a fitness. Each individual satisfies

(
n
o

)
o-schemas, so we can evaluate

7·9
30 ·

(
n
o

)
o-schemas per minute. Suppose we want to have 10 samples of each possible o-

schema (that is: for each schema we want to evaluate the fitness of 10 different individuals
that satisfy it). The total number of o-schemas in our search space is given by Formula (5),
so this means it takes

(
7 · 9
30

)−1 ·
(
n

o

)−1
· 10 ·

(
n

o

)
·mo =

300

63
·mo minutes

to evaluate all schemas of order o.If each parameter can take on m = 10 different values, it
already takes 4762 minutes (more than 3 days) to evaluate the schemas of order 3. We see
therefore that it seems useless to exploit schemas of order higher than 2.

6. Setup of the Experiments

In this section we describe how we have tried to optimize the values of the weights of
the DumbBot. We have tried this with three different methods: a hill climbing search,
a standard genetic algorithm and the alternative genetic algorithm as described in the
previous section. Each experiment lasted for approximately twenty-four hours.

6.1 A Java Version of the DumbBot

For our experiments we have not used the source code of the DumbBot directly, but a copy
of it written in java. The reason for this is that we want to have a bot that is multiplatform
and compatible with DipGame. A major disadvantage is that there might be errors in the
code, because the C++version and the java version are based upon different frameworks so
it is impossible to translate the code literally from C++to java. In fact, in Section 7.1 we
will see that unfortunately the java version is indeed not identical to the C++version.

23

Dave de Jonge

From now on we will refer to our java version of the DumbBot as the java bot and to
the executable that is written in C++and is available from the website of DAIDE, as the
C++bot.

6.2 The Evaluation Function

One serious problem that we face when optimizing any Diplomacy bot, is that we don’t
have a well defined evaluation function. There is no objective way of defining this function,
since the only thing we can do is letting seven bots play against each other and see which
bot is better than which other bot. We can then do this again with seven other bots, but
we can’t compare the performance of a bot in the first game with the performance of a bot
in the second game, since they might have had different opponents.

For example: suppose that in one game we have bots A and B playing against each
other and A ends in a higher position than bot B. Then we know that A is better than B,
but we don’t know how much better. After this game we might play another game with
bots A and C and maybe again bot A wins. The only thing we then know is that A is
better than both B and bot C, but we don’t know anything about whether B is better or
worse than C. This means the bots are ordered in a tree-like structure rather than in a
chain.

The situation becomes even worse when we realize that there might not even exist a
correct ordering of bots at all. That is: bot A might beat bot B and bot B might beat
C, but that does not necessarily mean that bot A will also beat bot C. In general, the
question of whether a strategy is good or not depends on the strategy of your opponents.
Mathematically speaking: an ordering of strategies is not necessarily transitive.

A � B, B � C ; A � C

One clear example of this is the well-known paper-scissors-rock game. While rock beats
scissors and scissors beats paper, it does not mean that rock also beats paper.

Another problem is that we have to define what exactly it is that we want to optimize.
In other words: how do we define playing well? We need some system of assigning points
to a bot each game and optimize the average amount of points it scores. For instance we
might want to optimize the average rank in which the java bot ends a game. That is: it
receives 6 points for each victory, 5 points for each game it ends in second place, etcetera.
The evaluation function would then be f(r) = 7− r, with r the position in which which the
bot ends (its rank).

On the other hand one might consider the game of Diplomacy as an all-or-nothing game,
in which only a victory counts. In that case we are not interested in ending on a high average
position, but solely in winning as much games as possible. In that case we should use the
number of victories as our evaluation function. A big disadvantage of this last method is
that you need to play a lot of games in order to get an accurate estimation of this number,
after all we can’t expect an average bot to win more than once in every seven games.

For our experiments we have used an intermediate evaluation function, that is quadratic
in the rank:

f(r) = (7− r)2 r ∈ [1, 7]

24

Optimizing a Diplomacy Bot Using Genetic Algorithms

it provides more information per game than the all-or-nothing function, but puts more focus
on winning than the average rank does. For example with this evaluation function the bot
prefers to win once and end seventh once, than to end in fourth place twice.

For this evaluation function we still need to define what it actually means to “end in
a certain position”. After all, the rules of Diplomacy only say that a player with eighteen
or more supply centers is the winner, and all the others are the losers. There is no official
definition for ending in a second or third place. Therefore, we define the rank of a player
of Diplomacy according to the following rules. The players are ranked according to the
number of supply centers they own at the end of the game. So the player with eighteen or
more supply centers is ranked first, then the player owning the second largest amount of
supply centers is ranked second, etc.

The players that were defeated before the end of the game (the players that ended
with no supply centers) are ranked according to their year of defeat. The later a player is
defeated the higher it is ranked. So if two players end with no supply centers, the one that
was defeated first is ranked 7th and the other is ranked 6th.

If, after these rules still two or more players end equally, we decide who is ranked above
whom by a coin flip. Alternatively, in the case of two equally ranked players we could have
decided to assign them both an equal share of the sum of their evaluation values: if two
players both end in second place we could assign them both 1

2(f(2)+f(3)) points. However,
we have not done this, to keep the implementation simple, and because if the number of
games played is large enough it doesn’t make any difference anymore anyway.

6.3 The Parameters

Since the number of parameters that could be adjusted is very large it seems unrealistic to
really optimize them all, at least for our first experiments. Therefore we will focus here on
the eight main parameters. The parameters that we chose to adjust are the following:

• the attack weight aw

• the defense weight dw

• the strength weight sw

• the competition weight cw

All of these have a spring value and a fall value. So we have in total eight values to adjust.
In the following, we will distinguish between spring and fall weights by prefixing the above
names with either s- or f -. So for example s-aw stands for the spring attack weight, and
f -cw stands for the fall competition weight.

Notice that the absolute values of the weights are not important, but only their relative
values with respect to each other. After all, it is only the differences between the destination
values of the respective regions that matter, not the actual destination values themselves.
Therefore we can safely keep the zeroth order proximity weight pw0 fixed, even though
it is a very important weight too, and consider all values as ‘relative to’ the zeroth order
proximity weight.

For all experiments we allow the weights to take on one of the following values:

{1, 10, 30, 100, 300, 1000, 3000, 10000, 30000, 100000}

25

Dave de Jonge

These values increase exponentially. The reason for this is that we think that the order
of magnitude of the parameters is more important to know than their precise value. If
necessary, we could try to determine more precise values later.

6.4 Group Play vs. Individual Play

All experiments are performed in two versions. In one version we let each java bot play
against six C++bots (individual play) while in the second version we let the java bots play
against each other, together with one or two C++bots (group play). The advantage of
the second version is that in this way we can train a lot of bots at the same time, so the
algorithm runs a lot faster. However, a disadvantage is that each bot plays against different
opponents (java bots with different values assigned to their weights) which makes the results
somewhat less reliable. Also, if all the java bots that are playing in a particular game are
bad, then the bots only learn to play against bad opponents, which is of course not what
we want.

6.5 Applied Methods of Optimization

Here we will discuss the exact implementation of the three methods that have tried for the
optimization of the weights.

6.5.1 Hill Climbing

The first technique that we have used to learn the parameters is a simple hill climbing. This
means we first try to find the best value for the first weight, holding the others fixed. Then
we try to optimize the second weight etc. After setting the eight weights we continue again
with the first and then the second etc, until a certain amount of time has passed.

1. We initialize ten bots with initial values for their weights.

2. For every bot we change the value of its first weight. The first bot gets the first value
from our list of possible values, the second bot gets the second value from the list,
etc. We now have ten bots that all have a different value for their first weight, but
are identical in their values for all other weights.

3. We let each bot play a number of games (eighty in the case of group play, thirty-five
in the case of individual play).

4. We choose the one with the best results and set the weights of the other bots equal
to the weights of this winner.

5. We replace the value of the next weight of each bot by one of the ten values from the
list. And let them play again.

6. We repeat this for twenty-four hours and after that see which bot is the final winner.

In the experiment with group play in each game five java bots with different values for their
weights played with two C++bots.

26

Optimizing a Diplomacy Bot Using Genetic Algorithms

6.5.2 Standard Genetic Algorithm

We run a standard genetic algorithm as described in Section 5.1. We have a population of
thirty-six randomly initialized individuals. In the case of group play they are divided into
six groups of six, and each group plays eighty games per iteration. In the case of individual
play each java bot plays sixty games against six C++bots. The amount of games per bot
is less in this case because otherwise the experiment would take much too long. After each
iteration we pick the three best individuals and reproduce them into the next generation.
Each individual has a chance of being chosen for cross-over proportional to the evaluation
function. Then we pick one out of each eight new individuals for mutation (it is usually
advised not to use too much mutation).

We have encoded the weights of the DumbBot as an 8-dimensional vector in the following
way:

(s-aw, s-dw, s-sw, s-cw, f-aw, f-dw, f-sw, f-cw)

We think that the attack weights and defense weights are closely related to each other,
so therefore we have placed them next to each other, and the same holds for the strength
weights and competition weights. Also we argue that spring weights and fall weights are
not correlated with each other, because the spring weights only play a role during spring
turns, while fall weights only play a role during fall turns. Moreover, it is very reasonable
to assume that the bot should follow a different strategy during spring than during fall.
Therefore, we separate the spring weights and the fall weights on the chromosome.

6.5.3 Alternative Genetic Algorithm

Finally, we also experiment with our alternative genetic algorithm. We randomly initialize
a population of thirty-six individuals. We let phase 1 run until we have 10 samples for
each 2-schema on average (that is: after a thousand games, which is after twenty-eight
iterations). And then continue with phase 2.

Since for each entry in the vector there are ten different values, but we have thirty-six
individuals we can make sure that during phase 1 every 1-schema is present at least once
in each generation. Therefore we don’t need mutation.

In the second phase however, we have 100 possible 2-schemas for each position on the
chromosome, so every time we create a new generation, we put the 80% best 2-schemas in
the ‘bag of schemas’ plus 20% randomly chosen 2-schemas. The chromosomes are cut every
time into four equal pieces, which means we combine schemas of the form:

(a, b, ·, ·, ·, ·, ·, ·) (·, ·, a, b, ·, ·, ·, ·) (·, ·, ·, ·, a, b, ·, ·) and (·, ·, ·, ·, ·, ·, a, b)

The individuals are encoded in the same way as in the experiment with the standard al-
gorithm. In the case of group play, we let the experiment run for 100 iterations and each
bot plays 40 games per iteration. In the case of individual play, the experiment runs 38
iterations and each bot plays 18 games per iteration.

6.6 Evaluation

The result of each experiment is a bot with optimized weights. After each experiment we
take this bot and let it run an evaluation session to test how much it has progressed. This

27

Dave de Jonge

means that we let it play 120 games against six java bots with default weights, to see how
well it performs. These default weights are the values as they appear in the C++bot and
are given in Section 4.3. Of each recorded game we note the position in which the optimized
bot ended and in the end we calculate the average value of these positions. Too see how
accurate this calculation is we also calculate the standard deviation of the estimator of this
average. That is: the standard deviation of the results, divided by the square root of the
number of recorded games. Furthermore we count how often the optimized bot has won.

6.7 Technical Issues

We will now give a technical overview of how the experiments were set up.

6.7.1 The Setup

The experiments are managed by a program called DumbBotTrainer that starts and stops
the games. In order to have as much computing power as possible, we run games on six
different computers at the same time. These computers are controlled remotely by the
DumbBotTrainer (over TCP/IP), which runs on another computer.

When the DumbBotTrainer starts a new game, it first writes a text file with all the
values that should be assigned to the weights of the DumbBot and then starts a program
called RemoteBotClient, which makes an TCP/IP connection with one of the six remote
machines that each have a program called RemoteBotServer running. The client reads the
text files with the weights, and sends all this information to the RemoteBotServer. The
RemoteBotServer then locally starts a game server (the DAIDE ai-server) and the required
number of C++bots and java bots.

When a game is finished, one of the java bots of that game will write the results of the
game to a text file (the results file). After a certain amount of time has passed (the kill
time see next subsection) the RemoteBotServer will assume the game is over and will read
the file with the results and will send the results back to the RemoteBotClient. Finally the
RemoteBotServer will stop the game server and the bots. If a game did not finish before
the kill time has passed, there is no results file and the information about the game is lost.

6.7.2 Stopping a Game

The RemoteBotServer somehow has to make sure that the game server and the bots are
killed after a game has ended so that it can start a new game. There are two ways how it
could decide to stop a game:

• A game could be stopped after the RemoteBotServer has received a message from the
game server that the game is over.

• Each game could be stopped after a certain amount of time.

The first option would be the best of course, but it has some problems. One of these
problems is that a game sometimes does not show any progress and could continue for ever.
We could overcome this problem by stopping the game after a certain amount of turns have
been played, if it hasn’t yet finished. However, a more serious problem with this option is
that the RemoteBotServer needs to act as an observer (that is: it is connected to the server

28

Optimizing a Diplomacy Bot Using Genetic Algorithms

so that it can receive messages from it) and observers quite often tend to be disconnected
from the server for no clear reason, and sometimes even make the program crash completely.
Therefore we have opted for the second option.

This means that we have to choose a certain amount of time after which a game should
be killed. If we set the amount of time for a game too short, we loose a lot of information,
because the results of each prematurely killed game is lost. If we set it too high however,
we do record more games, but since the games take more time we might still record less
games per minute. By trial and error we determined that 20 seconds is usually the best
time. With this kill time, usually about 45-50 % of all games is recorded, so on average we
can record one game every 40 seconds.

7. Results

In this section we present the results of the experiments. These results were obtained in
the way described in Section 6.6.

7.1 Comparing The Java Bot With The C++ Bot

Before showing the results of our main experiments we first show the results of a session in
which the java bot with the default values (that is: the weights of the java bot have the
same values as the weights of the C++bots) plays against six C++bots. In principle the
java bot should be equivalent to the C++bots so we would expect the java bot to end in
each position equally often. However, we see from the following frequency table that this is
not the case:

position: frequency:
1 1
2 10
3 12
4 15
5 20
6 11
7 7

We have recorded 76 games, of which only one was won by the java bot. The average of
all the final positions of the java bot is 4.37, with a standard deviation of 0.18. So the
average position is lower than the average we would have expected (4.00) and, even more
surprisingly, for some reason it fails to win. Apparently there are some errors in the java
code which make that the java bot is not an exact copy of the C++bot. Therefore, when
we evaluate the results of our experiments we will let the optimized bots play against six
java bots with default weights, although the expiriments themselves have been carried out
by letting the java bots play against the C++bots. To save space, for all other experiments
we will not show the full frequency table, but only the average position of the java bot, its
standard deviation, and the number of wins. Also we will display the optimized weights
that emerged from each experiment.

29

Dave de Jonge

7.2 Results of the Experiments

Here follow the results of all six experiments.

7.2.1 Hill Climbing, Individual Play

Average position: 3.75.
Standard deviation: 0.20.
It won 8 out of 72 recorded games.

The optimized weights that we found with this experiment are:

s-aw = 30, f-aw = 10000
s-dw = 300, f-dw = 1000
s-sw = 10, f-sw = 100
s-cw = 3000, f-cw = 30

7.2.2 Hill Climbing, Group Play

Average position: 3.36.
Standard deviation: 0.20.
It won 21 out of 87 recorded games.

s-aw = 10000, f-aw = 300
s-dw = 100, f-dw = 300
s-sw = 1, f-sw = 300
s-cw = 10000, f-cw = 10000

7.2.3 Standard Genetic Algorithm, Group Play

Average position: 3.39.
Standard deviation: 0.23.
Games won: 19 out of 75 recorded games.

s-aw = 3000, f-aw = 3000
s-dw = 10, f-dw = 1000
s-sw = 10000, f-sw = 10000
s-cw = 100, f-cw = 300

7.2.4 Standard Genetic Algorithm, Individual Play

Average position: 3.07.
Standard deviation: 0.22.
Games won: 25 out of 82 recorded games.

s-aw = 1000, f-aw = 10000
s-dw = 30, f-dw = 1000
s-sw = 100000, f-sw = 300
s-cw = 300, f-cw = 300

30

Optimizing a Diplomacy Bot Using Genetic Algorithms

7.2.5 Alternative Genetic Algorithm, Group Play

Average position: 3.38.
Standard deviation: 0.18.
Games won: 27 out of 108 recorded games.

s-aw = 1000, f-aw = 100
s-dw = 10, f-dw = 30
s-sw = 10000, f-sw = 300
s-cw = 100, f-cw = 30

7.2.6 Alternative Genetic Algorithm, Individual Play

Average position: 3.79.
Standard deviation: 0.27.
Games won: 9 out of 52 recorded games.

s-aw = 300, f-aw = 30
s-dw = 10, f-dw = 1
s-sw = 300, f-sw = 100
s-cw = 1, f-cw = 30000

8. Discussion

The experiment with hill climbing using individual play and the experiment using the alter-
native genetic algorithm with individual play have not led to weights that are clearly better
than the default values. All the other experiments however have lead to an improvement of
the results. On average they end in a position significantly lower than 4th and they clearly
win more than one out of seven games, proving that indeed they play better than the java
bots with default values. Especially the standard genetic algorithm with individual play
has led to good results. We can summarize this with the following diagram:

Hill Climbing Standard GA Alternative GA

Individual play Bad Very Good Bad

Group play Good Good Good

Strangely enough, although we have found four sets of values that perform better than the
default set, these four sets are completely different. So it is not clear at all why these sets
of values perform better than the default set.

We also see that the alternative GA did not function better than hill climbing, although
we argue that much more experiments should be performed in order to draw any real
conclusions about the algorithms. One particular problem is that we had to choose certain
parameters for each experiment and these parameters might have a big influence on the
final result. For instance: we have chosen to let each experiment run for twenty-four hours,
however, because individual play is much slower than group play, this means we have to
shorten the experiments with individual play somehow. This can be done either by letting
it run less iterations, or by playing less games in each iteration, or a combination of both.

31

Dave de Jonge

9. Future Work

One thing that we have learned is that the java version of the DumbBot that we have is
not correct (it is not an exact copy, as it should be). It is almost incapable of winning a
game, and therefore almost useless. So we have to find the errors in the code in order to
make it an exact copy of the original DumbBot. Another possible improvement is that we
could try to optimize all the weights instead of just the eight most important ones.

The DumbBot is totally unable to negotiate. Since the goal of DipGame is to develop
a testbed for negotiation in multi agent systems, a future target would be to extend the
bot with negotiation capabilities. However, first it should be able to at least coordinate its
own moves and have a better sense of strategy. If the bot is unable to have some advanced
strategic reasoning, it would not help much to be able to do any negotiations. This means
it should be able to estimate how valuable different game configurations are, not only for
itself and for its opponents, but also for every possible coalition of players. It should think
multiple steps ahead, and it should consider what its opponents might do.

Furthermore we argue that a better game server should be developed that provides the
possibility of playing more than one game without having to kill it and start it again. Also
it should be more stable than the DAIDE ai-server, especially with regard to observers, and
it should be able to run on systems other than Windows. Another useful feature would be
to allow to setup specific game situations so that it is possible to see what happens under
specific circumstances (this would be especially useful in order to find the inconsistency
between the java bot and the C++bot).

References

Daide. http://www.daide.org.uk/.

Dipgame. http://www.dipgame.org/.

Rules of Diplomacy. Avalon Hill, 4 edition, 2000.

Angela Fabregues and Carles Sierra. A testbed for multiagent systems. Technical report,
IIIA-CSIC, Bellaterra, Barcelona, 10/2009 2009.

Emanuel Falkenauer. Genetic Algorithms and Grouping Problems. Wiley, 1998.

Melanie Mitchell, John H. Holland, and Stephanie Forrest. When will a genetic algorithm
outperform hill climbing? In Advances in Neural Information Processing Systems 6,
pages 51–58. Morgan Kaufmann, 1993.

David Norman. David’s diplomacy ai page. http://www.ellought.demon.co.uk/dipai/.

Lothar M. Schmitt. Theory of genetic algorithms. Theoretical Computer Science, (259):
1–61, 2001.

32

