
Universitat Autònoma de Barcelona
Departament de Ciències de la Computació

Negotiations over Large
Agreement Spaces

Author:
Dave de Jonge

Supervisor:
Dr. Carles Sierra

Tutor:
Dr. Jordi González Sabaté

A Dissertation submitted to fulfill the requirements for the degree
of PhD in Computer Science.

Bellaterra, April 13, 2015

Elaborated at: Institut d’Investigació en Intel·ligència Artificial
Consejo Superior de Investigaciones Cient́ıficas (IIIA-CSIC)

2

The general who wins a battle makes many
calculations in his temple before the battle
is fought.

– Sun Tzu, The Art of War

Abstract

In this thesis we investigate negotiation algorithms for domains with non-linear
utility functions and where the space of possible agreements is so large that
the application of exhaustive search is impossible. Furthermore, we explore
the relationship between the fields of Automated Negotiations, Game Theory,
Electronic Institutions, and Constraint Optimization.

We present three case studies with increasing complexity. Firstly, we intro-
duce an automated negotiator based on Genetic Algorithms, which is applied
to a domain where the set of possible agreements is explicitly given as a vector
space and, although the utility functions are non-linear, the utility value of any
given deal can be calculated quickly by solving a linear equation. Secondly, we
introduce a general purpose negotiation algorithm called NB3, which is based
on Branch & Bound. We apply this to a new negotiation test case in which the
value of any given deal can only be determined by solving an NP-hard problem.
Our third case involves the game of Diplomacy, which is even harder than the
previous test cases, because a given deal usually does not entirely fix the agent’s
possible actions. The utility obtained by an agent thus also depends on the
actions it performs after making the deal. Moreover, its utility also depends on
the actions chosen by the other agents, so one needs to take Game Theoretical
considerations into account. We argue that in this Game Theoretical model
there no longer exists a satisfactory definition of a reservation value, unlike the
models commonly used in classical bargaining theory.

Furthermore, we argue that negotiations require a mechanism, known as an
Electronic Institution, to ensure that agreements are obeyed. One framework
for the development of Electronic Institutions is EIDE and we introduce a new
extension to EIDE that provides a user interface so that humans can interact
within such Electronic Institutions. Moreover, we argue that in the future it
should be possible for humans and agents to negotiate which protocols to follow
in an Electronic Institution. This could be especially useful for the development
of a new kind of social network in which the users can set the rules for their
own private communities. Finally, we argue that the EIDE framework is too
complicated to be used by average people who do not have the technical skills of
a computer scientist. We therefore introduce a new language for the definition
of protocols, which is very similar to natural language so that it can be used and
understood by anyone.

iii

Resum

En aquesta tesi investiguem algorismes de negociació en dominis amb funcions
d’utilitat no linials i en els quals l’espai d’acords possibles és tan gran que l’ús
de cerca exhaustiva és inviable. A més, explorem la relació entre les àrees de
negociació automàtica, teoria de jocs, institucions electròniques i optimització
amb restrictions.

Presentem tres casos d’estudi de complexitat creixent. Primer, proposem un
negociador automàtic basat en algorismes genètics i l’apliquem a un domini on
el conjunt d’acords possibles es dóna en forma expĺıcita com un espai vectorial i
on, encara que les funcions d’utilitat són no linials, el valor d’utilitat de qualsevol
acord es pot calcular ràpidament resolent una equació linial. Segon, presentem
un algorisme de negociació general anomenat NB3, basat en la tècnica de Branch
& Bound. Apliquem aquest algorisme a un nou cas de prova on el valor d’un
acord es pot determinar únicament resolent un problema NP-dur. El tercer cas
d’ús és el joc Diplomacy, que és encara més dif́ıcil que els casos anteriors ja que un
acord no determina completament les accions d’un agent. La utilitat obtinguda
per un agent depèn també de les accions triades pels altres agents, de manera
que es necessita tenir en consideració aspectes de teoria de jocs. Justifiquem que
en aquest model basat en teoria de jocs no existeix una definició satisfactòria
del concepte ‘valor de reserva’, a diferència dels models comunment emprats en
la teoria de regateig clàssica.

A més, justifiquem que les negociacions requereixen d’un mecanisme, conegut
com a Institució Electrònica, per garantir que els acords siguin respectats. Un
entorn per al desenvolupament d’Institucions Electròniques és EIDE i proposem
una extensió d’EIDE que proporciona una interf́ıcie que permet als humans
d’interaccionar en institucions electròniques. També plantegem que en el futur
serà possible per als humans i els agents de negociar quins protocols fer servir
a una institució electrònica. Això podria ser especialment útil en el desenvvolu-
pament de noves xarxes socials on els usuaris puguin determinar les regles de
comportament particulars d’una comunitat privada. Ja que l’entorn EIDE és
massa complicat per ser emprat per usuaris normals, sense les capacitats d’un
enginyer informàtic, introdüım un nou llenguatge per a la definició de protocols
que és similar al llenguatge natural i per tant pot ser usat i entès per qualsevol
persona.

v

Acknowledgments

I would like to thank all my colleagues at the IIIA for five great years working
at the institute. Especially I would like to say thanks Carles Sierra for being
a great supervisor, to Bruno Rosell and Ismel Brito for their hard work on the
implementation of PeerFlow, to Angela Fabregues for her development of the
DipGame framework, to Catholijn Jonker and Reyhan Aydogan for a great stay
in Delft, as well as to all the other organizers of the ANAC 2014 competition, and
to Soledad Valero for letting me stay at her institute in Valencia. Also, I would
like to say special thanks to all colleagues I have been working closely with;
Matthew Yee-King, Mark d’Inverno, Roberto Confalonieri, Katina Hazelden,
Nardine Osman, Lissette Lemus, and Patricia Gutierrez.

Furthermore, I would like to say thanks to the entire world wide Couch
Surfing community, especially to those people that have been so kind to host me
at their homes, for providing me with company during my travels.

Finally, I would like to thank all friends that I have made in Barcelona and
all family and friends that have come to visit me. I would not have been able to
do this without their support.

This work was supported by the Agreement Technologies CONSOLIDER
project, contract CSD2007-0022 and CHIST-ERA project ACE and EU project
318770 PRAISE.

vii

Contents

I Preliminaries 1

1 Introduction 3
1.1 Multi-agent Systems and Game Theory 3
1.2 Automated Negotiations . 5

1.2.1 Basic Concepts . 5
1.2.2 Negotiation Domains . 6
1.2.3 Strategy . 8
1.2.4 Relation to other Fields 8

1.3 Search Algorithms . 9
1.3.1 Constraint Optimization 9
1.3.2 Exhaustive Search . 11
1.3.3 Branch & Bound . 11
1.3.4 Exploiting Independence 12
1.3.5 And/Or Tree Search . 13
1.3.6 Genetic Algorithms . 15
1.3.7 Summary . 18

1.4 Enforcement of Agreements . 18
1.4.1 Regimentation vs. Punishment 19
1.4.2 Electronic Institutions . 20
1.4.3 Electronic Institution Development Environment 20
1.4.4 AMELI . 24

1.5 Contributions . 25
1.6 Outline of this Thesis . 28

2 State of the Art 29
2.1 Automated Negotations . 29

2.1.1 Game Theoretical Approach 29
2.1.2 Heuristic Approach . 29
2.1.3 Non-linear Utility Functions 30
2.1.4 Multilateral Negotiations 31
2.1.5 Search and Negotiation 31

2.2 Electronic Institutions . 32
2.2.1 Frameworks . 32
2.2.2 Deontic Logic . 33

ix

3 Formal Model 35
3.1 Messages and Agents . 35
3.2 Protocols . 37
3.3 Games . 40

3.3.1 Incomplete Information 40
3.3.2 External Influence . 41
3.3.3 Discrete Time . 41

3.4 Negotiation . 42
3.4.1 Reservation value . 46
3.4.2 Negotiations over Games with Multiple Rounds 47
3.4.3 Commitments . 47

3.5 The Unstructured Negotiation Protocol 48
3.5.1 Properties of this Protocol 49
3.5.2 Relation to the Formal Model 50
3.5.3 Motivation for this Protocol 51
3.5.4 Notary Agent . 52

3.6 Electronic Institutions . 52
3.7 Conclusions . 54

4 Negotiation Problems 57
4.1 The ANAC domain . 57

4.1.1 The Agreement Space . 57
4.1.2 Other Parameters of the Competition 58
4.1.3 Limitations of the ANAC Domain 59

4.2 The Negotiating Salesmen Problem 59
4.2.1 Definition . 60
4.2.2 The NSP as a Testbed for Automated Negotiations 63
4.2.3 The NSP as a Package Delivery Problem 64

4.3 Diplomacy . 66
4.3.1 Informal Description of Diplomacy 66
4.3.2 Formal Description of Diplomacy 67

4.4 Conclusions . 68

II Negotiation Algorithms 71

5 Applying Genetic Algorithms to the ANAC Domain 73
5.1 The Competition . 73
5.2 Overview of the Algorithm . 74
5.3 Acceptance Strategy . 75
5.4 Search Strategy . 76
5.5 Offer Strategy . 77
5.6 Motivation for Using Manhattan Distance 79
5.7 Motivation for Using of Genetic Algorithms 80
5.8 Aspiration Level . 81
5.9 Conclusions . 82

x

6 Applying Branch & Bound to the NSP 83
6.1 Problem Statement . 83

6.1.1 Assumptions . 83
6.1.2 Complete Information . 85
6.1.3 Approach . 85

6.2 The NB3 Algorithm . 86
6.2.1 The Search Tree . 87
6.2.2 Making Decisions . 88
6.2.3 Bounding . 89
6.2.4 Searching and Pruning . 90
6.2.5 The Expansion Heuristic 91
6.2.6 Modeling Preferences of Other Agents 93

6.3 Negotiation Strategy . 94
6.3.1 Proposing and Accepting 94
6.3.2 Bilateral Negotiation Strategy 95
6.3.3 Comparison with Single Aspiration Level 97
6.3.4 Characterization of Strategies 98
6.3.5 Multilateral Negotiations 99

6.4 Branesal . 100
6.4.1 Calculating the Bounds 100
6.4.2 Splitting . 101
6.4.3 Handling Proposals . 102
6.4.4 Data Structures . 102
6.4.5 Procedures . 104
6.4.6 Complexity . 107

6.5 Experiments and Results . 111
6.5.1 Experimental Setup . 111
6.5.2 Varying Negotiation Length 112
6.5.3 Varying the Number of Agents 113
6.5.4 Varying the Number of Cities per Agent 114
6.5.5 Comparing with Random Search 114
6.5.6 Comparing with the Optimal Solution 115

6.6 Conclusions . 118

7 Applying Branch & Bound to Diplomacy 121
7.1 Constraint Optimization Games 121
7.2 Dip as a COG . 122
7.3 D-Brane . 123

7.3.1 The Strategic Component 124
7.3.2 Generalizing to Other COGs 125
7.3.3 The Negotiating Component 125

7.4 Experiments . 126
7.4.1 D-Brane Compared with DipBlue 126
7.4.2 D-Brane Compared with Fabregues’ Agent 127
7.4.3 Evalution of Experiments 128

7.5 Conclusions . 128

xi

III User-friendly Electronic Institutions 131

8 Humans Negotiating with Agents 133
8.1 Motivation . 133
8.2 GENUINE . 135

8.2.1 Components . 135
8.2.2 How it Works . 136
8.2.3 Generating the GUI . 137
8.2.4 The Default User Interface 138
8.2.5 Shortcomings of the Default GUI 139
8.2.6 Customizing the GUI . 140

8.3 Conclusions . 141

9 Towards the Negotiation of Protocols 143
9.1 Social Networks as Electronic Institutions 143

9.1.1 Rules and Protocols of Facebook and Couch Surfing . . . 144
9.1.2 Designing EI-based Social Networks 145

9.2 Case Studies: MusicCircle and WeBrowse 146
9.3 Conclusions . 147

10 Simple Protocol Language 149
10.1 Motivation . 149
10.2 Basic Ideas . 151
10.3 Description of the Language . 153

10.3.1 Roles . 153
10.3.2 Conditions and Consequences 154
10.3.3 Properties . 156
10.3.4 Constraints . 158
10.3.5 Summary . 160

10.4 The SIMPLE Interpreter . 161
10.5 Examples . 163

10.5.1 An English Auction Protocol 163
10.5.2 A Dutch Auction Protocol 164

10.6 Conclusions . 164

IV Conclusions & Future Work 167

11 Conclusions 169

12 Future Work 173

xii

List of Figures

1.1 An ordinary search tree. The solution {x1 = 2, x2 = 1, x3 = 2} is
represented by the branch colored red. 15

1.2 An And/Or search tree. The solution {x1 = 2, x2 = 1, x3 = 2} is
represented by the tree colored red. The solution tree splits every
time the children of a node are And-nodes (colored blue). 16

1.3 Login scene example . 21

1.4 Auction house performative structure example 22

1.5 A screen shot of the Islander editor 24

1.6 The layered structure of AMELI. 25

3.1 The Negotiation Game over a game G can be represented as a
scene in which the agents follow a negotiation protocol and a
scene in which the game follow the protocol associated with G . . 54

6.1 The search tree. Node n represents the deal consisting of the
actions ac1, ac4 and ac6. 88

6.2 The graphs of η11 and η12 for several values of γ1 and γ2. 97

6.3 Cost reduction as a function of time. 113

6.4 Cost reduction as a function of the number of agents and of the
number of cities. 113

6.5 Cost reduction of dumb agents (left), smart agents (center), and
all agents (right), as a function of the number of dumb agents. . 115

6.6 Increasing negotiation length, with simple NSP instances. Top
left: 6 interchangeable cities per agent, top right: 9 interchange-
able cities per agent, bottom left: 12 interchangeable cities per
agent, bottom right: 15 interchangeable cities per agent 117

8.1 Left: a ‘classic’ EI with only software agents. Right: an EI with
one software agent and two users. 135

8.2 The http-requests sent from the browser to the GuiAgent 137

8.3 The components necessary to generate the GUI. Solid arrows in-
dicate exchange of information. The dashed arrow indicates that
the GUI is created by the GenuineDefaultGUI library 138

8.4 The default Gui . 139

xiii

9.1 Left: a standard website. Right: an EI-based website. 146

10.1 Two screen shots of the SIMPLE editor. Users write sentences
simply by selecting available options, and they can only write
free text whenever the syntax rules indeed allow that. Therefore,
it is impossible to write malformed sentences. 161

xiv

Part I

Preliminaries

Chapter 1

Introduction

Multi-Agent Systems is the field of research within Artificial Intelligence that
deals with the coordination of systems consisting of more that one agent. An
agent is an individual entity capable of autonomous decision making, that makes
its decisions with the aim of satisfying its own individual goals. Such goals may
be defined in terms of logical sentences which it desires to be satisfied, or in terms
of a utility function that maps every possible world state to a real number, or in
terms of a (partially) ordered preference relation over the set of possible world
states. In this thesis we assume that the goals of the agents are expressed my
means of utility functions.

A multi-agent system (a MAS) is a set of agents such that for every agent
the fulfillment of its goals depends on the actions of other agents in the MAS.
Although each agent in a multi-agent system has its own individual goals, it may
be the case that every agent in the system has the same goals so that one can
expect the agents to cooperate as to bring about their global goal. Therefore,
one can make a distinction between two types of multi-agent systems: those in
which each agent has its own individual goals, and those in which the agents
share a global set of goals. We refer to the first kind as selfish systems, and to
the second kind as social systems.

In this thesis we will investigate how and when agents in a selfish system co-
ordinate their actions. We will show how three subfields of Multi-Agent Systems
are related, namely Automated Negotiations, Electronic Institutions, and Game
Theory.

1.1 Multi-agent Systems and Game Theory

An essential aspect of multi-agent systems is the fact that the outcome of the
actions of one agent may also depend on the actions of other agents. After
all, if this would not be the case, then essentially there would be no multi-
agent system, but rather just a set of completely independent individual agents.
Therefore, when choosing its actions an agent needs to take into account the

3

4 Chapter 1. Introduction

actions that have been performed or will be performed by the other agents
as well. Game Theory is the mathematical theory that describes such decision
problems. Although at first sight Game Theory may seem a theory about playing
games, it applies to a much broader class of situations. In fact, it applies to
all situations in which one’s decisions depend on the decisions of others, with
different goals, and hence particularly to any decision problem in a selfish multi-
agent system.

In Game Theory it is usually assumed that agents (in this context often
referred to as players) have an individual utility function that assigns a utility
value to each possible outcome of the game. Each agent takes its decisions with
the goal of maximizing its own utility. However, if players do not coordinate
their actions they may end up in a situation that is bad for everyone. This is
exemplified in the well-known Prisoners’ Dilemma [Poundstone, 1993].

In the Prisoners Dilemma two prisoners (Alice and Bob) are arrested under
suspicion of having committed a crime. Both have the option to either confess the
crime or to deny. If one of the two confesses the crime and the other denies, then
the one denying is released and the one confessing gets 4 years of imprisonment.
However, if both confess, they each get 2 years of imprisonment, and if they
both deny they will both get a 3 year sentence. Note that whatever Alice does,
Bob is always better off if he denies. The same holds for Alice: whatever Bob
does, Alice is always better off if she denies. Therefore, the result is that both
will deny, and both will end up in prison for 3 years. Paradoxically however, this
is for both a suboptimal outcome because if they had some way to force each
other to confess, they would only go to prison for 2 years.

The key here lies in the word force. The players prefer the outcome (confess,
confess) not because they both like to confess, but rather because they both like
the opponent to confess. Therefore, although, each player prefers to deny, each
one would be happy to give up his or her freedom to deny, if in return he or she
could force the opponent to confess. In the Prisoner’s Dilemma however, this is
not possible because it does not model the option of players exchanging power.
In order to overcome this shortcoming, we can modify the game by allowing
the players to make binding agreements. This means that we need to add the
following two concepts:

1. Negotiation: a mechanism to communicate and come to an agreement
about the mutual restrictions of the respective players.

2. An Electronic Institution: a mechanism that ensures that the agree-
ments are indeed obeyed.

We argue therefore, that these two mechanisms are essential in any real multi-
agent system in order prevent undesired outcomes. In this thesis we look at the
relationship between these two concepts.

Of course, the Prisoner’s Dilemma is an extremely simple example. In a more
realistic example the set of possible agreements the players can make could be
extremely large. Therefore, a third concept needs to be taken into account:

1.2. Automated Negotiations 5

3. Search: an algorithm that analyzes the game in order to find solutions
that are beneficial to the players, but that require coordination.

Throughout this thesis we will assume that that negotiations take place over
domains with many agents, an intractably large space of possible agreements,
complex non-linear utility functions and limited time. Furthermore, the agents
are assumed to be selfish and unknown, so one cannot rely on the existence of
an impartial mediator.

1.2 Automated Negotiations

As explained above, a MAS requires negotiation between the agents in order for
them to achieve desirable outcomes. The research area of Automated Negoti-
ations deals with this problem. Roughly speaking one can say that if a game
G without negotiations has no Nash equilibria that are Pareto optimal, then
modifying the game to allow for negotiations results in a new game G ′ that does
have a Pareto optimal Nash Equilibrium.

In Automated Negotiations it is assumed that there exists some predefined
set of agreements that the agents can make with each other. We call this set the
agreement space. Agents can propose agreements from this space to each other
and can accept or reject proposals made by others. If a proposal is accepted by
each of the agents involved, it means that each of these agents has committed
itself to execute a number of actions defined by the proposal.

Each agent proposes and accepts agreements with the goal of maximizing
its own utility. However, the other agents involved in the deal will only accept
to take part in it if doing so also yields increased utility to them. Therefore, a
good negotiator needs to find a balance: on the one hand the negotiator should
propose deals that yield as much utility as possible to himself, but on the other
hand he should also make sure that the proposal is beneficial enough to the others
to make them accept it. Nevertheless, we stress the fact that a negotiator is not
really interested in optimizing the other agents’ utilities. A selfish negotiator is
only willing to help the other agents increasing their utilities if that indirectly
leads to a higher utility for itself.

1.2.1 Basic Concepts

In the simplest, classical, model of negotiations, there are two negotiators, α1

and α2 that can propose deals from a given agreement space, which is a finite set
denoted Agr . Both agents have a utility function (denoted f1 and f2 respectively)
that maps each element of the agreement space to a real number. Each agent only
knows its own utility function, and keeps it secret to the other. The negotiation
has a given deadline d . If the agents do not come to an agreement before the
deadline, they will both receive an amount of utility which is referred to as the
reservation value. Each agent may have its own reservation value, but often it
is simply defined to be zero for every agent. Obviously, an agent only has the

6 Chapter 1. Introduction

incentive to make an agreement, if that agreement yields a higher utility value
than its reservation value.

Note that the existence of a deadline is important, because otherwise each
agent could indefinitely insist on the deal that yields the most utility for itself
without ever making any concessions. Alternatively, a negotiation scenario may
also define a discount factor δ between 0 and 1 that causes the utility for the
agents to decrease as time passes. In that case each negotiator αi receives
a discounted utility, calculated as δt · fi(x) where t is the time at which the
agreement x was made.

Furthermore, an important aspect of a negotiation scenario is the protocol
that prescribes how the agents can make proposals and when an agreement is
considered binding. The most common protocol is the alternating offers proto-
col, in which agent α1 makes a proposal, and then agent α2 may either accept
the proposal or make a counter proposal. If α2 decides to make a counter pro-
posal then again α1 can either accept that proposal or make a new proposal,
etcetera. The negotiations stop as soon as one of the agents accepts the previ-
ously proposed deal, or when the deadline passes.

1.2.2 Negotiation Domains

Many variations to the above described model have been studied however. We
can distinguish several parameters that define the characteristics of a negotiation
scenario, namely:

• The number of agents negotiating.

• The number of agents that can be involved in a deal.

• The complexity of the utility functions.

• The size of the agreement space.

• The agents’ knowledge about their opponents’ utility functions.

• The agents’ knowledge about their own utility functions.

Negotiations in which only two agents are involved are called bilateral nego-
tiations, while negotiations with more than two agents are called multilateral
negotiations. In case of multilateral negotiations one often still assumes that
the deals themselves are bilateral. This means the negotiations in fact consist
of a number of bilateral negotiations taking place in parallel. However, as we
will see later on in this thesis, one can also allow multilateral negotiations with
multilateral deals: deals in which more than two agents make commitments.

Furthermore the complexity of the utility functions varies among several
studies. In the simplest model each agent simply has a table that maps every
possible agreement to its corresponding utility value. A bit more complicated
is the case when there is a set of variables (often called issues) and the agents
negotiate which value must be assigned to each variable [Baarslag et al., 2010].

1.2. Automated Negotiations 7

Each agent has a utility table for each variable, and the total utility of an
agreement is then given as a linear combination of the utility values for each
variable. More complex models assume non-linear functions that are described
in terms of ‘constraints’ [Marsa-Maestre et al., 2009a, Ito et al., 2008]. Each
constraint assigns a value to a subset of the agreement space. These subsets
may overlap, and the utility of a deal is given by the sum of the values of all
constraints that are satisfied by that deal.

In Chapter 4 we will see a scenario where the utility functions are more
complex because the utility of a deal can only be determined by solving an
NP-hard combinatorial problem. Finally, this can be made even more complex
by introducing Game Theoretical reasoning in order to determine the value of
a deal. That is: players make agreements about which moves to make in a
certain game, but without entirely fixing their possibilities. Determining the
value of such a deal requires determining the values of the game matrix, as well
as determining the Nash-equilibrium of the game restricted by the agreements
made. An example of such a domain is the game of Diplomacy, which we will
also see in Chapter 4. To summarize, we can distinguish the following types of
utility functions in the literature, in order of increasing complexity:

1. Given by a table.

2. Linear combination of values given by tables.

3. Non-linear over agreement space, but linear over constraint space.

4. NP-hard problem.

5. NP-hard problem, plus Game Theoretical considerations.

Classical negotiation scenarios have often involved only small agreement spaces,
so it was assumed that the utility value for every deal in the agreement space
was directly given. However, in this thesis we are only interested in agreement
spaces that are so large that calculating every utility value is infeasible (e.g.
10100 possible deals). This means that any negotiation strategy needs to be
combined with some intelligent search algorithm.

Another parameter that can be adjusted is the amount of knowledge that
agents have about their opponents’ utility functions. In some models the utility
functions of all negotiators are assumed to be generally known [Nash, 1950], while
in other studies agents may only know the preference order of their opponents
between the several possible deals, but not their utility values. In yet other
studies the agents know absolutely nothing about their opponents’ utilities or
preferences [Baarslag et al., 2010]. We think the most realistic model assumes
agents have some knowledge about the opponents’ utility functions, but not full
knowledge. For example, when a client negotiates with a car salesman about the
price of a car, the client probably does not know the minimum price that the
salesman is willing to ask, but the client normally does assume a certain window
of possible prices that he or she considers realistic. More importantly, the client

8 Chapter 1. Introduction

does know that the goal of the salesman is to sell the car for the highest price
as possible, and with as much extras as possible.

Furthermore, in some cases a negotiator may not even have an expression
of its own utility function (e.g. in the ANAC’14 competition, see Section 4.1).
Instead, it can apply a sort of ‘oracle’ that returns the utility of a deal when
requested by the agent. In the real world one can imagine such a system if a
software agent negotiates on behalf of its human owner. For any given deal the
agent may ask its owner how much the owner valuates that deal, and the agent
can then use this information to build a model of its owner’s preferences which
it then uses to estimate the owner’s valuation of other deals.

Other parameters that may vary among studies are the types of deadlines
and discount factors, and the knowledge of the agents about them. For example,
agents can have individual deadlines, or all agents can have the same deadline,
or there may not be a deadline at all. Furthermore, they may or may not know
the opponent’s deadlines and discount factors.

1.2.3 Strategy

Many negotiation strategies have been studied, but most of them are based on
the same basic time-based concession strategy. The agent starts proposing the
most selfish offer: the one that gives the highest utility to itself, and then, in con-
secutive rounds make proposals that give more and more utility to the opponent.
The main question then is how fast one should concede. A quickly conceding
agent is more likely to make an offer that is satisfactory to the opponent before
the deadline, and is therefore less likely to fail. However, conceding too quickly
may cause the agent to give up more utility then necessary and therefore end up
with a less profitable outcome than it would have achieved if it had conceded less
quickly. Many variations to this basic strategy can be made depending on the
details of the domain. If the opponent’s utility function is unknown for example
one can try to estimate the opponent’s utility of a certain deal by comparing
it with proposals previously made by the opponent and applying some similar-
ity measure as proposed in [Faratin et al., 2000]. Also, one can use statistical
methods to predict the concession speed of the opponent and use this to find
the optimal counter strategy [Williams et al., 2011].

1.2.4 Relation to other Fields

Maximizing a utility function for a set of independent agents is also the goal
of Distributed Constraint Optimization Problems (DCOP), but these problems
are fundamentally different from negotiation problems, because DCOPs apply
to social multi-agent systems. They assume there is only one global function
to be optimized and the agents cooperate with the joint goal of finding the
solution that maximizes this global utility function [Modi et al., 2005]. Therefore,
DCOP algorithms cannot be applied to cases where agents have individual utility
functions.

1.3. Search Algorithms 9

A field closely related to automated negotiations is the field of Cooperative
Game Theory [Osborne and Rubinstein, 1994]. In Cooperative Game Theory
one assumes that utility is assigned to coalitions of agents and that agents within
such a coalition can freely divide the utility between one another. Such a division
of utility is called an allocation and the set of allocations that keeps the coalition
stable is called the core. The notion of an allocation in cooperative game theory
can be compared to the notion of a deal in automated negotiations, and the
notion of a coalition can be compared to a set of agents that together agree on a
certain deal. The difference however is that cooperative game theory is mainly
concerned with the question of whether the core and other solution concepts
exist, while Automated Negotiations focuses more on how agents decide to agree
on a certain allocation.

We should note however that the term ‘cooperative’ in Cooperative Game
Theory can be a bit misleading, because the agents are still assumed to be purely
selfish. The word ‘cooperative’ means that the agents have the possibility to
cooperate, that is, they are able to communicate and form coalitions, but just
like in the field of Automated Negotiations, they only do so to satisfy their own
selfish goals.

1.3 Search Algorithms

Recently, more attention has been given to negotiations where the size of the
agreement space is very large. This means that negotiation algorithms must be
combined with an intelligent search algorithm to explore the agreement space
efficiently and determine which possible proposals are good enough to propose.
The research topic of search algorithms is a vast one, so it would be impossible
to give a comprehensive overview. Instead, in this section we will only give a
short description of those search algorithms that we will encounter in the rest of
this thesis, namely: Branch & Bound, And/Or Search, and Genetic Algorithms.

It is important to note however, that these search algorithms were originally
developed for Constraint Optimization Problems, that is: they were developed
for domains with a single utility value to maximize. This means that they cannot
be applied to negotiations directly, because in negotiations one needs to take the
utility of the opponent into account as well as your own utility. The rest of
this thesis is therefore largely dedicated to the question of how to combine these
search algorithms with negotiation.

1.3.1 Constraint Optimization

Let X = {x1, x2, . . . xm} be a finite set of logical symbols called variables. For
each variable xi there is a set Xi that we call the domain of xi . A logical
expression of the form xi = vi,j , where vi,j is an element of Xi , is called a
variable assignment. To simplify notation we will here assume that all domains
are always equal and consist of the integers 1 to k : Xi = {1, 2, . . . k}. In general,

10 Chapter 1. Introduction

however, domains may consist of different values, and may have a different size
for every variable.

Definition 1 A solution is a set of variable assignments, consisting of exactly
one variable assignment for each variable.

For example: {x1 = 2, x2 = 4, . . . , xm = 1}. Solutions can be denoted more
compactly in vector notation: x = (x1, x2, . . . , xm) = (2, 4, . . . , 1). Therefore, we
can identify the space of all possible solutions with the Cartesian product of the
domains: X = X1 ×X2 × . . .Xm .

Definition 2 A partial solution is a set of variable assignments consisting of
zero or one variable assignments for each variable.

For example: {x2 = 4, x4 = 3}. Partial solutions can be identified with subsets
of X . For example, the partial solution {x2 = 4, x4 = 3} corresponds to the
subset {(x1, x2, . . . , xm) ∈ X | x2 = 4 ∧ x4 = 3}.

Definition 3 A constraint c is a pair (sc , vc) where sc ⊂ X and vc ∈ R ∪
{−∞}. We say c is a soft constraint if vc ∈ R and c is a hard constraint
if vc = −∞.

Definition 4 The characteristic function f c of a constraint c is defined as:

f c(x) =

{
vc if x ∈ sc

0 if x 6∈ sc

(1.1)

If vc > 0 then we say that x satisfies c iff x is an element of sc . If vc ≤ 0 then
we say that x satisfies c iff x is not an element of sc .

Definition 5 An optimization function is a function f from X to R∪{−∞}.

If the set of variables is finite, and for every variable its domain is a finite set,
then any such optimization functions can be expressed in terms of a finite set of
constraints C as follows:

f (x) =
∑
c∈C

f c(x) (1.2)

However, it is very important to note that in real-world optimization problems
the optimization function may be expressed in an entirely different form, and
although it is theoretically possible to cast it into the form of Equations 1.1 and
1.2, this may often turn out to be a practically infeasible task, especially if the
solution space is very large.

A constraint optimization problem is a tuple (X , f). An optimal solution x∗

of a constraint optimization problem is a solution such that for every x ∈ X we
have f (x∗) ≥ f (x). The research area of Constraint Optimization is concerned
with inventing search algorithms that can find optimal, or near optimal solutions
of constraint optimization problems. For a comprehensive overview of the topic
of Constraint Satisfaction and Constraint Optimization, we refer to [Rossi et al.,
2006].

1.3. Search Algorithms 11

1.3.2 Exhaustive Search

The most naive Constraint Optimization algorithm is to simply calculate the
value f (x) of each possible solution in the solution space X and return the solu-
tion for which f (x) is highest. This is known as an exhaustive search. However,
this is often infeasible since the size of the space X is exponential in the number
of variables. If there are m variables and each variable has a domain of size k ,
then the size of X is km . Unless m and k are very small, calculating f (x) for
every solution x in X takes too much time.

1.3.3 Branch & Bound

A more efficient approach to a constraint optimization problem is to apply a
Branch & Bound algorithm (B&B). A Branch & Bound algorithm iteratively
explores partial solutions of X by generating a tree structure in which every node
represents a partial solution. Specifically, the root node represents the empty
set, and every child of the root node represents the assignment of a different
value to x1. More generally, every node nd with depth d represents a partial
solution that assigns values to the variables x1, x2, . . . , xd . If the domain Xd+1

has size k , then, the algorithm adds k child nodes to nd , each representing a
different extension of the partial solution represented by the node nd .

Every time a new node is added, the algorithm calculates two values for that
node: the upper bound ub(Y) and the lower bound lb(Y) (here, Y denotes the
subspace of X corresponding to the partial solution represented by the newly
added node). These bounds can be defined in various ways, but they should
always satisfy the following two inequalities:

ub(Y) ≥ max{f (x) | x ∈ Y }

lb(Y) ≤ min{f (x) | x ∈ Y }

The trick is now that if we have two nodes nd1,nd2 representing two subsets
Y1,Y2 such that ub(Y1) < lb(Y2) then we are sure that the optimal solution
will not be in the subset Y1. Therefore, when exploring the search tree we can
prune node nd1, meaning that no more children will be added to it. This can
highly reduce the search space since none of the solutions inside Y1 will ever
need to be evaluated.

One interesting aspect of B&B is that it is an anytime algorithm: if the
algorithm is stopped before the optimal solution has been found, it may still
return solutions that are near optimal. The longer the algorithm runs, the better
solutions it finds. Moreover, the algorithm provides bounds on the value of the
optimal solution. Therefore one knows how far from optimal a given solution
can maximally be.

In case we have an expression of f in the form of Equations 1.1 and 1.2 and
all constraints have non-negative values, then such bounds can be defined in a
straightforward manner:

ub(Y) =
∑

c∈CY
vc where CY = {c ∈ C | sc ∩Y 6= ∅}

12 Chapter 1. Introduction

lb(Y) =
∑

c∈C ′Y
vc where C ′Y = {c ∈ C | sc ⊂ Y }.

Unfortunately, there is not always an efficient way to accurately calculate these
bounds, so B&B is not always applicable. Moreover, the efficiency of this ap-
proach depends highly on many details, such as:

• The order of the variables.

• The way in which the utility function and the constraints are expressed.

• The accuracy of the lower- and upper- bounds.

For more details about B&B algorithms we refer to [Lawler and Wood, 1966,
Papadimitriou, 1994].

1.3.4 Exploiting Independence

We will now look at a technique that can be applied in combination with almost
any search algorithm to increase its efficiency. It is based on the principle of
‘divide and conquer’: split a problem into several smaller subproblems and solve
each of them independently.

Let us first look at a simple example. We assume there are four variables:
{x1, x2, x3, x4} and an optimization function f . Now, if it happens that this
function f can be written as the sum of two functions f1, f2 as follows:

f (x1, x2, x3, x4) = f1(x1, x2) + f2(x3, x4) (1.3)

then, instead of applying a search algorithm (such as B&B or exhaustive search)
to the entire search space X , we can split the problem into two separate problems.
The first problem is to maximize the function f1, and the second problem is to
maximize the function f2. It is easy to see that if (x∗1 , x

∗
2) maximizes f1 and

(x∗3 , x
∗
4) maximizes f2, then the optimal solution for f must be (x∗1 , x

∗
2 , x

∗
3 , x

∗
4),

so indeed we have solved the entire problem by solving the two subproblems.
Since each of these subproblems only involves 2 variables, finding the optimal

solution using exhaustive search requires evaluating k2 solutions, so to solve both
subproblems one only needs to explore 2k2 solutions, which is much less then the
k4 possible solutions one would need to explore when applying exhaustive search
to the entire problem at once. Similarly, one can expect Branch & Bound or any
other search algorithm to be much faster when applied to the two subproblems
separately.

The key insight here, is that the optimal values for x1 and x2 can be de-
termined without knowing the values of x3 and x4, and vice versa. In order to
investigate how the various variables depend on one another one can draw a
dependency graph. That is: a graph in which each node represents a variable
and in which an arc between two nodes represent that their variables depend
upon each other. Each connected component of that graph then represents a
subproblem that can be solved independently of the others. Let us define this
more precisely.

1.3. Search Algorithms 13

Definition 6 A function g is called monotonic iff:

∀ i : xi ≤ x ′i ⇒ g(x1, . . . xi , . . . xm) ≤ g(x1, . . . x
′
i , . . . xm)

Definition 7 If a function f can be expressed as:

f (x1, . . . xm) = g(f1(xi1 ..., xik
), f2(xj1 , ..., xjl

), ..., fn(...)) (1.4)

where g is a monotonic function, then we say two variables xi and xj directly
depend on each other if there is a function fj in this expression that depends on
both variables.

Note that addition is an example of a monotonic function, so the example of
Equation 1.3 is indeed of this form. We see that x1 and x2 in this example
directly depend on each other, and that x3 and x4 directly depend on each
other.

Definition 8 A Dependency Graph for a function f is an undirected graph
in which each node corresponds to a variable of f , and two nodes are adjacent
iff their corresponding variables directly depend on each other.

Definition 9 Given a dependency graph of a function f , two of its variables xi

and xj indirectly depend on each other iff there exists a path between xi and
xj in the dependency graph.

Definition 10 Given a dependency graph of a function f , two of its variables
xi and xj are independent iff there does not exist any path between xi and xj

in the dependency graph.

Note that if there exist one or more pairs of independent variables, it means
that the dependency graph has multiple connected components. Whenever a
dependency graph has multiple connected components each connected compo-
nent represents a subproblem and the entire problem can be solved by solving
each subproblem separately. Of course, it is not always practically possible to
find an explicit expression in the form of Equation 1.4. However, one may still
be able to reason that certain variables must be independent, even without such
an explicit expression.

1.3.5 And/Or Tree Search

As we have seen above, if we know that some variables of the optimization
function are independent then we can exploit this by dividing the problem into
smaller subproblems. We will now show however, that we can take this a step
further and apply a similar procedure even if two variables are indirectly depen-
dent, as long as they are not directly dependent.

Again, we begin with an example. Assume we have the following optimization
function:

f (x1, x2, x3) = f1(x1, x2) + f (x1, x3) (1.5)

14 Chapter 1. Introduction

Note that all variables depend indirectly on each other, but that x2 and x3 do
not depend directly on each other. Now, let us also assume that we already know
the optimal value of x1. We can then find the value for x2 that maximizes f1 by
exhaustively exploring all values of X2, and we can separately find the optimal
value for x3 that maximizes f2 by exhaustively exploring X3. This means that
if we know x∗1 we only need to explore |X2| + |X3| = 2k values to find the
optimal solution. Of course, the optimal value of x1 will usually not be given.
However, this is not a problem because we can simply repeat the procedure for
each possible value of x1, which would require a total of |X1| · (|X2|+ |X3|) = 2k2

evaluations, which is still less then the k3 solutions we would have to explore
when using exhaustive search. The key insight here, is that although x2 and x3
are not independent, they become independent once we fix a value for x1.

Definition 11 If Y1,Y2,Y3 are three disjoint sets of variables, then we say Y2
and Y3 are independent given Y1 iff every path from any variable in Y2 to
any variable in Y3 passes at least one variable in Y1.

This definition means that once all variables in Y1 have been assigned a value,
the problem splits into two subproblems, involving Y2 and Y3 respectively. As
a special case, note that if xi and xj do not directly depend on each other, this
means that {xi} and {xj} are independent given X \ {xi , xj}.

An And/Or tree search [Dechter and Mateescu, 2007] is a tree search algo-
rithm that exploits the graph structure as illustrated by this example. If we
compare And/Or search with ordinary tree search, then ordinary tree search
may also be called Or-search, and all nodes in an ordinary search tree may be
called Or-nodes, because for each node its corresponding partial solution can be
extended by picking exactly one of its child nodes.1 In And/Or search, on the
other hand, there are two types of nodes: And-nodes and Or-nodes. Just like
in an ordinary search the Or-nodes represent partial solutions, while And-nodes
represent subproblems. If two clusters Y2,Y3 are independent given Y1, then
the tree first explores the variables in Y1, according to an ordinary tree search,
but for each node that represents a full assignment of Y1, its children will then
be And-nodes, one for each of the clusters Y2,Y3. Underneath each And-node
representing a cluster Yi , the search will continue, but in that subtree the nodes
will only involve the variables in Yi . Hence, a subtree under the And-node rep-
resenting Yi can be seen as the search tree that solves the subproblem consisting
of the variables of Yi . This subtree in turn may also be an And/Or-tree, if the
cluster Yi itself can be partitioned into clusters Z1,Z2,Z3 such that Z2 and Z3

are independent given Y1 ∪ Z1.
Furthermore, while in an ordinary search tree a solution is represented by a

linear branch from the root to a single leaf node, a solution in an And/Or tree
is given by a tree itself, that branches at every node for which its children are
And-nodes. Therefore, if the children of a node nd are And-nodes, the partial
solution represented by nd is extended by adding all children to the solution
(hence the name ‘And-node’). However, just as in an Or-tree, a full solution still

1One could argue that ‘XOR-search’ would actually be a better name

1.3. Search Algorithms 15

root

X1=1

X2=2

X1=2 X1=3

X2=1 X2=3

X3=2X3=1 X3=3

Figure 1.1: An ordinary search tree. The solution {x1 = 2, x2 = 1, x3 = 2} is
represented by the branch colored red.

contains exactly one Or-node for each variable. Figures 1.1 and 1.2 respectively
show an Or-tree and an And/Or tree for the example of Equation 1.5.

Again, we should stress that this technique only works if it is possible to
determine a dependency graph, but one may be able to do so if one can reason
that some variables are independent even without having an explicit expression
of the optimization function in the form of Equation 1.4. Furthermore, it is worth
noting that And/Or search automatically exploits total independence between
variables. After all, if two variables are independent, we can also say that they
are independent given the empty set. Therefore, And/Or search should be seen as
a refinement of the technique described in Section 1.3.4. Finally, it is important
to note that And/Or search can be combined with B&B so one can profit from
the advantages of both techniques.

1.3.6 Genetic Algorithms

An entirely different type of optimization algorithm is a so-called Genetic Al-
gorithm (GA). This is a search technique inspired on the principle of natural
selection. It does not explore the solution space in a systematic way, as tree
search algorithms do, but instead takes random samples. The idea is then that
bad samples are discarded, while good samples are combined with each other,
yielding even better solutions. Many variants of Genetic Algorithms exist, but
they are all based on the same principles. A standard implementation works as
follows:

1. Initial Population: Randomly pick a number of solutions (say 100) from

16 Chapter 1. Introduction

root

X1=1 X1=2 X1=3

X2=1 X3=2X3=1 X3=3

X3X2

X2=2 X2=1

Figure 1.2: An And/Or search tree. The solution {x1 = 2, x2 = 1, x3 = 2}
is represented by the tree colored red. The solution tree splits every time the
children of a node are And-nodes (colored blue).

the solution space. This is the initial population.

2. Selection: Pick the solutions with the highest value f (x) out of this the
population (e.g. the 10 solutions with highest value). These are called the
survivors. All others are discarded.

3. Mutation For some of these survivors, randomly change some of their
assignments. (e.g. the vector (v1, v2, v3) is replaced by (v1, v

′
2, v3))

4. Cross-over For each pair of vectors x , y from the survivors create two
new vectors x ′ and y ′ according to a principle called cross-over (explained
below).

5. New population The survivors and the newly created vectors are put
together, this set is then the new population.

Steps 2-5 are repeated until some stopping condition is met.
Cross-over is a procedure that takes two solutions x , y as input and creates

two new solutions x ′, y ′ by interchanging variable-assignments. A common way
to implement this, is as follows:

x ′i = xi if i ≤ j , x ′i = yi otherwise

y ′i = yi if i ≤ j , y ′i = xi otherwise

for some randomly chosen value of j . In this case the solutions x and y are ‘cut’
into two halves at the j -th position, then interchanged, and ‘glued’ together

1.3. Search Algorithms 17

again. In Chapter 5 we use another type of cross-over however, that randomly
chooses for each position whether the values should be interchanged or not.

x ′i = xi and y ′i = yi with 50% probability,

or:

x ′i = yi and y ′i = xi with 50% probability.

Either way, the idea behind this is the assumption that if x satisfies one con-
straint and y satisfies another constraint, then cross-over may combine these
solutions and yield a new solution that satisfies both constraints.

Let us take a look at another numerical example. Given two constraints
and two randomly picked solutions we compare the probability that one of the
two solutions will satisfy both constraints, with the probability that one of the
solutions will satisfy one constraint and the other solution will satisfy the other
constraint, and that cross-over will combine them.

We assume that there are two constraints c1 and c2. The subspace of c1 is
defined by x1 = 1, while the subspace of c2 is defined by x2 = 1. If we pick a
random solution x , then the probability p1 that it will satisfy c1 is k−1. The
same holds for the probability p2 that x satisfies c2. Therefore, if we pick s
random solutions then the probability that at least one of them will satisfy both
constraints is approximately2:

1− (1− p1p2)n ≈ sp1p2 = sk−2

The probability that one or more of the s samples satisfy c1 and that one or
more samples satisfy c2 is approximately3:

(1− (1− p1)n) · (1− (1− p2)s) ≈ sp1 · sp2 = s2k−2

Which means that the probability that both of the constraints are satisfied by
some sample, but none of the samples satisfies both, is:

s2k−2 − sk−2

Now we note that if a sample x satisfies c1 but not c2, and a sample y satisfies c2
but not c1, then the probability that after cross-over either x ′ or y ′ will satisfy
both constraints is 0.5. (we can simply define x ′ to satisfy c1, so we only need to
know the probability that x ′1 will also inherit c2, which is indeed 0.5). Therefore,
if we assume that whenever both constraints are satisfied by some sample in the
population both constraints will also be satisfied by some sample in the set
of survivors, then we can compare the probabilities of finding a solution that
satisfies both constraints with and without cross-over:

P ≈

{
sk−2 without cross-over

sk−2 + 0.5 · (s2k−2 − sk−2) = 1
2 (s2 + s)k−2 with cross-over

2if s << k2

3if s << k

18 Chapter 1. Introduction

We see that the cross-over increases the probability of finding a good solution
by a factor of 1

2 (1 + s), with respect to random sampling without cross-over.
An important aspect of GAs is that, unlike And/Or-search or B&B, their

application does not require any knowledge about the constraints of the specific
problem instance. The only requirement is that you have some representation of
the solution space as a vector space, and that you have some function to calculate
the value f (x) of any solution x . This can be seen both as an advantage and as a
disadvantage. It is an advantage because it means that one can apply GAs even
in the absence of instance-specific information. However, it also means that if
one does have more specific information, a GA will not be able to exploit that
information.

However, we should note that we have looked only at constraints that in-
volve a single variable. The probability of successful cross-over becomes smaller
as the number of involved variables becomes larger. To be precise: if we have
two constraints, one involving d1 variables, and one involving d2 variables, then
the probability that either x ′ or y ′ will satisfy both constraints is: 0.5d1+d2−1.
Therefore this technique will be less successful if the constraints involve many
variables. Finally, this technique only works if the several constraints can in-
deed be combined (i.e. the subspaces corresponding to these constraints have
non-empty intersection). For more details on Genetic Algorithms we refer to
[Schmitt, 2001, Falkenauer, 1998].

1.3.7 Summary

We have described several algorithms and techniques to determine the solution x
in a space X that maximizes a function f . If X is very large an exhaustive search
is infeasible, as it would take too much time. If one has a way of determining
an upper- bound and a lower- bound for the function f for any partial solution
then one can make use of Branch & Bound. If one can determine that certain
variables are independent, one can exploit this fact, by dividing the problem
into several subproblems and solve each subproblem independently by using any
search algorithm. Even more, if one can determine that certain variables do not
directly depend on each other, then this can be exploited by applying And/Or-
search. And/Or search and B&B can be combined to profit from the advantages
of both techniques. Finally, in case one does not have any specific knowledge
about the problem instance, one can apply a Genetic Algorithm, which is efficient
in case the combination of good partial solutions may yield even better solutions
and the constraints involve only a few variables.

1.4 Enforcement of Agreements

When the agents in a MAS make agreements about the respective actions they
will perform, they require a mechanism that ensures that these agreements are
indeed obeyed. After all, if an agreement is not enforced, it has no formal
meaning. In the prisoner’s dilemma for example, even if Alice and Bob agree to

1.4. Enforcement of Agreements 19

both play ‘confess’, if Alice is not forced to obey this agreement she would still
be better off playing ‘deny’, no matter what Bob does, and likewise for Bob.
Therefore, agreements do not have any effect, unless the agents can be forced to
obey them.

1.4.1 Regimentation vs. Punishment

The literature distinguishes between two kinds of rule enforcement: regimenta-
tion and punishment. Regimentation means that the agents are placed in an
environment in which it is impossible to break the rules. An example of regi-
mentation in real life would be the rule that you cannot make a bank transfer
if you have no money in your bank account. This rule is usually impossible to
break, for example because the website of the bank is implemented such that
the ‘submit’ button on the page is disabled if you do not have enough money in
your account.

In the case of rule enforcement by punishment, on the other hand, agents
still have the ability to break the rules, but they are being punished if they do
so. This is in fact how most rules in our every day lives are enforced. One can
for example jump a red traffic light, but if you do so (and you get caught) you
need to pay a fine. Rules that can be broken, but that come with a punishment
are also called norms.

When we look at this from the perspective of Game Theory, we note that
punishment is not possible in a one-shot game, because in a one-shot game, by
definition, it is assumed that the players will not interact anymore after the
game is over. The Prisoner’s Dilemma is an example of a one-shot game. It is
implicitly assumed that the actions taken by the players have no consequences to
the players after the game. This is of course an unrealistic situation: in real life, if
Alice confesses but Bob denies, Alice may later take revenge on Bob. Therefore,
a more realistic way of describing real world situations in terms of Game Theory,
is by means of games with multiple rounds (possibly even infinite).

An example of punishment in Game Theory arises for example in the iterated
Prisoner’s Dilemma. This is a game with multiple rounds, in which in each round
the players play an instance of the Prisoner’s Dilemma. A well-known strategy
for this game is the tit-for-tat strategy. Playing this strategy means that a player
plays ‘confess’ in the first round and repeat this every round, except when the
opponent has played ‘deny’ in the previous round. Note that this strategy can
indeed be interpreted as a form of punishment: the player that first plays ‘deny’
is being punished by the other player in the next round, by also playing ‘deny’.

The main disadvantage of punishment however, is that it is very hard to
implement in an electronic system. First of all, one needs to detect the fact that
one has infringed the agreements. Second, one may need to establish for each
possible infringement what its corresponding punishment is. This can be a hard
task because one needs to be sure that the punishment is severe enough in order
to have effect. Moreover, one may need to impose meta-rules; for example, one
needs to determine what happens if the punisher fails to impose the punishment,
or when it punishes incorrectly.

20 Chapter 1. Introduction

On the other hand, in human societies regimentation is difficult to implement
because it is virtually impossible to literally prevent people from misbehaving.
One can normally only do so by punishment. But in electronic societies, where
the actions of agents have a purely electronic nature, it is much easier to regiment
the behavior of the agents, including agents that are actually human, but operate
through a graphic user interface. For this reason, the rest of this thesis will purely
focus on norm enforcement by regimentation.

1.4.2 Electronic Institutions

A framework that implements the enforcement of rules is called an Electronic
Institution (EI). Just like in a human institution, an EI allows participants to
come together and interact, but imposes a pre-defined protocol on their interac-
tions. It ensures that certain rules are enforced upon its participants and thus
prevents them from misbehaving.

A commonly cited example is that of a fish market, with buyers and sellers
that come together with the goal of buying and selling fish. Buyers and sellers
make bids according to some auction protocol in order to determine who sells
which lot of fish to whom and for which price. It is essential for all participants in
such a market place that trade takes place fairly, meaning that every participant
has access to the same information, and that everybody is treated on an equal
basis. In order to maintain such a fair trading ground and prevent disputes over
the rightful winner of an auction, one needs to set rules, and one needs to enforce
those rules. Therefore, sellers and buyers have agreed on precise protocols under
which the fish auctions need to take place, that guarantee fairness and that leaves
no doubt about the winner of the auction. Such rules may state for example
that participants are required to register before entering the market or, upon
winning an auction, to make their payments directly.

Beyond this fish market example, many other institutions have similar sets
of regulations that can be identified. One can think for example of hotels,
universities, and governmental agencies. Electronic Institutions are related to
negotiations in two ways: firstly they can be used to implement the negotiation
protocol, and secondly they can be used to enforce that the agreements the
agents made during the negotiations are indeed obeyed.

Electronic Institutions have been subject of extensive research and a large
number of such frameworks have been implemented. Examples of such frame-
works are ANTE [Cardoso et al., 2013], MANET [Tampitsikas et al., 2012],
S-MOISE+ [Hübner et al., 2006], and EIDE [Esteva et al., 2008]. A compara-
tive study of some of those systems has been made in [Fornara et al., 2013]. In
the rest of this thesis we will focus on the EIDE framework.

1.4.3 Electronic Institution Development Environment

The Electronic Institution Development Environment (EIDE) has been under
development for more than 15 years [Arcos et al., 2005, d’Inverno et al., 2012,
Noriega, 1997, Esteva, 2003] which has resulted in a large framework consisting of

1.4. Enforcement of Agreements 21

Figure 1.3: Login scene example

tools for implementing, testing, running and visualizing Electronic Institutions.
It assumes that any action performed by any agent is represented as a message
being sent by that agent to one or more other agents. It is entirely based on
regimentation: any message that does not satisfy the protocol is intercepted
and will not arrive at its intended recipients. Such intercepted messages will
not influence the state of the institution and can therefore be seen as ‘not sent’.
EIDE assumes a closed-world interpretation: everything is forbidden, unless
the protocol explicitly says that something is allowed. In this section we will
introduce the basic concepts behind EIDE.

Scenes Just as there are meetings in human institutions in which different
people interact, Electronic Institutions have similar structures, known as
scenes, in which the agents interact. Scenes are essentially group meet-
ings, with well-defined communication protocols that specify the possible
dialogs that agents are allowed to have. For example, an electronic fish
market may include an auction scene in which buyers make bids to pur-
chase fish, following a certain auction protocol, such as an English auction
protocol, a Dutch auction protocol or a Vickery auction protocol. There
may be many simultaneous instances of such auctions within a fish market,
each referred to as a scene instance.

Performative Structure Scenes within an institution are connected in a net-
work that determines how agents can legally move from one scene to an-
other (see Figure 1.4). This network is called the performative structure.
In a fish market for example, the performative structure may dictate that
a buyer must first pass a registration scene before it can enter the auction
scene.

Messages In the EIDE framework all possible actions that can be performed
by agents are represented as non-divisible utterances that occur at discrete
instants of time. These utterances are modeled as messages that conform

22 Chapter 1. Introduction

Figure 1.4: Auction house performative structure example

to a certain pattern, and physical actions are represented by appropriate
messages of this form. In a fish auction, for example, a buyer commits
to buy a box of fish at a certain price by making a bid, while the actual
physical action of transferring money from the buyer to the auction house
is triggered when the auctioneer declares that the box is sold.

For each message that can be sent, a number of parameters may be spec-
ified by the protocol. When making a bid in an auction for example, the
maker of the bid should include the price he bids in the message. The
Electronic Institutions framework supports several basic parameter types,
such as ‘Integer’, ‘String’ and ‘Boolean’. Apart from these basic types the
designer of an institution can define custom types, which are composed of
one or more parameters of a basic type.

Scene Protocols The interactions between the agents in a scene in an Elec-
tronic Institution have to follow a certain scene protocol. The protocol
defines which agent can say what and when within the scene. At each mo-
ment during the execution of a protocol, the protocol is in a certain state,
depending on the messages that have been said so far. The current state
of the protocol determines what kinds of messages each agent can send.

In an auction for example, the protocol may start in a state in which the
auctioneer introduces the next item under auction. Participants are not
allowed to make any bid yet in this state. Once the auctioneer announces
the start of the auction, the state changes to a bidding state, in which the
participants are allowed to make their bids.

A protocol is therefore represented as a directed graph in which the nodes
are the states of the protocol. Each edge of the graph is labeled with one
or more message patterns (see for example Figure 1.3). A message can
only be sent if it satisfies one of the patterns labeling one of the outgoing
arcs from the current state.

1.4. Enforcement of Agreements 23

Roles Scene protocols are not specified in terms of agents, but rather in terms of
roles. Every agent plays a specific role that determines which actions it can
perform at which moments. When entering an Electronic Institution an
agent is required to adopt a role, but can change this role in the transitions
between the scenes. A major advantage of the use of roles is that it allows
the designer of a protocol to set rules for groups of agents without knowing
their identities.

Constraints As explained above, the state of the protocol restricts the set of
possible actions that can be performed by the agents. Moreover, this set
of possible actions can be restricted even further by including constraints
in the protocol. Constraints are given as sentences in a first-order logic
attached to a message pattern. A message can only be sent if its corre-
sponding constraints are satisfied.

Ontology Any message pattern may contain parameters, which are determined
at run time by the sender of the message. These parameters can be of a
basic type or of a user-defined type. Each Electronic Institution has an
Ontology associated to it that stores the definitions of these user-defined
types. It also stores for each message pattern how many parameters it has
and which type each of those parameters has.

Transitions When moving from one scene to another an agent always passes a
so-called transition. When the agent is at a transition it can choose which
role it will play in the scene it is going to, and it can wait for other agents
so that they can move to the next scene simultaneously.

The Electronic Institutions Development Environment is implemented in Java
and consists of a set of tools to design and run Electronic Institutions. We
will now introduce the two main existing components of the EIDE framework:
ISLANDER and AMELI. Later on in this thesis we will introduce two new
components (GENUINE, Section 8, and SIMPLE, Section 10) that we have
added to the EIDE framework.

ISLANDER ISLANDER [Esteva et al., 2002] is a graphical tool that enables
users to design an Electronic Institution (see Figure 1.5). It allows the user
to visually define the scenes, roles, protocols, message patterns, constraints,
ontology and other components of the institution. It then converts the
visual representation into xml format (the EI-specification) that can be
parsed and executed by AMELI.

AMELI AMELI is the core software component that executes Electronic In-
stitutions [Esteva et al., 2004]. Once an Electronic Institution is specified
with ISLANDER, the specification file is used as the input for AMELI. A
new instance of the Electronic Institution is launched by starting AMELI
with that file. When it is running, agents can join the institution by re-
questing entrance to the institution. AMELI then makes sure that the

24 Chapter 1. Introduction

Figure 1.5: A screen shot of the Islander editor

messages exchanged between those agents obey the protocols defined in
the specification file.

1.4.4 AMELI

As explained, AMELI is the core software component of EIDE. It enables agents
to communicate according to protocols defined in an EI-specification file created
with ISLANDER. In essence, AMELI is a communication channel through which
all messages between the agents must pass. It can therefore verify for each
message whether it satisfies the protocol or not and prevent it from arriving at
its recipients if it does not satisfy the protocol. Moreover, it keeps an internal
world state then can be regarded as a sort of ground truth for the agents.

Figure 1.6 displays the different components of AMELI. It consists of three
layers: the communication layer, which enables the agents to exchange mes-
sages, a layer consisting of the agents that are participating in the institution,
and in between there is the social layer, which controls the behavior of these
participating agents. The social layer consists of the following agents:

Governors Each agent participating in an Electronic Institution has a special
agent from the social layer assigned to it, called its governor. The gover-
nor of an agent α has control over each message that is being sent by α.
Whenever α tries to send a message, this message first passes α’s governor,
which checks whether the protocol is in the correct state and whether the

1.5. Contributions 25

Figure 1.6: The layered structure of AMELI.

corresponding constraints are satisfied. If so, the governor forwards the
message to its recipients. If not (for example, because the agent made
a bid that is higher than what he can afford), the governor blocks the
message.

Scene Managers There is a scene manager for each scene instance that is
active in the institution. This agent controls and stores the state of the
scene instance. Whenever an agent requests to enter or leave the scene
instance, the scene manager determines whether this is possible or not.

Transition Managers There is one transition manager for each transition in
the performative structure. This agents controls and synchronizes the
movements of the agents between two scenes in the performative structure.

EInstitution Manager Each instance of an Electronic Institution has one EIn-
stitutionManager. This agent stores and updates the global state of the
institution and allows or forbids agents to enter the institution.

1.5 Contributions

In this thesis we make several contributions both to the field of Automated
Negotiations and to the field of Electronic Institutions. We will here give an
overview.

We introduce a new family of negotiation algorithms, called NB3 (Negotiation-
Based Branch & Bound), that applies a heuristic Branch & Bound search to
explore the agreement space and determine which of the possible proposals are

26 Chapter 1. Introduction

good enough to propose or accept. Our main motivation for this is that many ex-
isting papers make strong assumptions about the environment that we consider
unrealistic in real-world negotiations. That is, we take the following assumptions
into account:

• Utility functions are highly non-linear and calculating them or inverting
them is computationally expensive.

• Solutions may involve a large number of agents, possibly including humans.

• The space of solutions is very large, i.e. there is no possibility to exhaus-
tively explore the set of solutions.

• Other agents in the system are unknown.

• Decisions have to be made within a limited time frame.

• There is no impartial mediator that one can rely on.

Although many of these assumptions have been made before in existing work,
to the best of our knowledge no algorithms exists that take all of these into
account. We model the fact that agents have approximate knowledge about their
opponents’ utilities by assuming that the expressions of the utility functions
of the agents are publicly known, but evaluating these expressions to obtain
utility values is costly in terms of time. Therefore, our agent can only make
approximations of the opponents’ utility values, and can only do so for a limited
set of possible deals.

Furthermore, we introduce another negotiation algorithm, called GANG-
STER that applies genetic algorithms. This algorithm has participated in the
Annual Negotiating Agents Competition 2014 (ANAC’14) and won the second
price. Both algorithms apply a new negotiation strategy that not only deter-
mines what proposal to make next, but also takes time into account to determine
whether the agent should really make a new proposal or rather continue searching
for better proposals. This distinguishes our strategy from existing negotiation
strategies. This is achieved by calculating two aspiration functions, rather than
one as is common in many existing negotiation algorithms.

We present a new protocol for multilateral negotiations. While most of the
previous studies on automated negotiation assume strict negotiation protocols
such as the Alternating Offers Protocol [Rosenschein and Zlotkin, 1994] to struc-
ture the actions of the agents, we assume an unstructured protocol that imposes
almost no restrictions; the agents are allowed to propose any deal whenever they
want, and are never required to reply to any proposal. This high degree of free-
dom introduces another dimension of complexity to the scenario, but makes it
closer to real-world negotiations and can therefore be applied, for example, in
negotiations with humans.

Furthermore, in order to test the NB3 algorithm, we have defined a new
negotiation domain, which is a variant of the Traveling Salesman Problem in
which there are several salesmen that have to negotiate in order to minimize

1.5. Contributions 27

their individual path lengths. The complexity of the Traveling Salesman Problem
makes it a non-trivial task to calculate the utility of a given proposal, or to find a
proposal with a given utility value, so traditional negotiation algorithms cannot
be applied. We have implemented and tested an instance of NB3 for this domain,
called BraneSal.

We have implemented an agent, called D-Brane, that can play the game
of Diplomacy. It applies And/Or search with Branch & Bound in order to
determine its moves to make, and applies the NB3 algorithm to negotiate with
its coalition partners. Experiments show that it plays much better than existing
agents.

We have implemented a tool called GENUINE that automatically generates
a user interface that allows users to enter an Electronic Institution and interact
with agents or other human participants following the protocols of the institu-
tion. This user interface is generated based on information provided at run time
by the institution so that one does not need to program a new interface for every
new institution. On the other hand, if a more customized interface is required,
it provides an API so that one can simply design a new interface on top of the
engine of GENUINE, making the information about the state of the institution
directly available to the designer.

And finally, we introduce a very simple new programming language, called
SIMPLE, which is very close to natural language and that allows users to define
protocols for Electronic Institutions. Although many languages already exist
for the specification of protocols or rules, most of those are very difficult to use
for the average person. They are designed for computer scientists and require
knowledge of mathematics, logic or programming. Our language on the other
hand, is designed for the ordinary user: it is very close to natural language,
and therefore anyone should be able to directly understand a protocol written
in SIMPLE or even write a new protocol.

In short, we have made the following contributions to the field of Multi-Agent
Systems:

• A negotiation protocol: the Unstructured Negotiation Protocol.

• A new testbed for negotiations: the Negotiation Salesmen Problem.

• A negotiation algorithm based on Genetic Algorithms: GANGSTER.

• A negotiation algorithm based on Branch & Bound: NB3

• An implementation of NB3 for the Negotiating Salesmen Problem: BraneSal.

• A negotiating agent that plays the game of Diplomacy: D-Brane.

• A tool for the creation of user interfaces for Electronic Institutions: GENUINE.

• A language to define protocols for Electronic Institutions: SIMPLE.

28 Chapter 1. Introduction

1.6 Outline of this Thesis

This thesis is divided into four parts: In Part I we provide all the preliminary
information necessary to understand the rest of the thesis. In Part II we de-
scribe the negotiation algorithms that we have developed, in order of increasing
complexity of their respective domains. In Part III we show how Electronic
Institutions can be made more user-friendly so that they can be used as the
infrastructure that enables humans to negotiate with agents. Finally, In Part IV
we summarize our conclusions and discuss future work.

More precisely, Part I consists of chapters 1 - 4. In chapter 2 we give an
overview of the existing work that has been done on negotiations and Electronic
Institutions. In chapter 3 we introduce the notation used throughout the thesis
and we introduce a novel model that unifies the topics of Game Theory, Elec-
tronic Institutions and Negotiations. In Chapter 4 we describe the three domains
that we investigate in this thesis: the ANAC domain, the NSP, and Diplomacy.

Part II then consists of Chapters 5 - 7. In Chapter 5 we introduce GANG-
STER, our agent that participated in the ANAC’14 competition. In Chapter 6
we describe the NB3 algorithm and BraneSal, the implementation of NB3 for
the NSP. In Chapter 7 we then introduce D-Brane: our implementation of NB3

for Diplomacy.
Part III consists of Chapter 8, in which we introduce GENUINE, Chapter

9, in which we discuss how EI and negotiations can be useful for the develop-
ment of more flexible social network, and Chapter 10 in which we introduce
SIMPLE. Finally, Part IV consists of the Conclusions (Section 11) and Future
Work (Section 12).

Chapter 2

State of the Art

In this chapter we will give an overview of existing work in the fields of Auto-
mated Negotiations, search algorithms and Electronic Institutions.

2.1 Automated Negotations

2.1.1 Game Theoretical Approach

The earliest known work on negotiations is a paper by Nash [Nash, 1950] in
which it is shown that under the assumption of certain axioms the outcome of a
bilateral negotiation is the solution that maximizes the product of the players’
utilities. These axioms however, are purely theoretical and often do not hold in
practice. Mainly his assumption of symmetry between the players is normally
not met. Negotiators do not have the same knowledge: they often do not know
each others’ utility functions, for example.

Therefore, many more papers have been published to deal with negotia-
tions under more realistic assumptions. They can be divided into two main
branches:the Game Theoretical Approach and the Heuristic Approach. The game
theoretical approach focuses on the game theoretical properties of negotiation,
such as the existence of equilibrium strategies, in settings where the axioms of
Nash have been adapted or generalized. In [Zhang, 2005] for example, a logical
extension to Nash’s bargaining theory was made in which the agents’ beliefs and
desires are encoded as logical propositions. Multilateral versions of Nash’s bar-
gaining problem have been studied for example in [Krishna and Serrano, 1996]
and [An et al., 2009], while a non-linear generalization has been made in [Fa-
tima et al., 2009]. A general overview of such game theoretical studies is made
in [Serrano, 2008].

2.1.2 Heuristic Approach

The Heuristic Approach on the other hand focuses on implementing algorithms
that can negotiate under circumstances where no equilibrium results are known,

29

30 Chapter 2. State of the Art

or where the equilibria cannot be determined in a reasonable amount of time.
The disadvantage of this approach is that it is unlikely to ever have any hard
guarantees about the success of the approach, but it has the advantage that it is
much closer to any real-world application. The results obtained in game theoreti-
cal papers can be interesting, but are rarely applicable to real-world negotiations.
In this thesis we therefore focus exclusively on the heuristic approach.

One of the seminal papers on heuristic negotiation is [Faratin et al., 1998],
in which the authors define a time-based concession strategy. Their strategy is
based on so called aspiration levels. The aspiration level of an agent is a value
that that decreases over time during the negotiations. Whenever the agent is
required to make an offer it tries to propose an offer for which its utility is exactly
equal to its aspiration level. Therefore, the specific function used by the agent
determines its strategy. The slower it decreases, the tougher it negotiates.

Most studies that have been done in this category involve scenarios with only
two agents, a small agreement space and linear additive utility functions that
are explicitly given or can be calculated without much computational cost. For
example in the first four editions of the annually held Automated Negotiating
Agent Competition (ANAC 2010-2013) [Baarslag et al., 2010]. Also, most of
these studies assume an alternating offers protocol, which is good for automated
agents, but not desirable for negotiations with humans, because with humans
there is no guarantee that they will indeed follow the protocol.

2.1.3 Non-linear Utility Functions

Negotiations with non-linear utility functions have been studied for example in
[Lai et al., 2008]. The negotiations are however bilateral, the agreement space is
continuous and it is assumed the agreements at least have a known, closed-form,
expression. Also in [Klein et al., 2003] the utility functions are strictly spoken
non-linear over the issues, but they are still linearly additive over pairs of issues.

Other research on large agreement spaces with non-linear utility has been
done in [Marsa-Maestre et al., 2009a, Ito et al., 2008, Marsa-Maestre et al.,
2009b]. They introduce constraint based utility functions, which are also used in
the Automated Negotiating Agents Competition of 2014. These utility functions
are defined as the sum over the values of the constraints that are satisfied (see
Section 4.1). This means that given a solution x the utility function fi(x) of
some agent can still be calculated quickly. Although in theory any non-linear
function over a finite space can indeed be modeled in this way, in practice it is
often not feasible to convert a given representation of a utility function into this
form. Therefore, we still consider this model too simplistic for real negotiations.
Moreover, the algorithms described in [Ito et al., 2008] and [Marsa-Maestre et al.,
2009b] depend largely on a mediator.

Work that comes relatively close to ours is [Robu et al., 2005], in which
non-linear utilities are handled using preference-graphs. They focus however on
how to simplify the utility by exploiting knowledge about independence between
issues. They assume that utility can indeed be simplified in such a way that the

2.1. Automated Negotations 31

search space is shrunk to a reasonable size and can be explored exhaustively.
Moreover, they only consider bilateral negotiations.

2.1.4 Multilateral Negotiations

Most research on multilateral negotiations that we are aware of (apart from
the game theoretical papers mentioned above) focuses on developing protocols
(e.g. [Endriss, 2006] and [Hemaissia et al., 2007]) or on non-selfish negotiations
[Koenig et al., 2006]. We do not know of many papers in which multilateral
negotiation algorithms for selfish agents are developed, like in this thesis.

One case in which such an algorithm was proposed, is [Nguyen and Jennings,
2004]. In their study however, a strict separation is made between buyers and
sellers, so a buyer can only come to an agreement with a seller. Our approach
is more general, since we do not make this distinction. Indeed, in many real
life negotiations one often does not make this distinction either. A retailer, for
example, sells its products to consumers, but buys them from a wholesaler, so
acts both as buyer and seller. Also, in the stock market people act both as
sellers and as buyers. Moreover, Nguyen and Jennings consider the presence of
only one buyer, therefore excluding competition between possible buyers, and
although multiple sellers are present, they still assume that each agreement is
strictly bilateral. Once again utility is linear additive and the alternating offers
protocol is assumed.

Also [An et al., 2006] describes multilateral negotiations in which one buyer
negotiates with n sellers, but each negotiation thread between the buyer and a
seller follows the alternating offers protocol, and they negotiate only about the
price of a single item.

2.1.5 Search and Negotiation

The goal of our work is to develop search algorithms that can be applied to
negotiations, that is: to find the right deals to propose from a large space of
possible proposals. In Chapter 1.3 we already described a number of existing
search algorithms. However, applying these algorithms to negotiation is not a
straightforward matter, because a negotiator is not simply interested in finding
the solution that maximizes its own utility function, but rather aims to find
solutions that strike the right balance between its own utility and its opponents’
utility. Moreover, this balance usually changes over time: the closer one gets
to the deadline of the negotiations, the more one should be willing to concede.
In other words: as time passes the negotiator should give more importance to
the utility of the opponent(s), and less importance to its own utility. The main
topic of this thesis is how we can apply or modify existing search algorithms to
deal with Automated Negotiations.

The combination of search and negotiation has been studied before, for ex-
ample in [Faratin et al., 2000]. There, the agent has a fixed aspiration level
for its utility and searches for the deal that satisfies this aspiration level and is
closest (with respect to some similarity measure) to the deal previously proposed

32 Chapter 2. State of the Art

by the opponent. This assumes however that there are only two agents involved
in the negotiation. Also, their algorithm does not try to model the opponent’s
preferences and therefore only considers deals that are close to deals previously
proposed by the opponent. Moreover, in order to find the next best deals to
propose, it assumes that the utility function is linearly additive.

Klein et al. also propose a negotiation scenario with search in [Klein et al.,
2003], but time constraints are not taken into account. Another difference be-
tween their approach and ours is that their algorithm applies a mediator that
must be trusted and that limits the control that the agents have over the search,
since they can only accept or reject proposals made by the mediator, while this
mediator does all the searching. In our work we are assuming circumstances
where other agents cannot be trusted, so the use of a mediator is not an option.
In the same article they also propose a variant of their algorithm without a medi-
ator, involving a mutually observable ‘die’ to steer the search, instead. But this
still means that the agents should trust the fact that the die is fair. Moreover,
the agents need to follow a strict protocol, so this algorithm is only suitable for
negotiation between agents that were designed for this particular protocol.

2.2 Electronic Institutions

2.2.1 Frameworks

Electronic Institutions have been subject of research for a long time and a num-
ber of frameworks have been implemented that often consist of tools for imple-
menting, testing, running and visualizing protocols. Examples of such frame-
works are ANTE [Cardoso et al., 2013], MANET [Tampitsikas et al., 2012], S-
MOISE+ [Hübner et al., 2006], and EIDE [Esteva et al., 2008]. A comparative
study of some of those systems has been made in [Fornara et al., 2013].

ANTE [Cardoso et al., 2013] has been implemented as a JADE-based plat-
form, including a set of agents that provide contracting services. It integrates
automatic negotiation, trust & reputation and normative environments. Users
and agents can specify their needs and indicate the contract types to be cre-
ated. Norms governing specific contract types are predefined in the normative
environment. Although ANTE has been targeting the domain of electronic con-
tracting, it was conceived as a more general framework having a wider range of
applications in mind.

The MANET [Tampitsikas et al., 2012] meta-model is based on the assump-
tion that the agent environment is composed of two fundamental building blocks:
the physical environment, concerned with agent interaction with physical re-
sources and with the MAS infrastructure, and the social environment, concerned
with the social interactions of the agents. In the MANET meta-model it is as-
sumed that the normative system can be composed of three structural compo-
nents: agents, objects and spaces.

2.2. Electronic Institutions 33

2.2.2 Deontic Logic

A logical system to define norms and rules is called a deontic logic. The best
known system of deontic logic is called Standard Deontic Logic (SDL) [von
Wright, 1951]. Important refinements of this logic are Dyadic Deontic Logic
(DDL) [Lewis, 1974] and Defeasible Deontic Logic [Nute, 1997]. Furthermore,
an extension of this taking temporal considerations into account was proposed
in [Governatori et al., 2005].

In [Makinson and Van Der Torre, 2000] A system to formalize norms using
input/output logic was proposed, while in [van der Hoek et al., 2007] the authors
provide a model for the formalization of social law by means of Alternating-time
Temporal Logic (ATL). In [Kröger, 1987] the author proposes the use of Linear
Time Logic (LTL) to express norms. Other important approaches are based
on Propositional Dynamic Logic (PDL) [Meyer, 1987], on See-to-it-that logic
(STIT) [Belnap and Perloff, 1990] and on Computational Tree Logic (CTL)
[Broersen et al., 2004]. Models for the verification of expectations in normative
systems are proposed in [Cranefield and Winikoff, 2011] and [Alberti et al., 2006],
and in [Sergot and Craven, 2006] the authors introduce the nC+ language for
representing normative systems as state transition systems.

The above mentioned systems however mainly focus on the theoretical prop-
erties of norms. Work that is more focused on the actual implementation of
norms is for example [Lopez y Lopez et al., 2004] which proposes a model to de-
fine norms in the Z language, while in [Artikis et al., 2005] the authors propose
the use of Event Calculus for the specification of protocols. A programming
language designed to program organizations, called 2OPL, was introduced in
[Dastani et al.,]. Other important examples of languages and frameworks for
the implementation of norms are described in: [Vázquez-Salceda et al., 2004],
[Argente et al., 2008], [Uszok et al., 2008], [Garćıa-Camino, 2008], [Kollingbaum,
2005], and [Cranefield, 2005]

Although some of the languages mentioned here are more user-friendly than
others, they still all seem to require the user to be a computer scientist or at
least to have some knowledge of programming, logic or mathematics. To the
best of our knowledge no work has been published on the specification of rules
or protocols that aims for truly unexperienced users and tries to stay as close as
possible to natural language.

Chapter 3

Formal Model

A multi-agent system is a set of agents that exchange digital information by
sending messages to one another. For example, they could be connected over the
Internet and sending messages following the TCP/IP protocol. When we refer
to ‘agents’ we may refer to either humans or software agents. However, even
if we are talking about humans, we still assume that information is exchanged
digitally. For example, a human agent may communicate through a graphical
user interface such as a web site. In this chapter we will formally define the
concepts that we will use throughout the rest of the thesis.

3.1 Messages and Agents

Let A = {a1, a2, ...} be a set of constants that we call the Agent Identifiers.
In practice, agent identifiers could be network addresses for example, or user
names, or signatures generated with asymmetric encryption.

Definition 12 A message is a tuple (ai , J , c, t) where ai ∈ A is called the
sender, J ⊆ A is a nonempty set called the set of receivers, c ∈ N is a natural
number called the content, and t ∈ N is the timestamp

The content represents the actual information that is being sent from the sender
to the receivers. Since any form of digital information is in fact always a binary
number of finite length, this can indeed by represented as a natural number. In
principle, the content of a message can be any stream of bytes, but depending
of the domain of application it may be restricted to some domain language. The
timestamp represents the time at which the message is sent (see Section 3.3.3
for more details).

The set of all possible messages is denoted M .

M = A× (2A \ {∅})× N× N

we use the notation Mt to denote the set of all possible messages at time t :

Mt = A× (2A \ {∅})× N× {t}

35

36 Chapter 3. Formal Model

and we use the notation Mi,t to denote the set of all possible messages that can
be sent by an agent with identifier ai at time t :

Mi,t = {ai} × (2A \ {∅})× N× {t}

To simplify some of the definitions below we model the event that an agent is
not sending any message at all as a specific kind of message, denoted as nonei,t .

nonei,t = (ai ,A, 0, t) ∈ Mi,t

So if an agent with identifier ai does not send any message at time t , this is
considered equivalent to the agent with identifier ai sending the message nonei,t

to all other agents. We will sometimes simply write ‘none’ instead of nonei,t .

Definition 13 A message history ht at time t is a set of messages, such that
for each message (ai , J , c, t

′) ∈ ht the inequality t ′ < t holds and such that for
all ai ∈ A and all t ′ ∈ N the following holds: |Mi,t′ ∩ ht | = 1.

The second condition in this definition represents the fact that no agent can
send more than one message at the same time (strictly speaking it says that
every agent must send exactly one message at each instance of time, however,
this message can be the ‘none’ message, so in practice it means that each agent
may send 0 or 1 messages).

In order to model the fact that an agent can only have knowledge about
those messages that were either sent by that agent or received by that agent, we
define the concept of an individual message history.

Definition 14 Given a message history ht the individual message history
hi

t of an agent with identifier ai is the subset of ht for which either ai is the
sender or ai is one of the receivers.

hi
t = {(aj , J , c, t

′) ∈ ht | ai = aj ∨ ai ∈ J}

Let H i denote the set of all possible individual message histories of an agent
with identifier ai . We will now define the concept of an ‘agent’ as a deterministic
algorithm that determines for each possible individual message history a new
message to send in the next instance of time.

Definition 15 An agent αi with identifier ai is a function that maps any in-
dividual message history hi

t to a message:

αi : H i → M such that αi(hi
t) ∈ Mi,t

Of course one may argue that agents are not always deterministic, especially
when the agent is human. In order to incorporate indeterminism we could alter-
natively define an agent as a probability distribution over a set of ‘agent types’
and define an agent type as a deterministic algorithm. However we think that
this is not really relevant for the rest of this thesis, because the agents that we

3.2. Protocols 37

have implemented never have full knowledge about the other agents in the sys-
tem anyway. Given the fact that one agent’s knowledge about another agent is
incomplete, it does not really matter whether that other agent is deterministic
or not. Therefore, in this thesis we will stick with the definition of an agent as a
deterministic algorithm. In the rest of this thesis the notation αi always refers
to an agent with identifier ai .

Definition 15 only says that an agent generates some message for each pos-
sible message history. Now we would like to interpret this generated message
as the message that the agent will send in the next instance of time. For this
reason we define the ‘realized message history’:

Definition 16 Given a time stamp t ∈ N and a finite set of agents Ag =
{α1, α2, . . . αn} the realized message history HAg,t is a message history de-
fined as follows:

HAg,t =

{
∅ if t = 0

HAg,t = HAg,t−1
⋃

(
⋃n

i=1 αi(Hi
Ag,t−1)) otherwise

Here, Hi
Ag,t−1 is the ‘individual’ subset of HAg,t−1 as defined by Definition 14.

The interpretation of this recursive definition is at t = 0 the realized message
history is the empty set, and at each following instance of time t the messages
sent by the agents in Ag at time t are added to it.

3.2 Protocols

We will now define the concept of a protocol. Essentially, a protocol defines what
the agents are allowed to do and what they are not allowed to do, depending on
their previous actions.

Let E denote any set (finite or countably infinite), which we call the set of
world states. Then a state evolution map is defined as follows:

Definition 17 Let An = {a1.a2, . . . an} be a finite set of agent identifiers of
size n. Then a state evolution map F , given An , is a function that maps any
world state and any set of n messages containing one message for each sender
ai ∈ An and for which the time stamps are the same, to a new world state:

F : E ×
∏n

i=1 Mi,t → E

The interpretation of this is that, given a world state εt at time t and a set of
messages that are being sent at time t , the state evolution map determines the
new world state that results from the agents sending those messages.

Definition 18 Given a set of agent identifiers An of size n, a state evolution
map F , an initial world state ε0 and a message history ht then the message
history’s corresponding state εht is defined as:

εht =

{
ε0 if t = 0

F(εht−1
,m1,t−1,m2,t−1, . . .mn,t−1)) otherwise

38 Chapter 3. Formal Model

where each mi,t−1 denotes the unique message in ht ∩Mi,t−1.

This means that if the initial world state is ε0 and the messages sent by the
agents are given by ht then at time t the world will be in a state εht

.

Definition 19 Given a state evolution map F , an initial world state ε0 and a
set of agents Ag of size n, the realized world state εt,Ag at time t > 0 is
defined as:

εt,Ag = F(εt−1, α1(Hi
Ag,t−1), α2(Hi

Ag,t−1), . . . , αn(Hi
Ag,t−1))

Note that the realized world state is exactly the world state corresponding to
the realized message history.

We have seen that, given a state evolution map, world states are entirely
determined by the history of all messages that have been sent. Therefore, world
states are in fact a redundant concept; every concept defined in terms of world
states could have been defined equivalently in terms of message histories. How-
ever, we will see it is often more convenient to use world states for many defini-
tions. In a sense we can consider world states as equivalence classes of histories,
which contain the relevant information.

One advantage of the introduction of world states is that it allows us to
make a distinction between informative messages and active messages. Active
messages are those messages that change the world state when uttered, while
informative messages never change the world state.

To formalize this, we use the notation m−i,t to denote a sequence of messages
at time t , one for each agent except agent αi :

m−i,t ∈
∏n

j=1,j 6=i Mj ,t

Furthermore, we use the notation (mi,t ,m−i,t) to denote a sequence of messages
at time t , one for each agent, where agent αi sends the message mi,t and all
other messages are the messages in m−i,t .

Definition 20 Let mi,t be a message sent by agent αi . If for any world state ε
and for any sequence of messages m−i,t the following holds:

F(ε, (mi,t ,m−i,t)) = F(ε, (nonei,t ,m−i,t))

then mi,t is an informative message. Otherwise, mi,t is an active message.

It is important to note that, although informative messages do not directly
change the world, they do change the message history, and therefore, accord-
ing to Definition 15 may influence the future messages of other agents, which in
turn may change the world.

Although the distinction between informative messages and active messages
may not have important consequences to the formalization of our model, we
think that this distinction is very important conceptually. It reflects the way we
think and act in the real world, because in the real world we also distinguish

3.2. Protocols 39

between actions that physically change the world, or actions that are simply a
form of communication.

An example of an informative message could be an e-mail sent from one
colleague at work to another, discussing the time of a meeting. Such a message
does not change anything about the world, but serves to exchange of information
between agents about the world, allowing them to coordinate their future actions.
An example of an active message on the other hand, could be a bank transfer.
Of course, one may still argue that a bank transfer does not really physically
change the world, as it only changes some numbers in a database. Therefore, one
should keep in mind that this distinction is open to interpretation and depends
on the way the world states of thew MAS are defined. However, in our formal
model we assume that there is a well-defined mapping that maps any message
history to a world state. As as long as we have such a mapping, we can make
this distinction. In the rest of the thesis we may sometimes refer to a active
messages as actions, and we may talk about “performing an action” when we
mean to say “sending an active message”.

Some active messages may only have effect in certain world states. Therefore,
we say an action is infeasible in some world state if it does not have any effect
on that world state.

Definition 21 A message mi,t is called an infeasible action in a given world
state ε if it is an active message, and for any sequence of messages m−i,t we
have:

F(ε, (mi,t ,m−i,t)) = F(ε, (nonei,t ,m−i,t)).

The message is called a feasible action otherwise.

Note that in the equation in Definition 21 the world state is fixed, while in the
definition of an informative message the equation must hold for all world states.

Definition 22 A permission map G is a function that assigns a set of allowed
messages Oi,t ⊆ Mi,t to each world state ε, agent identifier ai and time stamp
t:

G : E ×A× N→ 2M such that G(ε, ai , t) ⊆ Mi,t .

Definition 23 A protocol Pr (for n agents) is a tuple (An , E , ε0,F ,G) consist-
ing of a set of agent identifiers An of size n, a set of world states E, an initial
world state ε0 ∈ E, a state evolution map F and a permission map G.

Definition 24 We say a protocol is regimented if and only if for every world
state ε ∈ E, every action that is not allowed in ε, is also not feasible in ε.

In other words: a regimented protocol is a protocol for which the messages that
are not allowed simply will not have any influence on the world state. In this
thesis we will always assume all protocols are regimented.

Definition 25 We say a protocol has deadline d iff for all t ≥ d we have
G(ε, ai , t) = ∅ for all ε ∈ E, and all ai ∈ An .

A protocol may or may not have a deadline.

40 Chapter 3. Formal Model

3.3 Games

We will now define the concept of a game. We would like to stress however that
the term ‘game’ should be interpreted in a very broad sense, because it does not
only represent those systems that one would call a game in daily life, but rather
any kind of multi-agent system.

Definition 26 A game G (for n players) is a tuple (PrG , f̄ G , d̄) where, PrG

is a regimented protocol for n agents, f̄ G = (f G
1 , f G

2 , . . . f G
n) a finite sequence of

utility functions, and d̄ = (d1, d2, . . . dn) a finite sequence of deadlines.

In this definition each utility function f G
i can be any function from E to R, where

E is the set of world states of the protocol. Each agent is assumed to have its own
individual deadline di ∈ N. These individual deadlines are independent of the
deadline of the protocol. Let εdi ,Ag denote the realized world state at time di , for
some set of agents Ag . Then in this thesis we always assume that every agent αi

in Ag is implemented with the goal of maximizing the value f G
i (εdi ,Ag). That is:

each agent aims to bring about a world state that maximizes its individual utility
at its individual deadline. Note that the introduction of individual deadlines
allow us to properly define the goals of the agents even if the protocol of the
game does not have a deadline.

Definition 27 A game over d rounds is a game for which di = d for all
ai ∈ A. A one-shot game is a game over 1 round.

In the context of Game Theory agents are also called players, the set of allowed
actions Oi,t for agent αi is called the set of moves of agent αi . Furthermore we
define Ot =

∏n
i=1 Oi,t . If the time t is irrelevant or clear from the context, we

will omit the subscript t and denote these as Oi and O respectively.

Definition 28 A joint move at time t is an element of the set Ot .

Instead of saying “αi sends a message oi” we may also say “αi makes the move
oi”.

Note that in Game Theory it is common to define the utility functions f G
i

directly over the set of joint moves, rather than over world states. Of course
this is because the state has been abstracted away. In many real games, such
as chess or tic-tac-toe there clearly exists a notion of a state (namely the board
configuration). The moves of the players determine how the state changes, and
the state in turn determines the utility value. Therefore, in case of a one-shot
game we may sometimes also use the notation f G

i (o) for some joint move o, in
place of the notation f G

i (εo) where εo is the realized world state when joint move
o is played.

3.3.1 Incomplete Information

According to the definitions above the realized world state may depend on the
entire message history, while agents only know about those messages they have

3.3. Games 41

either sent or received. Therefore, in general agents may not exactly know the
state of the world. In practice however, this does not need to be a problem,
because the utility function of an agent may have the same value over all world
states that could possibly be the true world state. In that case the agent simply
does not care about the actual world state, because it is only interested in its
own utility value.

3.3.2 External Influence

The definitions above are made on the assumption that the state of the world
evolves purely based on the messages exchanged between the agents in the MAS
and that the agents base their decisions what to do purely on the history of the
messages sent inside the MAS.1 In other words, they have no contact whatsoever
with the ‘outside world’. Nothing outside the MAS can influence the evolution
of the MAS or the decisions of the agents.

One may argue that this is not a realistic model, because agents may have
other inputs rather then just the messages they receive. If an agent is a human
acting through a GUI, he or she is clearly also influenced by events other than
the events observed in the GUI. Also, if an agent is a software agent, it may be
connected to a camera or microphone to obtain external information.

However, this is not really a problem, because if one really needs to incorpo-
rate dynamic information about the external world into the model one could do
this by introducing an extra agent in the model that represents the outside world.
Whenever some event in the outside world happens it would send a message to
the other agents to inform them it.

3.3.3 Discrete Time

In the above definitions we have modeled time as being discrete. In some domains
it may make more sense to consider time as continuous, and represent instants
of time as real numbers rather than natural numbers. Nevertheless, we prefer
to represent time by natural numbers, for several reasons. Firstly, In computer
science time is often measured as a number of CPU cycles, or as the number
of milliseconds that have passed since 1 january 1970 (Unix Time2), both cases
obviously being natural numbers. Secondly, even of one wants to model time as a
continuum, any physical measurement of time will always yield a result consisting
of a finite number of digits which is essentially the same as a natural number.
Thirdly, in Game Theory the moves of the players usually take place in discrete
rounds. Therefore, a notion of discrete time is closer to such descriptions. In
fact, in the rest of this thesis we may sometimes refer to ‘rounds’ rather than to
instants of time, meaning essentially the same.

1Interestingly, one may argue that in a model such as ours there is in fact no such thing as
the world. Instead, each agent simply lives in its own world of which the state is determined
purely by the messages that the agent has sent and received. After all, messages that were not
sent or received by an agent cannot possibly influence that agent.

2http://en.wikipedia.org/wiki/Unix_time

42 Chapter 3. Formal Model

Finally, if we set the deadlines di to be some very large number and take
the discrete intervals of time to be very short, then this model approximates
continuous time anyway. The fact single rounds are then very short may mean
that players do not have enough time to decide which move to make in each
round, but that is not a problem since we assume that not making a move is
interpreted as making the move ‘none’.

3.4 Negotiation

A negotiation protocol does not only define which messages can be sent, but also
determines for each history which deals the agents have committed themselves
to. These deals are then called the confirmed deals.

Definition 29 A negotiation protocol is a tuple (Pr ,Agr , conf) where Pr is
a protocol, Agr is some set called the agreement space, and conf is a function
that assigns to each possible world state ε a set of confirmed deals, which is a
subset of the agreement space.

conf : E → 2Agr

We say a negotiation protocol has deadline d if its underlying protocol Pr has
deadline d . As an example, we will now define the Alternating Offers (AO)
protocol [Rosenschein and Zlotkin, 1994] in our model.

Example The standard form of AO assumes there are two agents: A = {a1, a2}
and there is some given agreement space Agr . The set of world states can be
defined as: E = A× Agr × Agr , so each world state is of the form ε = (ai , x , y)
where ai is the identifier of the agent whose turn it is to make a proposal,
x is the last proposed deal and y is the confirmed deal. The initial state is:
ε0 = (a1, x0, x0), where x0 represents the ‘conflict deal’ i.e. the element of Agr
that represents the case that the agents do not make any deal at all. The
permission map is defined as:

G((ai , x , x0), ai , t) = {(ai , {a−i}, accept(x), t)} ∪ {(ai , {a−i}, propose(y), t) | y ∈ Agr}
G((a−i , x , x0), ai , t) = {nonei,t}
G((ai , x , x), ai , t) = G((ai , x , x), a−i , t) = {nonei,t} if x 6= x0

The first line says that the agent whose turn it is can either accept the previously
proposed deal x or propose a new deal y . The second line says that the agent
whose turn it is not cannot do anything. The third line says that once some deal
x has been confirmed no agent can do anything anymore. The state evolution
map is defined as:

F((a1, x , x0), (a1, {a2}, propose(y), t),none2,t) = (a2, y , x0)

F((a1, x , x0), (a1, {a2}, accept(x), t),none2,t) = (a2, x , x)

3.4. Negotiation 43

F((a2, x , x0),none1,t , (a2, {a1}, propose(y), t)) = (a1, y , x0)

F((a2, x , x0),none1,t , (a2, {a1}, accept(x), t)) = (a1, x , x)

and all other cases are infeasible. These lines simply state that a proposal
changes the agent whose turn it is and that an acceptance causes the previously
proposed deal to become the confirmed deal. Finally, the confirm function simply
projects out the confirmed deal:

conf (ai , x , y) = {y}

(Note that the Alternating Offers Protocol only allows one deal to be confirmed,
whereas our model in general allows more than one deal to be confirmed).

Definition 30 A deal x over a one-shot game G is a Cartesian product of
nonempty subsets Si of Oi , one for each player: x = S1 × S2 × . . .Sn .

In the following we will use the notation Oi [x] instead of Si to explicitly indicate
that it is part of a deal x .

Definition 31 We define the set of participating agents pa(x) of a deal x =
O1[x]×O2[x]× . . .On [x] as the set of all players αi for which Oi [x] is a proper
subset of Oi :

αi ∈ pa(x)⇔ Oi [x] 6= Oi

Definition 32 The Agreement Space over G is then the set of all deals over
the one-shot game G and is denoted AgrG :

AgrG =
∏n

i=1(2Oi \ {∅})

A deal over a game G should be interpreted as an agreement between the
participating agents that each of them will only play a move from the subset
Oi [x]. If an agent is participating in more than one confirmed deal he should
obey them all, and is therefore only allowed to play moves from the intersection
∩x∈X Oi [x], where X is the set of confirmed deals. A correctly defined negotiation
protocol should therefore guarantee that this set is always nonempty for every
agent.

Definition 33 A set of deals X is called consistent iff its intersection is
nonempty:

⋂
x∈X x 6= ∅

Note that this definition indeed implies that
⋂

x∈X Oi [x] is nonempty for every
agent.

Definition 34 A consistent negotiation protocol is a protocol, such that for
every ε ∈ E the set of confirmed deals conf (ε) is consistent.

44 Chapter 3. Formal Model

Definition 35 The restricted game G [x] of a one-shot game G to a deal x is
the same game as G, but with the restriction that each player αi is only allowed
to make a move from the set Oi [x]. That is: the permission map GG[x] of the
protocol PrG[x] of the one-shot game G [x] is defined as3:

GG[x](ε0, ai , 0) = Oi [x]

Similarly, for a set of deals X the game G [X] is the game G with the restriction
that each player αi is only allowed to make a move from the set

⋂
x∈X Oi [x].

We are now getting to the most important definition of this chapter: the
definition of a negotiation game. The idea behind a negotiation game is that a
set of agents is playing some one-shot game G , however, before doing so, they
get the opportunity to negotiate which moves they will play in the game G . The
agreements made during these negotiations must be obeyed.

Given a one-shot game G and a negotiation protocol N with deadline d , we
denote the negotiation game over G as NG . It is a game over d + 1 rounds,
with protocol PrNG and utility functions f̄ NG which are defined below. The
first d rounds of this game are referred to as the negotiation stage, and the
last round is called the action stage. During the negotiation stage the players
negotiate a set of deals from AgrG according to the negotiation protocol N . If
Xd denotes the set of deals that were confirmed during the negotiation stage:
Xd = conf (HAg,d), then in the the action stage the players play the game G [Xd].

More precisely, the protocol PrNG is defined as:

PrNG = (An , ENG , εNG
0 ,FNG ,GNG) (3.1)

where the set of world states of NG is the product of the world states of N and
the world states of G :

ENG = EN × EG (3.2)

and the initial state is the pair consisting of the initial state of N and the initial
state of G :

εNG
0 = (εN0 , ε

G
0). (3.3)

The permission map GNG is defined such that during the negotiation stage it
is in fact the permission map of N , while in the action stage it is equal to the
permission map of G [Xd]:

GNG(εNG , ai , t) = GNG((εN , εG), ai , t) =

{
GN (εN , ai , t) if t < d

GG[Xd](εG , ai , 0) if t = d
(3.4)

Similarly, the state evolution map is defined such that during the negotiation
stage the world state evolves according to N , while in the action stage its evo-
lution is determined by the rules of G :

FNG(εNG , ot) = FNG((εN , εG), ot) =

{
(FN (εN , ot), ε

G) if t < d

(εN ,FG(εG , ot)) if t = d
(3.5)

3Note that for a one-shot game the permission map only needs to be defined for ε = ε0 and
t = 0.

3.4. Negotiation 45

for any joint move ot made in round t and any world state εNG . Finally, the
utility functions f̄ NG

i = (f NG
1 , f NG

2 , . . . f NG
n) are equal to the utility functions of

G acting on the the world state of G :

f NG
i (εNG) = f NG

i (εN , εG) = f G
i (εG) (3.6)

Definition 36 Given a one-shot game G and a negotiation protocol N with
deadline d, the negotiation game over G, denoted as NG, is a game over
d + 1 rounds with protocol PrNG defined by (3.1) - (3.5) and utility functions
f̄ NG
i defined by (3.6).

We would like to stress that a player’s set of allowed moves Oi [Xd] in the action
stage can only be smaller than its full set of moves Oi if agent αi itself has agreed
with those restrictions by accepting one or more deals. Of course, restricting your
set of moves is never beneficial by itself, but when the other players return the
favor by also restricting their moves this can be highly beneficial.

Example Let us take a look at the negotiation game NG where G is the Pris-
oner’s Dilemma and the negotiation protocol is the alternating offers protocol.
This negotiation game contains a Nash Equilibrium in which, during the nego-
tiation stage, the first player plays the move ‘propose(({confess}, {confess}))’
and the second player makes the move ‘accept(({confess}, {confess}))’, while in
the action stage both players play the move ‘confess’. This outcome dominates
the Nash Equilibrium of the pure Prisoner’s Dilemma without negotiations, in
which both players play ‘deny’. This clearly shows how negotiations can improve
individual results.

Example Another example is the purchase of a car. We assume there are two
agents: the client and the dealer. The sale of a car can be modeled as a one-shot
game in which the client can make a move ‘pay(x)’ for any x ≥ 0, x ∈ R, and
the dealer can either make the move ‘sell car’ or the move ‘keep car’. Before the
sale takes place, they negotiate over the price. If they cannot agree on the price
they will respectively play ‘pay(0)’ and ‘keep car’ in the action stage. If they do
agree on a deal to sell the car for a price x during the negotiation stage, then
this deal will be executed in the action stage by playing ‘pay(x)’ and ‘sell car’
respectively.

Note that in our model, the utility of the negotiators depends on the deals made,
in a rather indirect way. The confirmed deals determine the set of allowed moves
of the agents in the game G , the moves of that game determine the realized world
state εd+1 which in turn determines the utility values. In the literature it is much
more common to define utility functions directly as functions over the agreement
space. This is not in contradiction with our model, as we can simply abstract

46 Chapter 3. Formal Model

the underlying game G away, as well as the world states. However, our model is
richer because it allows us to explicitly take the underlying domain into account.
It allows us to define negotiation domains in which the utility values are very
hard to calculate.

For example, in our model a deal may not completely determine the utility,
since it may only fix a subset of moves for a player, so that that player still has
the freedom to choose its move from that subset, and thus its utility will also
depend on that choice. We think this is more realistic, because the value of a
deal may indeed also depend on further actions of the negotiator beyond the
deal itself. Moreover, the inclusion of a game means that one should also take
the opponent’s options into account. More importantly, it allows for domains
in which the negotiator needs to apply complex reasoning in order to determine
the value of a deal. A negotiator cannot simply get the utility value from a
table, but instead needs to apply Game Theoretical reasoning to determine the
consequences of a deal for the game G . In many cases it may not even be
possible to determine the theoretically correct value of a deal because of bounded
rationality.

3.4.1 Reservation value

An important concept in Automated Negotiations is the concept of the reserva-
tion value. Normally, the reservation value rvi for agent αi is simply the value
that is obtained by αi if it does not make any deal. However, we here argue
that in our model there is no straightforward definition of a reservation value.
Instead, we can define a new concept that we call the paranoid reservation value,
but we show that this definition is not always a satisfactory one.

Let O−i denote the set of all sequences of moves containing one move for
each agent except agent αi , in the one-shot game G .

O−i =
∏n

j=1,j 6=i Oj

Definition 37 The paranoid reservation value for the negotiation game NG
is defined as:

prvi = max oi∈Oi
mino−i∈O−i

{fi(oi , o−i)}

In words, this is the value that αi would obtain without making any deals, under
the paranoid assumption that all other agents make those moves that minimize
αi ’s utility.

Although this value indeed represents the absolute minimum that αi can
expect to get, it can be very unpractical to use for several reasons. First, it is
often unrealistic to assume that all other agents co-operate against αi . Second,
even if the other agents do all cooperate with each other, it does not always have
to be the case that minimizing αi ’s utility is in their interest, because they may
not be playing a zero-sum game.

Any deal that yields less utility than the paranoid reservation value may be
discarded immediately because αi would always prefer not to make any deal at

3.4. Negotiation 47

all. However, the opposite does not hold: if a deal x yields more utility than
the paranoid reservation value, αi may still prefer to make no deal at all if it
considers the paranoid assumption to be overly pessimistic in the given domain.

Alternatively, one could try to define other variations to the notion of a
reservation value. For example, one could try to determine some equilibrium
solution in which no coalition of opposing agents can deviate without decreasing
the utility of any coalition member. Then the reservation value rvi could be
defined as the utility that αi would obtain under that solution. The problem
with that solution however is that it will often be very difficult to determine such
a solution. Furthermore, even if αi would be able to find it, it may be that the
opponents are not able to find it, or do not have the time to properly co-ordinate
as to realize that solution. In that case the “reservation value” defined in this
way may be either overly optimistic or overly pessimistic. This is dangerous
because it may lead αi to discard deals assuming it can achieve more utility
without any deals, as long as the opponents play their equilibrium strategy. If
they do not manage to play that solution however, the real utility for αi may turn
out to be lower than expected. Finally, there could exist several such solutions
yielding different utility values for αi , in which case this reservation value is not
even properly defined.

3.4.2 Negotiations over Games with Multiple Rounds

The game G does not have to be a one-shot game. We can also define negotiation
scenarios in which the underlying game takes place over several rounds. In that
case the negotiations during the negotiation stage do not restrict the moves of a
single round, but rather restrict the set of strategies of each player, over several
rounds. This is the model we will use later in the definition of the Negotiating
Salesmen Problem (Chapter 4.2).

Alternatively one can also allow the game to alternate between negotiation
stages and action stages, where each action stage corresponds to a single round.
This is how the game of Diplomacy can be modeled (Chapter 7).

3.4.3 Commitments

In some cases the possible deals between the players may be built up from smaller
constituents, that we call commitments. In that case, instead of defining a deal
as a subset of all possible joint moves, we may alternatively define a deal as a set
x of commitments. The set x consists of exactly those moves (or strategies) that
contain all commitments in x . For example, in the case of Diplomacy (Chapter
7), each player has a number of units for which the player needs to submit an
order. If two players commit themselves two give specific orders to some of their
units, then the subset O [x] is defined as the set of moves that contain those
orders. The more commitments an agent makes, the less freedom it has, so the
larger the set x , the smaller the set x .

Furthermore, in the case that G is a game over multiple rounds, then a deal
may consist of a number of commitments to make a certain moves oi,t1 , oi,t2 , oi,t3 . . .

48 Chapter 3. Formal Model

in a certain rounds t1, t2, t3, Then Oi [x] consists of all strategies for which
indeed all these moves are played in their corresponding rounds.

3.5 The Unstructured Negotiation Protocol

Above, we have shown how the AO protocol can be defined in our model. In
this section however, we will define a new negotiation protocol that we call the
Unstructured Negotiation Protocol. This is the negotiation protocol that we have
used used for our experiments in chapters 6 and 7.

Most previous studies in Automated Negotiations have made use of the AO
protocol, or something similar. Alternative protocols are proposed for example
in [An et al., 2006]: it describes multilateral negotiation with 1 buyer and n
sellers. The buyer maintains a separate negotiation thread with each seller.
Each of these threads however still follows an AO protocol, so the agents are
still restricted. In [Ortner, 2012] bilateral negotiations are modeled in continuous
time, without a strict protocol. They assume that the decision of an agent
to make a proposal is determined by external factors, which they model as a
random variable. Also [Serrano, 2008] describes several alternative protocols for
multilateral negotiations.

We consider however none of these protocols satisfactory for two reasons:
firstly, because they make a strict distinction between buyers and sellers, which
may not always exist in true negotiations (e.g. in the stock market people act
both as buyers and as sellers). Secondly, they seem to be designed with the spe-
cific goal of making life easier for the designer of the experiment rather than for
the agents themselves, ignoring the fact that in real-world negotiations the ne-
gotiators are autonomous and may decide not to follow the protocol. Therefore,
we have defined a new protocol which is much less strict.

The Unstructured Negotiation Protocol applies to multilateral negotiation
scenarios in which a deal may involve any number of agents. When an agent
proposes a deal this proposal is sent to all the other agents participating in it.
Other agents, which do not receive the proposal, do not know anything about
it, until the deal is confirmed (if ever). The agents are committed to the deal
once all agents participating in it have accepted it. At each moment each agent
αi can propose any deal, or accept any deal earlier proposed to αi by any other
agent αj . When an agent has proposed or accepted a deal it is still allowed to
withdraw this proposal or acceptance again, as long as the deal has not yet been
confirmed.

As explained before, time is modeled as a series of discrete time steps. We
assume these time steps are very short in order to approximate a model with
continuous time. We assume there is some agreement space Agr , which can
be any kind of set, a finite set of agent identifiers An = {a1, a2, . . . an}, and a
function pa that maps every deal x ∈ Agr to a set of agents pa(x) ∈ An called
the set of participating agents. In each time step t , all agents simultaneously
send a message of one the following forms:

• (ai , J , accept(x), t)

3.5. The Unstructured Negotiation Protocol 49

• (ai , J , reject(x), t)

• nonei,t

with x ∈ Agr . A deal is confirmed in round tj if j is the smallest number for
which all of the following are satisfied:

• For each participating agent αi ∈ pa(x) there is some round tki
with ki ≤ j

in which αi has sent the message (ai , J , accept(x), t) for some J

• No participating agent of x has at any time sent the message (ai , J , reject(x), t)
at any time tk with k ≤ j , with some J ⊆ pa(p)

• There is no deal y that is incompatible with x and for which the previous
two predicates have been true in in any round ti with i < j .

A deal is confirmed if it was confirmed in any round tj . This means that
if at some point all participating agents have agreed with the deal x , and no
participating agent has rejected it, it is confirmed, except when some other
deal y had already been confirmed earlier on which is incompatible with x .
Furthermore, note that after an agent has made a proposal but he changed
is his mind, and the proposal is not yet confirmed, then he can reject it in
order to prevent it from becoming confirmed. However, once it is confirmed,
it stays confirmed, even if one of the participating agents sends the message
(ai , J , reject(x), t).

In most literature on negotiations, one assumes that one agent ‘proposes’ a
deal, and then another agent may or may not ‘accept’ the deal. We, however,
refer to both actions as a ‘propose’ in order to simplify the formalization. Sim-
ilarly, if an agent has made a proposal and then changes his mind, it is usually
said he ‘withdraws’ the proposal, while in this paper we do not make a distinc-
tion between ‘withdraw’ and ‘reject’. Furthermore, the fact that each player
has the option to send the ‘none’ message simply means that agents are never
obliged to propose or reject a deal. At any time they may simply choose to
remain silent.

3.5.1 Properties of this Protocol

We now stress a number of important properties of this protocol. It is important
to note that all of these properties indeed follow implicitly from the definitions
above.

A proposed plan may involve more than two agents. This is different from
most previous work in automated negotiations as one usually assumes only bi-
lateral deals, even if there are more than two agents negotiating.

A proposal may be sent to any subset J of agents. However, if an agent αi

that participates in the proposed deal is not contained in J it will never receive
the proposal and therefore never be able to accept it. Therefore it does not make
sense to send a proposal to J if J does not contain pa(x). Nevertheless we do

50 Chapter 3. Formal Model

not force the agents to include pa(x) in J , because we leave this responsibility
to the agents themselves.

Agents can make more than one deal. Negotiations do not stop after a deal
has been made, so agents can continue making more deals. However, a new deal
cannot be conflicting with any previously made deals (e.g. once you have sold a
car, you cannot sell the same car again to another customer).

Agents can change their minds and reject proposals they earlier accepted, as
long as they are not committed to them yet. When an agent accepts a deal, this
is not considered a binding agreement until all other agents participating in the
deal have also accepted it. Therefore, an agent can reject an earlier accepted
deal to prevent getting committed to it. Note however that the last definition
implies that once an agent is committed to a deal, it stays committed to it, even
if it sends a ‘reject’ message afterwards.

The agents in this protocol do not take turns. An agent can accept or reject
any proposal at any time; it does not have to wait for ‘its turn’. Moreover,
this means that after making a proposal an agent does not have to wait for a
counter-proposal, it can already make new proposals even before any agent has
replied to the first proposal.

Agents are not obliged to reply to proposals. If an agent does not want to
accept a received proposal, it may or may not explicitly reject it. The agent may
simply ignore the proposal without ever replying. Therefore, when an agent has
made a proposal and waits for a reply, it should decide for itself how long to
wait for this reply. If it takes too long, the agent should consider the proposal
as rejected, but it is up to itself when to do so.

When an agent makes a new proposal, it does not have to be compatible with
any of the proposals it made before. This means that if one of the proposed deals
is confirmed, other proposed plans may become unfeasible. It is up to the agents
themselves to determine whether standing proposals are still feasible or not.

3.5.2 Relation to the Formal Model

Let us now describe this protocol in terms of our definitions above.
A world state in the Unstructured Negotiation Protocol is a function that

maps to each deal in the agreement space a set of agents that have so far accepted
that deal:

ε : Agr → 2An

Initially, no agent has yet accepted any deal, so the initial state maps every deal
to the empty set:

∀ x ∈ Agr : ε0(x) = ∅

The confirmation map is defined as:

conf (ε) = {x ∈ Agr | ε(x) = pa(x)}

3.5. The Unstructured Negotiation Protocol 51

This means that the set of confirmed deals consists of those deals for which all
participating agents have accepted it.

Let mi,t denote the message that is sent by agent αi at time t . Furthermore,
let acc(t , x) denote the identifiers of those gents that accept deal x at time t
That is: acc(t , x) = {ai ∈ An | mi,t = (ai , J , accept(x), t)} for some set of
receivers J . Similarly, rej (t , x) denotes the set of identifiers of agents that reject
deal x at time t . The state evolution map is then defined as:

F(εt , (mt,1,mt,2, . . . ,mt,n)) = εt+1

with:

εt+1(x) =

{
εt(x) if x ∈ conf (ε)

εt(x) ∪ acc(t , x) \ rej (t , x) if x 6∈ conf (ε)

The means that whenever some agent αi accepts a deal x the identifier ai is
added to the set of agents that have accepted x , and whenever an agent αi

rejects a deal x , its identifier ai is removed from the set of agents that have
accepted x . However, this only works as long as the deal x has not yet been
confirmed. Finally, the permission map is defined as:

G(ε, ai , t) = {(ai , J , accept(x), t), | x ∈ Agr}∪
{(ai , J , reject(x), t), | x ∈ Agr \ conf (ε)} ∪ {nonei,t} (3.7)

meaning that any agent can always accept any deal, and any agent can always
reject any deal, as long as that deal has not been confirmed yet. Furthermore,
any agent may always remain silent.

3.5.3 Motivation for this Protocol

The reason that we have chosen this unstructured protocol is that we think that
it resembles the way people negotiate in the real world. This protocol may be
considered inconvenient for designers of negotiation agents, but this reflects the
problems that negotiators also face in the real world. For example, if you make
somebody an offer by e-mail, you have no guarantee that the recipient will ever
reply to your mail. If he does not reply, you never know for sure whether the
receiver is still deliberating over the offer, or is simply ignoring it. An agent
implemented for the Unstructured Negotiation Protocol is therefore much more
robust against unexpected human behavior.

Also, the possibility of making several proposals that are mutually incom-
patible is very common in the real world. Think for example of a real estate
vendor that offers a house to several potential customers. Obviously, he cannot
sell the same house to all of them, so the customer who reacts first, or bids the
highest price, wins. For all other costumers the deal then becomes unfeasible.

52 Chapter 3. Formal Model

3.5.4 Notary Agent

A problem that one may encounter with this protocol in practice, is that mes-
sages may arrive at different agents in a different order, which may cause agents
to disagree on which proposals have been confirmed, and which are considered
unfeasible. For example, consider the following scenario:

1. agent α1 proposes a deal x1 to agent α2 and α3.

2. agent α1 proposes another deal x2, which is incompatible with x1, to agents
α2 and α4.

3. agent α2 accepts both proposals.

4. agent α3 accepts x1.

5. agent α4 accepts x2.

6. The acceptance of x1 arrives at agent α1 before the acceptance of x2. There-
fore, agent α1 considers x1 as confirmed, and considers x2 to be unfeasible.

7. However, the acceptance of x2 arrives at α2 before the acceptance of x1, so
agent α2 considers x2 as confirmed and x1 as unfeasible.

8. Agent α1 and α2 now have a conflict over which of the two proposals they
are committed to.

For this reason, in practice one may need a Notary agent, which plays a similar
role as a Scene Manager in EIDE. A notary agent is an agent that does not take
part in the negotiations but listens to all the messages and determines which of
the proposals is officially confirmed. It is important to note that the Notary itself
does not have any preferences, but simply follows the rules above. The Notary
therefore decides which proposals are confirmed, purely based on the order in
which he receives the acceptance messages. The notary sends a confirmation
message to all participating agents whenever a deal is confirmed.

3.6 Electronic Institutions

We will now compare our definitions with the concepts defined in the EIDE
framework (see Section 1.4.3). We show that all our definitions are compatible
with the definitions in EIDE.

In EIDE, every agent has a name and a role. We identify a pair (agent name,
role name) with an agent identifier in our model. A role can then be seen as a set
of agent identifiers, that is: all pairs (agent name, role name) with the same role
name. Note that the set of agent identifiers is very large, since each participant
can pick any agent name. However, protocols are defined in terms of roles, and
since each agent identifier contains a role name, which can only be picked from
a limited list, a protocol indeed defines the allowed messages for every possible
agent identifier.

3.6. Electronic Institutions 53

A scene in EIDE consists of a set of role names, a protocol, a set of world
states and an initial world state. In EIDE protocols are partially defined as
graphs that represent a finite state machine, and partially in terms of a set of
abstract variables. The ‘state’ of the scene is therefore defined as the current
state of the finite state machine together with the values of all scene variables.
This corresponds to our notion of a ‘world state’. The state evolution map in
EIDE is implemented along the edges of the graph. That is: each edge may
be labeled with one or more post-conditions that become true when a certain
message is sent. Moreover, such a message causes the state of the finite state
machine to change.

In EIDE the state of the scene may not only change whenever an agent sends
a message, but may also change whenever an agent enters or leaves the scene. In
our model this can be incorporated by defining special messages that represent
the fact that an agent is entering or leaving the scene. Also, the fact that the
state may change as a consequence of a timeout can be represented in our model,
because the state evolution map in our model does (implicitly) depend on time,
since each message contains a time stamp.

Note that there is no notion of a utility function in a scene. This is because
the scene generally does not assume anything about the goals of the agents in
the scene. Of course, a scene is usually designed with an idea of the goals of
the agents in mind, but they are not explicitly represented in the scene. Each
agent that enters the scene may have its own private utility function. This is a
fundamental principle of the EIDE philosophy: one cannot know who will enter
the institution and one cannot know what the participants’ objectives are.

In our definitions we have allowed all nonempty possible subsets J ⊆ A to be
the set of receivers in a message. In EIDE, one can only define specific subsets.
That is: J can consist of exactly one agent, or J can consist of all agents with
a specific role, or all agents currently in the scene instance. Therefore, in our
model the definition of a message is slightly more general than in EIDE.

Furthermore, a message in EIDE does not only have a sender, a set of re-
ceivers and content, but also has an ‘illocutionary particle’, which defines the
objectives that the sender is trying to achieve with the message. In our model
we do not define such a illocutionary particles. However, in our model one can
consider the illocutionary particle as a part of the content, so the combination
(particle, content) in EIDE corresponds to the notion of the content in our model.

In EIDE, in order to define a protocol, one needs to define an ontology, which
defines what can be put in the content of the messages. In our model we did
not explicitly define the notion of an ontology, we simply allowed any content in
the messages. However, a protocol may implicitly define an ontology, because
there may only be a limited set of messages that are feasible under the protocol.
In the alternating offers protocol for example, all feasible messages have content
of the form ‘propose(x)’ or ‘accept(x)’. This defines an ontology containing the
functions ‘propose()’ and ‘accept()’.

One important, non-trivial fact about scenes in EIDE, is that a scene may
not always finish. In theory it could run forever. It is exactly for that reason that

54 Chapter 3. Formal Model

Figure 3.1: The Negotiation Game over a game G can be represented as a scene
in which the agents follow a negotiation protocol and a scene in which the game
follow the protocol associated with G .

in our model we have introduced individual deadlines for each agent, rather than
a single deadline for the entire MAS. As soon as an agent’s individual deadline
has passed he is no longer interested in the further evolution of the scene, so he
will try to leave.

One issue that we have ignored in our definitions, is the problem that in
practice it can be very difficult to objectively determine the time stamp of a
message. After all, the clocks of the several agents may not be synchronized,
and messages take time to traverse the network, so the time at which a message
is sent is different from the time at which it arrives at its recipients. Of course,
one could simply request the agents to add the time stamp to the message
when it sends the message, according to its own clock, but there is of course
no guarantee that the agent will always do this correctly. This is a problem,
because if one cannot objectively determine the time stamp of the message, one
cannot even objectively determine the realized world states. However, in the
EIDE framework this issue is solved because all messages need to pass a central
Scene Manager. Therefore, it is the order in which the messages arrive at the
Scene Manager that determines the current state of the scene. The time stamp
of a message in our model should be seen as the time at which the message
arrives at the Scene Manager.

The notion of a Negotiation Game can be represented very elegantly in EIDE,
by defining two scenes, representing the negotiation stage and the action stage
respectively. See also Figure 3.1. This allows us to implement the negotiation
protocol N and the game G independently from each other.

3.7 Conclusions

In this chapter we have defined the formal model that we use throughout this
thesis. We model time as a discrete set of instants, but these instants of time
may be very short, so that the model may approximate continuous time. Agents
are deterministic algorithms that send messages to one another depending on
time and on the messages they have previously received from the other agents.

3.7. Conclusions 55

Moreover, we define the notion of a world state which can be seen as an equiva-
lence class of message histories. Messages that may change the world state are
also called active messages, or actions, while messages that do not change any
world state are called informative messages. An action is called infeasible in a
world state ε if it does not change that particular world state.

A state evolution map defines how the world state evolves as a function of the
messages that have been sent, and a permission map determines which messages
the agents are allowed to send and when. A protocol then consists of a set of
agent identifiers, a set of world state, an initial world state, a state evolution
map and a permission map. A protocol is said to be regimented if all actions
that are not allowed, are infeasible.

We have defined a game as a protocol, together with a utility function and a
deadline for each agent. Agents in a game are also called players and actions in a
game are also called moves. We have defined a negotiation protocol as a protocol,
together with a space of possible deals (the agreement space) and a confirmation
function that defines for each world state of the protocol which agreements are
considered confirmed, and therefore binding. A deal over a one-shot game G is
an agreement between a number of players that each will only play a move from
a certain subset of its complete set of moves.

Given a negotiation protocol N and a game G we have defined the negotiation
game over G , denoted NG , which consists of two stages: the negotiation stage
and the action stage. In the negotiation stage the players negotiate which moves
from the game G they will make, and in the action stage they will make their
moves, restricted by the deals they have committed themselves to during the
negotiation stage. We have argued that under this model of negotiations, there
is no clear and satisfactory notion of a reservation value.

We have introduced a new negotiation protocol, called The Unstructured
Negotiation Protocol, which gives more freedom to the negotiators than the more
commonly used Alternating Offers protocol. Specifically, negotiators are not
obliged to reply to proposals, and after making a proposal negotiators are not
obliged to wait for response from the opponents; they may make a new proposal
whenever they want.

Finally, we have shown that many concepts of the EIDE framework are com-
patible with our formal model.

Chapter 4

Negotiation Problems

In this chapter we will describe three test cases for negotiations with large agree-
ment spaces and non-linear utility functions. We describe these domains in order
of increasing complexity. In the next part of the thesis we will describe negoti-
ation algorithms that we have implemented for each of these domains.

4.1 The ANAC domain

The first domain we take a look at is the negotiation scenario that was applied in
the Annual Negotiating Agents Competition 2014 (ANAC’14). In the agreement
space of this domain, introduced in [Marsa-Maestre et al., 2009a, Ito et al.,
2008, Marsa-Maestre et al., 2009b], the utility functions are given as non-linear
functions over some abstract vector space. However, they are defined by means
of constraints as in Section 1.3. This means that the utility value fi(x) of a given
agent αi and a given deal x can be calculated quickly by summing the values of
all constraints that are satisfied by x .

The description of this domain does not refer to any underlying game or un-
derlying world states. We could still fit this model into our previously described
model of negotiation games, by introducing a dummy game G with dummy
world states. We will not attempt to do this however, as this is a straightfor-
ward exercise and is not necessary for the purpose of this chapter.

We use the notation [µ, ν], where µ and ν are integers, to denote the set of
integers z such that µ ≤ z ≤ ν. We use the symbol α1 to denote our agent,
and α2 to denote its opponent. Furthermore, we use H1→2(t) to denote the set
of deals proposed by α1 until time t , and H2→1(t) to denote the set of deals
proposed by α2 until time t .

4.1.1 The Agreement Space

The agreement space Agrm in this domain is represented by an m-dimensional
vector space, where m can be any positive integer. For each vector entry there

57

58 Chapter 4. Negotiation Problems

are 10 possible values.
Agrm = [0, 9]m

For a vector x ∈ Agrm we use the notation xj to denote its j -th entry.

x = (x1, x2, ...xm)

Both agents have a utility function fi , which is a non-negative real function
defined over the set of agreements:

fi : Agrm → R+

Definition 38 A rectangular subspace s is a subset of Agrm defined as the
Cartesian product of a set of m intervals [µj , νj] ⊆ [0, 9]:

s =
∏m

j=1[µj , νj]

In the ANAC domain, a constraint c is given by a pair (sc , vc) where sc is a
rectangular subset of Agrm and vc is a positive real number. As in Section 1.3
the characteristic function f c of a constraint c is defined as:

f c(x) =

{
vc if x ∈ sc

0 if x 6∈ sc

which is defined in terms of a set of constraints Ci :

fi(x) =
∑

c∈Ci
f c(x)

The values of the constraints in the ANAC domain are normalized such
that fi(x) ≤ 1 always holds. Both sets of constraints remain hidden to both
agents, so an agent cannot directly calculate its own utility values. Instead,
each agent αi has access to an oracle that, for any given deal x ∈ Agrm returns
its corresponding utility value fi(x). The agents cannot know anything about
their opponents’ utility functions (i.e. agent α1 can request f1(x) from its oracle,
but not f2(x)). Note that, in principle, an agent can request the value of each
deal in the agreement space. However, since the agreement spaces are extremely
large (consisting of up to 1050 deals) this is obviously infeasible, so the agents
can only explore a tiny fraction of the agreement space.

4.1.2 Other Parameters of the Competition

In the competition each agent engaged in several negotiation sessions, where
each session involved two agents: Ag = {α1, α2}. In each session both agents
had the same deadline which was set to 180 seconds. Each session would finish
as soon as the agents made an agreement, or when the deadline had passed. The
agents had to negotiate according to the alternating offers protocol (see Section
3.4). The agents alternate turns, and in each turn the agent whose turn it is
may propose a deal x from the agreement space Agrm (see Sect. 4.1.1) or accept

4.2. The Negotiating Salesmen Problem 59

the last deal proposed by the other agent. This continues either until a deal
is accepted or until a the deadline passes. The dimension m of the agreement
space could be as high as 50, meaning that the agreement space could contain
up to 1050 possible deals.

Each agent may take as much time as it likes before making the next proposal
(or accepting the previous proposal). Therefore, the agent’s decision is not only
what deal to propose (or accept) but also when to propose. More precisely:
when an agent finds a potential deal to propose it should determine whether it
will propose that deal or whether it should continue searching for a better deal.

If the deadline passes without any agreement having been made each agent
receives a certain utility value known as its reservation value rvi . Otherwise,
each agent αi receives the utility value fi(x) associated with the deal x they
agreed upon.

The utility function as defined above is in fact the undiscounted utility. In
some instances of the ANAC domain the undiscounted utility of each agent is
multiplied with a factor δtacc to obtain its final score. The parameter δ is a value
between 0 and 1, known as the discount factor, which differs per negotiation
session. The value tacc is the time at which the proposal x is accepted.

4.1.3 Limitations of the ANAC Domain

In principle every utility function over some vector space can be described in
terms of constraints, as above. However, it is important to understand that in
practice this is not always the case. In practice, utility functions may be given in
an entirely different form, and although they can be converted to the form of this
section, this may be a highly non-trivial task, impossible to fulfill in practice.

Take for example the case of a chess game. We can look at the space of
all possible board configurations and assign the value 0 to every configuration
in which white has a winning strategy, the value 1 to every configuration in
which both players can enforce a draw, and the value 2 to every configuration in
which black has a winning strategy. This is a well defined function over a finite
domain, so in principle this function should be expressible in terms of constraints
as above. However, this is obviously impossible in practice to explicitly write
down this function in terms of constraints and calculate the value of any given
board configuration.

4.2 The Negotiating Salesmen Problem

In this chapter we will define a new negotiation scenario that is much more
complex than commonly used negotiation scenarios. We have used it a test case
for our for the NB3 algorithm that we will introduce in the next chapter. We call
this problem the Negotiating Salesmen Problem (NSP). It resembles the multiple
Traveling Salesmen Problem (mTSP) described in [Bektas, 2006], but with the
main difference that each agent in the NSP is only interested in minimizing its
individual path, while in the mTSP the agents form a social MAS, and intend

60 Chapter 4. Negotiation Problems

to minimize the total length of all the agents’ paths together. Therefore, unlike
the mTSP, the NSP is a game in which the agents act selfishly.

4.2.1 Definition

The idea of the NSP is that there is a map with a number of cities, and there are
a number of agents (the salesmen) that need to visit those cities. All salesmen
start at the same city (the home city), and all other cities should be visited by at
least one agent. Initially, each city is assigned to one salesman that has to visit
it. However, the salesmen are allowed to exchange some of their cities, which
may enable them to decrease the distances they need to cover. For example: if a
city v is assigned to agent α1, but α1 would have a shorter route if it would visit
another city v ′ instead of v , which is assigned to agent α2, then α1 may propose
to α2 to exchange v for v ′. If α2 however also prefers to have v ′ over v then it
will not accept this deal. If no other agent wants to accept v either, then α1 is
obliged to travel along city v . However, we impose the restriction that not all
cities are allowed to be exchanged. The cities that can be exchanged are referred
to as the interchangeable cities, while the cities that cannot be exchanged are
called the fixed cities.

We will first define a family of games called Traveling Salesmen Games (TSG)
and then define an instance of the NSP as the negotiation game over an instance
of a Traveling Salesmen Game.

Let Gr be a finite, complete, weighted, undirected graph: Gr = 〈V ,w〉 with
V the set of vertices (the cities) and w the weight-function that assigns a cost
to each edge: w : V ×V → R+ and that satisfies the triangle inequality:

∀ a, b, c ∈ V : w(a, c) ≤ w(a, b) + w(b, c)

One of the vertices is marked as the home city : v0 ∈ V . Each agent has to
start and end its trajectory in this city. We use the symbol V to denote the set
of destinations, that is: all cities except the home city: V = V \ {v0}. The set
of destinations is partitioned into two disjoint subsets: F and I , so: V = F ∪ I
and F ∩ I = ∅. They are referred to as the set of fixed cities and the set of
interchangeable cities respectively.

The set of identifiers of the agents (also known as the salesmen) is denoted by
An = {a1, a2, ...an}. A world state ε is a function that assigns each destination
to a salesman: ε : V → An . The set of cities assigned to agent ai in world state
ε is denoted as V ε,i :

V ε,i = {v ∈ V | ε(v) = ai}

The definitions above imply that for each agent its set assigned cities can be
further subdivided into: V ε,i = Fε,i ∪ Iε,i where Fε,i is defined as V ε,i ∩ F and
Iε,i is defined as V ε,i ∩ I .

Given a graph Gr and an initial world state ε0 a Traveling Salesmen Game
TSGGr ,ε0 is a turn taking game over some fixed number of rounds. Each round

4.2. The Negotiating Salesmen Problem 61

t one player αi can make a move o from the set Oi,t defined as:

Oi,t = {o ∈ Mi,t | J = An , c ∈ Ci,t} ∪ {nonei,t}

Ci,t = {(ai , v , aj) ∈ {ai} × I ×An | ai 6= aj , v ∈ Iεt ,j}

That is, o is either the ‘none’ move, or a message of the form

oi,v ,j ,t = (ai ,An , ci,v ,j ,t , t) with ci,v ,j ,t = (ai , v , aj)

where ai is not aj and v is a city currently owned by αj . This has the inter-
pretation of agent αi taking the city from αj The inclusion of the ‘none’ move
means that players have the option, but not the obligation to take a city from
another player.

The world state εt is updated according to F(εt , oi,v ,j ,t) = εt+1 where:

εt+1(v) = aj and ∀ z ∈ V \ {v} : εt+1(z) = εt(z)

This is interpreted as follows: in the new world state the city v is assigned to
agent αj while all other cities remain with the same owner as in the previous
world state.

The permission map is defined as:

G(ε, ai , t) =

{
Oi,t if t = i (mod n)

nonei,t otherwise

In words: the players take turns. If it is agent αi ’s turn it can make a move
from Oi,t , otherwise it cannot make any move.

In order to define the agents’ utility functions we first need to introduce some
more definitions.

Definition 39 Given any finite set S = {s1, s2, . . . sk} of size k, and a permu-
tation π of the integers 1 to k we say a cycle TS ,π through S is an ordered
sequence of size k consisting of the elements of S :

TS ,π = (sπ(1), sπ(2), . . . sπ(k))

We use the notation TS to denote the set of all cycles through S.

Definition 40 If S is a set of nodes from a weighted graph, with the weights
denoted by w(si , sj), then the length l(TS ,π) of a cycle is defined as:

l(TS ,π) = w(sπ(k), sπ(1)) +

k∑
j=2

w(sπ(j−1), sπ(j)) (4.1)

With these definitions we can now define the cost function li for an agent αi

over the set of world states.

62 Chapter 4. Negotiation Problems

Definition 41 The cost function li for an agent αi is defined as:

li(ε) = min{l(T) | T ∈ TV ε,i∪{v0}} (4.2)

In words, this means that the cost of an agent αi for a given assignment of cities
ε is defined as the shortest path through the cities assigned to αi , plus the home
city.

The utility fi of an agent can now be defined as its difference in cost between
the initial world state and a given world state ε.

fi(ε) = li(ε0)− li(ε) (4.3)

Now, we can make two important observations. The first observation is
that a TSG is by itself not interesting at all. Players want to minimize their
paths, while taking a city from another player only increases a player’s path
length. The subgame perfect equilibrium consists of each player always playing
the none-move.

Lemma 1 In the subgame perfect equilibrium of any TSG every player always
plays the move ‘none’.

Proof

The player whose turn it is in the last round would not
want to take any city from any other player, since this
could only increase its cost. Knowing this, the player in
the second last round would also not want to take any
city. By backward induction it follows that the same
holds in every round of the game.

The second observation however, is that this equilibrium strategy is often in-
efficient and can therefore be improved if we allow agents to negotiate and sign
binding agreements. Therefore, we define a Negotiation Salesmen Problem as
the negotiation game over a TSG:

Definition 42 Given some negotiation protocol N , an instance of the Negoti-
ation Salesmen Problem (NSP) is a negotiation game over a TSG.

The definition of the NSP as the set of negotiation games over a TSG implies
that the agents go through a negotiation stage in which they can commit them-
selves (following some negotiation protocol) to play non-trivial moves during the
action stage, which they would not play if there were no negotiations.

Agents α1 and α2 could agree that α1 will take city v1 from α2, if in return
α2 will take city v2 from agent α1. Taken together, these two actions can be
beneficial to both agents, even though none of these actions is beneficial by itself
for the agent performing it.

We would like to stress that when an agent α1 makes a proposal to another
agent α2 that benefits them both, α2 may still decide to reject the offer, for

4.2. The Negotiating Salesmen Problem 63

several reasons. Firstly because α2 may be planning a counter proposal that
reduces his individual cost even more, but that would become impossible after
accepting α1’s proposal. Since both agents explore the agreement space inde-
pendently they have a different view of their possibilities and bargaining power.
Secondly, agent α2 may also choose to make a deal with another agent α3, which
is incompatible with the offer made by α1. Thirdly, agent α2 may simply want
to wait and continue searching for better deals.

4.2.2 The NSP as a Testbed for Automated Negotiations

The NSP is not meant as a realistic model for real traveling agents, but rather
as a testbed to test algorithms for general, complex, negotiation scenarios. We
will show now that a number of properties of real-world negotiations are also
present in the NSP.

In many real world negotiations the utility of a set of issues is non-additive.
That is: the value of a contract depends on the combination of issues. For ex-
ample: when booking a holiday you need both a plane ticket to your destination
and a hotel booking. The hotel booking is worthless without the plane ticket
and vice versa. So the value of having both a plane ticket and a hotel booking
is higher than just the sum of their individual values. This non-additivity also
occurs in the NSP. For example: if some agent αi currently owns cities v1 and
v2 and there are two cities v3 and v4 which are both farther away from the home
city than v1 and v2. Then αi is not interested in exchanging one of its cities for
one of the other two cities. However, it could be that v3 and v4 lie very close to
each other and therefore it would be profitable to exchange both v1 and v2 for
both v3 and v4.

The fixed cities in the NSP represent the fact that in real negotiations dif-
ferent agents have different preferences. Without fixed cities, every agent would
have exactly the same utility profile: the path between cities v1, v2 and v3 is
equally long for every agent. However, because each agent also has its own fixed
cities, every agent would have to traverse a different path even if they would
visit the same interchangeable cities. One agent may prefer to visit v1,v2 and
v3 because they are close to his fixed city v4, while another agent may prefer to
visit cities v5,v6 and v7, because they are closer to his fixed city v8. If one wants
to model a negotiation scenario in which the preferences of the other agents are
unknown, one can impose the restriction that the position of any fixed city is
only known to the agent that owns it.

In real-world negotiations it is often very hard to assign a precise utility value
to a deal. This is captured in the NSP by the fact that for each possible deal
the agent has to solve a traveling salesman problem for each agent involved in
it. This is very hard, and often it is better to make only a quick approximation
rather than to do an exact calculation. Of course, in the NSP the hardness of
calculating utility stems from the fact that it is computationally hard, while for
many real world problems it is caused by lack of information, but the point is
that in both cases the utility can only be approximated.

Finally, we would like to stress that the size of the agreement space in the NSP

64 Chapter 4. Negotiation Problems

is very large. If the number of agents is n, and the number of interchangeable
cities per agent is denoted by m, then there are in total n ·m cities. A proposal in
the NSP may assign an agent to every city, so there are nnm possible proposals.
We will see in Section 6.5 that we have conducted some experiments with the
NSP, of which the largest instance involved 20 agents and 10 interchangeable
cities per agent, so there were 20200 deals in the agreement space.

4.2.3 The NSP as a Package Delivery Problem

Although the NSP is primarily meant as an abstract test bed, we think that it is
also a first step towards a model of a real world problem, namely the problem of
package delivery. This means that if we manage to write an efficient algorithm
for negotiation in the NSP domain (and we do, as we will see in Section 6), with
some adaptations it may be applied to a real package delivery scenario.

Package delivery companies often operate in wide areas (such as entire coun-
tries or continents) that overlap with the areas of competing companies. Al-
though this is convenient for customers that want to send packages over large
distances, it is inefficient, since deliverers (postmen) may need to traverse un-
necessary long distances. Efficiency would be improved if each postman could
deliver all its packages in a small area. Therefore, it would be profitable for
postmen to negotiate with each other about who will deliver which package, in
real time. This would allow postmen to exchange packages even when they are
already on their way to deliver them.

Alternatively, one could try to divide the packages among the postmen using
a DCOP-solver to find solutions that distribute the packages in a fair way. The
problem with this however, is that fair solutions are not always feasible, since
package delivery is a discrete domain so there might not be any solution that
gives the same amount of profit to every party. Moreover, the companies are
competitors and may have different opinions about what can be considered ‘fair’.
This would make the package delivery companies distrust the system and could
lead to conflicts.

Let us therefore discuss the adaptations that need to be made to the NSP in
order for it to describe real package delivery.

Utility

In the real world the cost of a postman is not simply given by the length of
its trajectory, but rather by the financial cost of traversing its trajectory, which
depends for example on the amount of gas used and the presence of toll booths.
Taking this into account however does not change the essence of the NSP, since
we could simply re-interpret the weights of the edges of the graph as the financial
cost associated of traversing them. Of course, the true cost might not only be
the financial cost, but could also include time, so we could define weights of the
graph as a linear combination of time and money.

Furthermore, the postman may not receive the same amount of money for
each package it delivers. Again, this is not a problem, since one could sim-

4.2. The Negotiating Salesmen Problem 65

ply assign the value of a package to its destination vertex. This value is then
subtracted from the cost of a path that passes this vertex.

Locations

To interpret the NSP as a real world problem, we should interpret the cities as
generic locations, rather than real cities. In reality one can identify an infinite
number of locations, but this can be overcome by only considering the desti-
nations of packages that are currently in process to be delivered, the current
locations of the postmen, and the locations of the post offices. This set of loca-
tions is dynamic, as clients might request the delivery of new packages at any
moment.

Also, to make the problem more realistic we should drop the assumption that
all agents start in the same home city, as real postman are spread out across
their area of operation. The initial location of each postman is then simply
its current location at the time of negotiations. If the negotiation algorithm is
running continuously, it should regularly update the positions of the postmen.

Constraints

Furthermore, one has to take into account that postmen are subject to certain
constraints. For example, there is a maximum on the number of packages it
can carry at the same time, depending on their weights and sizes. Moreover,
postmen are constrained in the amount of time they can (or want to) work.

Non-linearity

Although the NSP is already a non-linear problem, since the length of a trajec-
tory is a non-linear function of the co-ordinates of the visited cities, we encounter
yet another form of non-linearity when we are dealing with real-world problems.
This is because, given the weight of a certain trajectory, the true utility of this
trajectory might be a non-linear function of this weight.

For example: a postman may be willing to work 8 hours a day for 80 Euro,
but not be willing to work 12 hours a day for 120 Euro, because the 4 extra
hours are much more tiresome then the first 8 hours, so the postman demands a
higher salary per hour for these extra hours. Utility is then a non-linear function
of time and money.

Utility Learning

Finally, we should take into account that a postman has emotions that determine
how much it values time and money. This makes it almost impossible to find
an exact utility function that expresses the postman’s preferences. We should
therefore develop a system in which the user can express its preferences, in a
discrete and qualitative way, from which the system can approximate a utility
value. A postman could pre-define some of its preferences, but could also refine
its preference representation during the negotiations. The system can suggest

66 Chapter 4. Negotiation Problems

several solutions to the user, who may then react by indicating which of them
it prefers. The system can use this information to dynamically learn and adapt
a representation of the user’s preferences. Since this happens in real time, the
learned preference profile might even reflect the current emotional state of the
user.

4.3 Diplomacy

Although the Negotiating Salesmen Problem is an interesting problem because
it involves hard calculations, it is still a rather artificial problem and the cal-
culation of the utility values still happens in a very straightforward manner.
Therefore, in this section we will look at an even harder problem, which is the
game of Diplomacy. Unlike the NSP, in Diplomacy the utility of one player may
be affected by the actions of other players. Moreover, the set of confirmed deals
usually does not entirely fix the players’ actions; they merely impose restrictions
on the players’ actions. Therefore, we here encounter the full notion of a Nego-
tiation Game as defined in Chapter 3, where determining the utility value of a
deal involves Game Theoretical considerations.

4.3.1 Informal Description of Diplomacy

The full set of rules of Diplomacy is rather complicated, so we only give a
simplified description. The differences with the full set of rules are not relevant
here anyway.1

Diplomacy is a game widely played on the Internet.2 It is a game for 7
players, with no chance moves and playing well requires good negotiation skills.
There is no hidden information and all players make their moves simultaneously.
The game is played over multiple rounds and each player begins with 3 or 4
units that are placed on a map of Europe. The map is divided into provinces,
which can each hold 0 or 1 units. Some of the provinces (34 in total) are called
supply centers. In each round each player must ‘submit an order’ for each of his
units. Such an order can be either a ‘move-to’ order, meaning that the player
tries to move the unit from its current location to a neighboring province, or a
‘support’ order, meaning that the unit will not move, but instead will give more
strength to a moving unit. A support order is unsuccessful however, if there is
another unit moving to the location of the supporting unit. In that case we say
the support has been ‘cut’. If two or more units are ordered to move to the
same province, then only the unit that receives the most successful supports will
succeed. A player ‘owns’ a supply center if the last unit that was located in it
belongs to that player. If the owner of a supply center changes, the new owner
will receive an extra unit in the next round, and the previous owner will lose
one unit. A player is eliminated when he or she loses all units. A player wins

1A full description of the rules can be found at:
https://www.wizards.com/avalonhill/rules/diplomacy.pdf

2http://www.playdiplomacy.com/

4.3. Diplomacy 67

the game when he or she owns 18 supply centers (a ‘solo victory’), but a game
may also end when all surviving players agree to a draw.

The main difference between Diplomacy and other deterministic games like
chess and checkers, is that in Diplomacy players are allowed to negotiate with
each other and form coalitions. Each round, before the players submit their
orders, the players can make agreements about the orders they will submit.
Typically, players may agree not to attack each other, or they may agree that
one player will use some of his or her units to support a unit of the other player.
Although the ultimate goal for each player is to achieve a solo victory, it is very
common that the players in a coalition agree to end the game in a draw when
all other players outside that coalition are eliminated.

In a real Diplomacy game the agreements made between the players do not
have any formal consequences. Players may break their promises so all agree-
ments are based on trust. The notion of trust however, is beyond the scope of
this thesis. Therefore, we will here assume that all players always obey their
agreements. Also, we will not look at the problem of coalition formation. We
assume coalitions are fixed from the beginning of the game and players do not
break away from their coalitions.

4.3.2 Formal Description of Diplomacy

We will now define the one-shot game Dip. The idea behind this definition is
that a single round of Diplomacy can be seen as a negotiation game over Dip,
as defined in Section 3.4 (note however that a negotiation game itself is also
modeled as consisting of many ‘rounds’ so one should not confuse the rounds of
the negotiation game with the rounds of the Diplomacy game).

The game Dip is defined on a graph of which the vertices are called provinces.
The set of provinces is denoted Prov and we use the notation adj (p, q) to state
that provinces p and q are adjacent in the graph. The set of supply centers
SC is a proper subset of Prov . Each player αi has a set of units Unitsi . The
set of all units is denoted: Units =

⋃
i Unitsi . Each unit u has a location

loc(u) ∈ Prov and a set of possible orders Ordu :

Ordu = Mtou

⋃
Supu

Mtou = {(u, p) | (p = loc(u) ∨ adj (p, loc(u)))}
Supu = {(u, u ′) | u ′ ∈ Units ∧ u 6= u ′}

The set of moves Oi for a player αi is the Cartesian product over the sets Ordu

for each of its units.
Oi = ×u∈Unitsi

Ordu

If o is a joint move then ô denotes the set of all orders submitted by all players.

Definition 43 A support (u, u ′) is called valid, if the owner of u ′ submits the
order (u ′, p) for some province p adjacent to the location of u.

val(o, u, u ′)⇔ ∃ p ∈ SC : (u ′, p) ∈ ô ∧ adj (p, loc(u))

68 Chapter 4. Negotiation Problems

Definition 44 If a support order (u, u ′) has been submitted then we say that
the unit u is cut if another unit tries to move to the location of u:

cut(o, u)⇔ (u, u ′) ∈ ô ∧ (u ′′, p) ∈ ô ∧ p = loc(u))

Definition 45 The set of successful supports of u is defined as those orders
that support u, and that are valid and not cut:

sucsup(o, u) = {sup(u ′, u) ∈ ô | val(o, u ′, u) ∧ ¬ cut(o, u ′)}

Definition 46 The force exerted by unit u on province p is defined as:

s(o, u, p) =

{
1 + |sucsup(o, u)| if (u, p) ∈ ô

0 otherwise

Definition 47 We say a player αi conquers a province p if αi has a unit that
exerts more force on p than any other unit:

conq(o, i , p)⇔ ∃ u ∈ Unitsi ∀ u ′ ∈ Units \ {u} : s(o, u, p) > s(o, u ′, p)

We define the utility function for a player in the game Dip as the number of
supply centers he or she conquers:

f Dip
i (o) = |{p ∈ SC | conq(o, i , p)}|

4.4 Conclusions

We have presented three negotiation scenarios involving large agreement spaces
and non-linear utility functions. In the first case, the ANAC domain, the negoti-
ations are bilateral and utility functions are expressed as a sum over constraints.
This means that for a given deal and agent, the utility value can be calculated
quickly. Although in principle any function over a finite domain can be expressed
in this way, it is in many cases impossible in practice to explicitly write down a
given function in this way.

The second test case described (the NSP) is a new problem that we have
introduced in order to test negotiation algorithms in domains where calculating
the utility value of a deal is harder, as it involves solving an NP-hard problem.
We think that this property makes the scenario much more realistic than other
scenarios, because in a real negotiation setting a negotiator would also need time
to evaluate each offer that is being made to him or her. In fact, we think that
negotiating well depends more on the ability of a negotiator to make a proper
evaluation of a proposal, rather than on his or her concession strategy. Fur-
thermore, the NSP allows for multilateral negotiations in which all negotiators
are considered equal (i.e. there is no distinction between ‘buyers’ and ‘sellers’).
We have explained how the NSP could be adapted in order to make it a more
realistic model for real-world package delivery.

4.4. Conclusions 69

Finally, the third test case described is the game of Diplomacy. This game
has existed as a board game and is still widely played online. This game involves
negotiations that are even more complicated than those in the NSP, because a
given deal does not directly determine a utility value, but just restricts the
possible moves a player can make. This means that, in order to assign a value
to such a deal, one needs to solve a Game Theoretical problem.

Part II

Negotiation Algorithms

Chapter 5

Applying Genetic
Algorithms to the ANAC
Domain

In this chapter we describe a negotiating agent that applies Genetic Algorithms
for the exploration of the agreement space. It is called GANGSTER, which
stands for Genetic Algorithm NeGotiator Subject To alternating offERs. It has
successfully participated in the Annual Negotiating Agents Competition 2014
(ANAC’14) and finished in second and third place respectively in the two cate-
gories of the competition.

5.1 The Competition

In the competition each agent engaged in several negotiation sessions, where
each session involved two agents: Ag = {α1, α2}. In each session both agents
had the same deadline which was set to 180 seconds. Each session would finish
as soon as the agents made an agreement, or when the deadline had passed. The
agents had to negotiate according to the alternating offers protocol (see Section
3.4). The agents alternate turns, and in each turn the agent whose turn it is
may propose a deal x from the agreement space Agrm (see Sect. 4.1.1) or accept
the last deal proposed by the other agent. This continues either until a deal
is accepted or until a the deadline passes. The dimension m of the agreement
space could be as high as 50, meaning that the agreement space could contain
up to 1050 possible deals.

It is important to note that an agent may take as much time as it likes before
making the next proposal (or accepting the previous proposal). Therefore, the
agent’s decision is not only what deal to propose (or accept) but also when
to propose. More precisely: when an agent finds a potential deal to propose it
should determine whether it will propose that deal or whether it should continue

73

74 Chapter 5. Applying Genetic Algorithms to the ANAC Domain

searching for a better deal. If the deadline passes without any agreement having
been made each agent receives its reservation value rvi . Otherwise, each agent
αi receives the utility value fi(x) associated with the deal x they agreed upon.

In this chapter we adopt the convention that α1 always refers to our agent,
and α2 refers to our opponent. Furthermore, whenever we use the term ‘utility’
without specifying an agent, we mean the utility function f1 of our agent α1.

5.2 Overview of the Algorithm

Let us first give a global overview of the algorithm before we go into more detail
on each of its steps. Each turn the algorithm takes the following steps:

1. Calculate the aspiration value and max distance (Alg. 1, lines 1-2).

2. Decide whether to accept the previous offer made by the opponent (Alg.
1, lines 3-11).

3. Apply a Global genetic algorithm to sample the agreement space, and store
the 10 proposals with highest utility (Alg. 1, lines 12-13).

4. Apply a Local genetic algorithm to sample the agreement space, and store
the 10 proposals with highest utility (Alg. 1, lines 14-15).

5. Apply the offer strategy to pick the “best” proposal found by the GAs in
the current round or any of the previous rounds (Alg. 1, line 16).

Algorithm 1 chooseAction(t , x , z)

Require: η1, η2
1: η1 ← calculateAspirationValue(t)
2: η2 ← calculateMaxDistance(t)
3: if f1(x) ≥ η1 then
4: accept(x)
5: return
6: else
7: if f1(z) ≥ η1 then
8: propose(z)
9: return

10: end if
11: end if
12: newFound ← globalGeneticAlgorithm()
13: found ← found ∪ newFound
14: newFound ← localGeneticAlgorithm(x)
15: found ← found ∪ newFound
16: proposeBest(found, η1, η2)

5.3. Acceptance Strategy 75

5.3 Acceptance Strategy

The acceptance strategy of GANGSTER is given in lines 3-11 of Algorithm 1.
It depends on a function of time η1(t) ∈ R that we call our aspiration level.
We will explain how this value is calculated in Section 5.8. For now the only
important thing to know is that it is a decreasing function of time that represents
our agent’s willingness to concede.

Let x ∈ Agrm denote the last offer proposed by the opponent, and let z ∈
Agrm denote the offer with highest utility among all deals made by the opponent
in the earlier rounds:

∀ z ′ ∈ H2→1(t) : f1(z) ≥ f1(z ′)

If the utility f1(x) ≥ η1(t), then our agent immediately accept the proposal made
by the opponent. If not, then our agent compares its aspiration level with the
highest utility offered by the opponent so far, f1(z). If f1(z) ≥ η1(t) then α1

reproposes that deal to the opponent. Note that this means that z is a deal that
was earlier rejected by our agent (because at that time its aspiration level was
higher), but now that the deadline has come closer it has lowered its standards
since the risk of failure has become bigger and is now willing to accept it after
all. Unfortunately, the alternating offers protocol does not allow an agent to
accept a proposal from an earlier round, so it needs to be proposed again. If, on
the other hand f1(z) < η1(t) it means that it does not consider z good enough
(yet), so it will apply the search strategy (Sec. 5.4) and offer strategy (Sec. 5.5)
to determine a new proposal to make.

Let us now compare this strategy with existing acceptance strategies. In
[Baarslag et al., 2013] a study was made of several acceptance strategies. The
most common acceptance strategy they identified is named ACprev (1, 0). In that
strategy the agent α1 compares the utility of the opponent’s offer f1(x) with the
utility f1(w) of the proposal w that agent α1 would make if it would not accept
x .

Our strategy is a variation of that strategy. However, instead of comparing
the utilities of two proposals, our agent compares the utility of the opponent’s
proposal f1(x) with its aspiration level η1(t). The reason for applying this strat-
egy is that α1 can already determine whether or not to accept the opponent’s
offer x before it has determined its own proposal w . This has two advantages:
firstly, this may save some time because determining the next proposal w can
be time consuming. Secondly, it may not always be possible to find a deal w
for which the utility is higher than the aspiration level. For example, the agent
may only be able to find a deal w with utility f1(w) = η1 − 0.1. If it would
apply ACprev (1, 0) it would not accept the opponent’s proposal x , even though
x yields a utility value higher than our agent’s aspiration level. That would be
suboptimal, since the aspiration level is by definition the amount of utility that
the agent considers high enough to accept.

Another improvement with respect to the ACprev (1, 0) strategy is that we
introduce the concept of reproposing (Alg. 1, lines 6-11). After all, the fact that

76 Chapter 5. Applying Genetic Algorithms to the ANAC Domain

our agent rejected an earlier proposal from the opponent does not have to mean
it would never accept it. The great advantage of reproposing, is that we know
that the opponent has already proposed it, and therefore it is very likely that he
will accept it. Moreover, the fact that it was already proposed to α1 means that
our agent does not have to search for a new proposal, it already has z readily
available in memory.

5.4 Search Strategy

We will now explain the Genetic Algorithms (GA) that our agent applies to
find good deals to propose. To apply a Genetic Algorithm one needs to model
the elements of the search space as vectors (in the context of GAs also called
chromosomes). Luckily, in the ANAC-domain the possible deals are already
given as vectors, as defined in Section 4.1.1, so we do not have to put any effort
in this modeling. Our GA consists of the following steps:

1. Initial population: Randomly pick 120 vectors from Agrm . This is the
initial population.

2. Selection: Pick the 10 vectors with highest utility from the population.
These are the survivors.

3. Mutation: Pick another random vector from Agrm and add it to the
survivors.

4. Cross-over: For each pair (v ,w) of these 11 survivors, create two new
vectors v ′ and w ′ (so in total we create 110 new vectors).

5. New population: The new population now consists of the 110 new vec-
tors from step 4, plus the 10 survivors from step 2. Go back to step 2, and
repeat until convergence, or until we have iterated 10 times.

After a number of iterations the population may contain the same vector more
than once. Therefore, when we pick the 10 vectors with highest utility in the
selection step, we mean the 10 best unique vectors. In other words: we first
remove any duplicates from the population and then pick the 10 best vectors.
It may happen however that the population has evolved so quickly that no
more new unique vectors are created by cross-over. In that case we say it has
converged, and the GA is stopped.

Cross-over

A common way for a GA to apply cross-over, is to cut two vectors both in two
halves, and then gluing the first half of the first vector to the second half of
the second vector and vice versa (as explained in Section 1.3.6). We have how-
ever opted for a different kind of cross-over, in which random vector-entries are
swapped. Suppose we have two vectors v ,w ∈ Agrm . The cross-over mechanism

5.5. Offer Strategy 77

will output two vectors v ′ and w ′ as follows. It first generates a random vector r
of dimension m, where each entry ri has the value 0 with probability 50% or the
value 1 with probability 50%. Then, given the vectors v ,w and r , the vectors v ′

and w ′ are defined according to:

if ri = 0 then v ′i = vi and w ′i = wi

if ri = 1 then v ′i = wi and w ′i = vi

The reason that we have chosen for this type of cross-over, is that (as far as the
participants of the competition know) there is no relation between the variables
in the domain. A constraint may for example involve the 3rd and the 7th vari-
able, and there is no reason to assume that consecutive variables are stronger
related than non-consecutive variables. This is reflected in our cross-over mech-
anism by the fact that it is symmetric under any permutation of the variables,
whereas the regular cross-over mechanism has a strong bias towards the survival
of consecutive sequences of values.

Global Search vs. Local Search

As we see in Algorithm 1, in each turn our agent applies two GAs. The first is
called the global GA, and the second one is called the local GA. The difference
is that the global GA picks vectors randomly from anywhere in the agreement
space, while the local GA only picks vectors that are close to the last proposal
made by the opponent. Specifically: there is a decreasing time-dependent func-
tion η2(t) and our agent only picks vectors for which the Manhattan distance
to the last proposal made by the opponent is smaller than η2(t). The idea is
that on one hand α1 wants to maximize its own utility f1 and therefore searches
for good deals anywhere in the space, but on the other hand also needs to find
proposals that are good for the opponent so it applies a local GA to find deals
that are similar to the proposals made by the opponent.

5.5 Offer Strategy

In lines 12-15 of Algorithm 1 we see that the vectors returned by the GAs are
added to a set of potential proposals. Next, it is the task of the offer strategy to
determine which of those potential proposals should be proposed to the opponent
(Alg. 1, line 16).

We use the notation d(x , y) to denote the Manhattan distance between vec-
tors x and y :

d(x , y) =
∑n

i=1 |xi − yi |

For each vector x in the set of potential proposals our agent determines three
properties, called utility, distance, and diversity, to decide which deal is the best
to propose. The first of these properties, utility, is the most obvious: the higher
our agent’s utility f1(x), the better the deal.

78 Chapter 5. Applying Genetic Algorithms to the ANAC Domain

Definition 48 The distance distt(x) of a vector x ∈ Agrm at time t, is the
lowest Manhattan distance between x and any proposal previously made by the
opponent:

distt(x) = min{d(x , y) | y ∈ H2→1(t)}

The idea is that, since our agent cannot know f2(x) it uses distt(x) as a
measure for the opponent’s utility instead. If distt(x) is low, then there is a high
probability that f2(x) is high. Therefore, our strategy prefers to propose deals
with low distance.

Definition 49 The diversity divt(x) of a potential proposal x ∈ Agrm at time t
is the shortest Manhattan distance between x and any of the proposals previously
made by our agent:

divt(x) = min{d(x , y) | y ∈ H1→2(t)}

Our offer strategy prefers proposing deals with high diversity because this has
two advantages:

• If α2 rejected proposal v , and the vector w is close to v (i.e. divt(w) is
low), then it is likely that α2 will also reject w . So our agent should avoid
proposing deals that are similar to earlier rejected deals.

• By proposing more diverse offers, α1 gives the opponent more information
about its utility function f1, making it more easy for α2 to find proposals
that are profitable to α1.

Let us clarify this a bit more. Imagine that α1’s utility function has one very
high peak. That is: there is a small area inside Agrm where f1 is very high. Then
α1 would be inclined to only make proposals from that area. However, if the
opponent’s utility f2 is very low in that same area this will be an unsuccessful
strategy. Now, suppose that there are a number of other areas of Agrm where
f1 is less high, but still high enough to be proposed. Then by giving priority
to deals with high diversity, we make sure that α1 also makes proposals around
those alternative peaks, hence increasing the probability that for some of its
proposals the opponent utility f2 is also high. Secondly, in this way α1 reveals
to α2 the locations of the alternative peaks, which also makes it easier for α2 to
find deals that are profitable to α1.

Let us now explain how utility, distance and diversity are used to determine
which proposal to make. This procedure depends on two time-dependent func-
tions: the aspiration level η1(t) and the maximum distance: η2(t). Let X denote
the set of potential proposals found by the local and global GAs. Then we define
the subset Y ⊆ X as:

Y = {y ∈ X | f1(y) ≥ η1(t) ∧ distt(y) ≤ η2(t)}

The deal that α1 will propose next is then the element y∗ ∈ Y with highest
diversity:

y∗ = arg max{divt(y) | y ∈ Y }

5.6. Motivation for Using Manhattan Distance 79

We see here that η1 acts as a minimum amount of utility α1 requires for itself,
while η2 acts as a minimum amount of utility that α1 considers necessary to offer
to α2 (recall that low distance represents high opponent utility). Both of these
functions are decreasing functions of time. This means that as time passes, α1

requires less and less utility for itself, while it forces itself to offer more and more
utility to α2. After all, the closer it gets to the deadline, the more desperate the
agent will get to make a proposal that gets accepted by the opponent. If there
is more than one potential proposal for which the utility is high enough and the
distance is low enough then α1 picks the one with highest diversity.

The maximum distance η2 is calculated based on how many good propos-
als have been found by the local GA. The more good proposals found, the
more η2 is decreased. The reason is that if our agent finds many proposals,
then this is a sign that η2 is too high. To be precise: it counts how many
proposals were returned by the last local GA, for which f1(y) ≥ η1(t) and
distt(y) ≤ η2(t) both hold. If this number is higher than some parameter called
DECREASE THRESHOLD, then we decrease η2 with 1, unless η2 has already
reached its lowest value of MINIMAL MAX DISTANCE. We have determined
the parameters DECREASE THRESHOLD and MINIMAL MAX DISTANCE
through experiments with Gangster negotiating against itself, and set them to
4 and 5 respectively. The maximum distance is initialized to have the value
1.5 ·m where m is the dimension of the agreement space. Note that the higher
the dimension of the agreement space, the higher the Manhattan distances can
become. Therefore, the initial maximum distance indeed needs to be scaled with
the dimension.

5.6 Motivation for Using Manhattan Distance

Let us now explain why we have chosen to use the Manhattan distance as our
distance measure in the definitions. The idea is that we use distance to measure
the difference between the utility values of two deals. The closer two deals x
and y are, the more likely that fi(x) is close to fi(y). Indeed, the utility of a
deal is determined by the constraints that it satisfies and if two deals are close
to each other then they are likely to satisfy the same constraints. The question
however, is which distance measure best reflects the similarity in utility values.

Let c be a constraint that is satisfied by x , that is: x ∈ sc . Now for each
variable xj the constraint defines two integers µj and νj which are unknown.
This means that if we increase or decrease xj by 1, there is a probability that x
will no longer satisfy the constraint as xj may ‘drop out’ of the interval [µj , νj].
If xj is in the interval [µj , νj] then we denote the probability that xj +1 or xj −1
is not, by p:

P(xj ± 1 6∈ [µj , νj] | xj ∈ [µj , νj]) = p

Since we have no reason to assume that any variable xj ∈ {x1, . . . xm} is different
from any other variable, we can assume that p is equal for each xj . Then the
probability of no longer satisfying the constraint after making l steps is pl ,

80 Chapter 5. Applying Genetic Algorithms to the ANAC Domain

independent of the directions of these steps. Specifically: it does not matter
whether we take two steps in the j = 1 direction or two steps in the j = 2
direction, or one step in the j = 1 direction and one step in the j = 2 direction.
In other words, the probability that y satisfies c equals pd(x ,y).

Note that this is a direct consequence of the fact that constraints are defined
by rectangular subspaces. If they had been defined by spherical subspaces for
example, then the same reasoning would have lead us to use Euclidean distance.

5.7 Motivation for Using of Genetic Algorithms

Let us now explain why we think the use of Genetic Algorithms was a natural
choice for the given domain, instead of other search techniques such as tree
search.

Genetic Algorithms work well in domains where it is easy to find good partial
solutions, simply by picking random samples, and where the combination of good
partial solutions often yields even better solutions. In that case the cross-over
mechanism can combine the good features of one vector with the good features
of another vector. We show that both these criteria are satisfied in the ANAC
domain.

First, we show that it is easy to find good partial solutions. We define the
volume of a constraint as the fraction of vectors in the entire agreement space
that satisfy the constraint.

Definition 50 The volume vol(c) of a constraint c is defined as:

vol(c) = |sc |
|Agrm |

Note that when randomly picking a vector from Agrm the probability that it
will satisfy some constraint c is equal to vol(c).

Definition 51 The defining dimensions of a constraint c are the indices
j ∈ [1,m] for which [µj , νj] 6= [0, 9].

In the example domains provided to the participants before the competition no
constraint had more than 4 defining dimensions. This means that the volume of
any constraint could never be smaller than 10−4. For most constraints however,
the volume was much larger, often in the range between 0.1 and 0.5.

Furthermore, we recall from Section 1.3.6 that cross-over strongly increases
the probability of finding solutions satisfying more than 1 constraint, if the value
1+0.52·d−1 ·(s−1) is significantly larger than 1, where d is the number of defining
dimensions of a constraint. Indeed, in the ANAC domain the value d was never
higher than 4 and we chose s to be of size 120, which means that this value
1 + 0.52·d−1 · (s − 1) was around 2, in the worst case.

As explained in Section 1.3.6 the application of GAs does not require any
knowledge about the constraints of the specific problem instance, which can be
seen both as an advantage and as a disadvantage. In the case of the ANAC com-
petition this is an advantage because indeed we only know the general structure

5.8. Aspiration Level 81

of the problem instances, as given in Section 4.1.1, but we know nothing about
the specific instances.

5.8 Aspiration Level

The calculation of the aspiration level η1 is a bit more complex than the calcu-
lation of η2. Let u∗ denote the highest utility that the opponent has offered to
α1 so far.

u∗ = max{f1(x) | x ∈ H2→1(t)}

Then we can assume that α1 can achieve at least this utility value, because it
could simply accept x , or repropose x to the opponent, and assume the opponent
would accept it. Now, our strategy is to decrease the aspiration level in such a
way that it reaches the value u∗ at the deadline. However, we do not want it to
decrease linearly, because that might make it too easy for the opponent to guess
how much α1 is willing to concede. Instead, η1 first decreases slowly, and then
decreases faster and faster as time passes.

Let t be the current time (i.e. the time for which we want to calculate η1(t))
and let t ′ be the time at which we last calculated η1 (so t ′ < t). In order to
determine η1(t) we first calculate a ‘reference value’ gt . Given this value we
calculate η1(t) by linearly interpolating between the values η1(t ′) at t ′ and gt at
time 1. To be precise:

η1(t) = 1−t
1−t′ · (η1(t ′)− gt) + gt

Although this is linear, the overall behavior of η1(t) will be non-linear, because
gt itself also decreases in time. It starts half way between the 1 (the maximum
utility) and u∗, that is: at t = 0 we have g0 = 1

2 + 1
2u∗, and decreases towards

u∗, as follows:

gt = (g0 − u∗) · (1− t)0.3 + u∗ = (1
2 −

1
2u∗) · (1− t)0.3 + u∗

In the case that there is a discount factor δ, we need to concede a bit faster,
so in that case we aim to reach gt not at the deadline, but at an earlier time t∗.
Since the lower the discount factor the faster we need to concede we have chosen
to set t∗ = δ. The formulas above then become:

η1(t) = δ−t
δ−t′ · (η1(t ′)− gt) + gt

gt = (1
2 −

1
2u∗) · (δ − t)0.3 + u∗

Note that not having a discount factor, is equivalent to saying that δ = 1, so
these formulas are a generalization of the previous ones. The value of 0.3 here
is a parameter that we have determined by trial-and-error.

82 Chapter 5. Applying Genetic Algorithms to the ANAC Domain

5.9 Conclusions

We have introduced an agent, called Gangster, that makes use of Genetic Algo-
rithms in order to negotiate over a domain where the utility functions are given
in terms of constraints, which are in turn defined by rectangular subspaces. The
trade-off between maximizing the agent’s own utility and maximizing the oppo-
nent’s utility was solved by using an time-based aspiration level for our agent’s
own utility, and at the same time demanding that the proposed deals were close
to earlier proposals made by the opponent. If both criteria are met by more than
one deal, then our agent proposes the deal that is most different from earlier pro-
posals made by our agent. Furthermore, we have introduced a new acceptance
strategy.

Our agent has participated in the ANAC’14 competition, which consisted
of two categories: the individual category, in which the agents where ranked
according to the individual utility they obtained, and the social category in
which agents were ranked by the social utility, which is the sum of the agent’s
own utility and its opponent’s utility. Gangster ended in third place in the
individual category, and in second place in the social category, among more
than 20 participants. We conclude that our agent is a good negotiator and that
Genetic Algorithms are a good search technique for the given domain.

However, although the negotiation domains were very large, we think that
this may have had only very little influence on the success of the negotiators. The
reason for this belief is that when testing our GA on the largest test domain it was
often able to find deals with f1(x) > 0.95 (the highest possible value was 1) in less
than 70 ms., on a standard desktop computer. This is very short in comparison
to the total amount of 180 seconds available. An algorithm that is 10 times as
slow would still be able to find more than enough good proposals to negotiate
successfully. Therefore, we think the success of a participant depended more on
its bargaining strategy than on its search algorithm. This is a pity, because the
search was supposed to be the distinguishing property of this year’s competition
with respect to other years. We would therefore be very interested to know what
the results would have been if the deadlines had been much shorter.

We think that the reason that the size of the domain was not that influen-
tial, is that the definition of the utility functions was too simplistic. In reality,
constraints are not always given by rectangular subspaces and we think that
constraints often involve more than 4 variables in any realistic domain.

Chapter 6

Applying Branch & Bound
to the NSP

In this chapter we will introduce a new family of negotiation algorithms, called
NB3, that applies Branch & Bound to explore the agreement space. Unlike
regular B&B however, in each node it stores upper- and lower- bounds for every
agent rather than just for itself. As in the previous section, it applies a time-
based negotiation strategy that considers two utility aspiration levels: one for
the agent itself and one for its opponents. We describe an implementation of
NB3 designed for the NSP and present the results of experiments with this
implementation.

6.1 Problem Statement

Before introducing the algorithm, we will first state the assumptions we have
made, and motivate the approach we have taken.

6.1.1 Assumptions

The goal of the work presented in this chapter is to design an agent that is able
to maximize its utility function by negotiating with other agents. We have made
the following assumptions:

• Negotiations are multilateral.

• Every agent has a finite set of actions it can perform to change the current
world state.

• Each agent has an individual preference relation over world states, defined
by a utility function.

83

84 Chapter 6. Applying Branch & Bound to the NSP

• Agents are selfish: each agent wants to take those actions that increase
its own utility. The agents have no interest in maximizing other agents’
utility functions or reaching a social optimum.

• The definitions of the utility functions are publicly known.

• The utility functions do not have an explicit formula, but are expressed in
terms of a hard problem to solve and therefore calculating the utility of a
world state or proposal is computationally expensive (such as the NSP as
defined in Section 4.2).

• Agents can make binding agreements with each other about the actions
each will take. This can improve the efficiency of their actions.

• The number of possible agreements is too large to apply exhaustive search
(we have done experiments in which this number was as large as 20200, see
Section 6.5).

• The agents negotiate under the Unstructured Negotiation Protocol (see
Section 3.5).

• There is a fixed deadline for the negotiations which is equal for all agents
and known to all agents.

• The utility functions do not change over time (e.g. there are no discount
factors).

• There is no mediator to help the negotiations.

Furthermore, we have made the following assumptions in this chapter, purely to
keep the discussion and the notation simple. Our algorithm would work equally
well without these assumptions.

• For any agent αi if a deal in which αi does not participate gets confirmed
this does not influence the utility of αi (this is rather strong assumption
which in the case of Diplomacy does not hold, so this assumption will be
dropped in Chapter 7).

• The order of execution of actions is irrelevant for the outcome of those
actions.

Finally, we mention some important properties we do not take into account,
although we think a realistic algorithm should take them into account. We leave
them for future work.

• Non-numerical preferences: when negotiating with real people it is often
not possible to express preferences as numerical values. Therefore, it would
be better to use preference relations, rather than real-valued cost functions.

6.1. Problem Statement 85

• Modeling opponent utility functions: in this thesis we assume that there is
always some expression of the opponents’ utility functions given. In real-
world scenarios such an expression will not be given and should instead be
determined with some specialized learning algorithm.

• Modeling opponent strategy: we do not make any attempt to model the
concession strategy of the opponents. Our agent just uses a generic, fixed
strategy that does not adapt to the opponents’ strategies.

6.1.2 Complete Information

Although formally speaking the agents in this model have complete information
in the sense that the utility functions are publicly known, we feel it is important
to stress that in practice the information they have is far from complete. This
is because the agents only know the definitions of the utility functions. In order
to know the values of the utility functions however, they need to perform heavy,
time consuming calculations. Given that the domains under consideration are
very large, it is absolutely impossible for any agent to know all the utility values
of all possible deals for all agents. Therefore, an agent will usually only make
approximations of the utility values and can only do so for a very small subset
of the agreement space.

6.1.3 Approach

The approach that we take is purely heuristic. We do not try to find any equi-
librium strategies because we do not think calculating an equilibrium strategy
in the real world is a feasible thing to do. Also, even in the scenario we treat in
this paper we cannot think of any way to find formal game theoretical results
without simplifying our assumptions so much that they become unrealistic in
real-world applications. Let us state some arguments to support this:

• We do not make common assumptions such as the existence of a discount
factor, which are often needed to obtain non-trivial results, because we
do not think in real negotiations you would ever explicitly have such a
discount factor (or know its value).

• Any result that provides hard mathematical guarantees would probably
only refer to the test case under consideration (such as the NSP, Section
4.2), while our goal is to tackle negotiation problems in general.

• The number of possible deals the agents can make is very large: up to
20200 in our experiments, and there are no clear symmetries to reduce this
considerably. Analyzing all possible options of a player is impossible.

• Since the players cannot calculate the utilities of 20200 deals, they need
to apply a heuristic exploration of the space of possible deals to deter-
mine which ones to calculate. This exploration takes place continuously,

86 Chapter 6. Applying Branch & Bound to the NSP

meaning that the knowledge the agents have about the world changes con-
tinuously, and since many solution concepts depend on the knowledge of
the agents, such results would also change continuously.

• Even if one can determine an optimal strategy that tells a player to propose
a deal with a given target utility, there is no guarantee that one can actually
find such a deal with that utility value.

• Since each player explores the space of possible deals independently, each
player discovers different possible deals. Therefore, a player does not know
which proposals the other players have discovered so far, so there is lack
of information about the opponents’ options.

• Players do not only accept or propose deals, but also need to decide how
long to search for good deals before making a proposal. There is no
straightforward way to assign utility to such a decision. Of course one
could define some kind of utility function for that, but the results would
depend on that choice, therefore lose all generality, and therefore not sat-
isfy our goals.

Note that these points indeed hold for all three the negotiation problems defined
in Chapter 4. Especially noteworthy is the fact that the game Diplomacy has
been played by many players worldwide for more than 50 years. If people had
been able to find an optimal negotiation strategy for this game, it would not
have been interesting to play it anymore. Therefore, the fact that it is still
being played is evidence that so far no optimal negotiation strategy has been
discovered for it.

6.2 The NB3 Algorithm

In this section we present our negotiation algorithm called NB3, which stands
for Negotiation Based Branch & Bound. As explained in Section 1.3 Branch &
Bound is a search algorithm capable of searching through large spaces efficiently
and has reasonable solutions available at any time. When searching for the
optimal solution, it is usually unnecessary to examine every possible solution.
One can often, after examining only a partial solution, already discard all full
solutions that extend this partial solution. Furthermore, as the algorithm is
running, it yields solutions that get closer to the optimal solution, so at any
time it has a solution available that at least approximates the optimum. The
fact that B&B allows one to discard large parts of the search space and that it
is an anytime algorithm makes it ideal to apply to our domain.

We next explain the various components of NB3 assuming that it runs on
the agent α1. The other agents might also run a copy of NB3, but they may just
as well run any other negotiation algorithm, or they could even be human.

6.2. The NB3 Algorithm 87

6.2.1 The Search Tree

As explained in Section 3.4 we assume there is a negotiation stage followed by
an action stage. We assume that the action stage is a game over one or more
rounds, and in each round each player has a set of possible actions Oi .

In this chapter we will model a deal as a set of committed actions, that is:
x ⊆ ∪n

i=1Oi , where n is the number of agents, and Oi the set of allowed actions
for agent αi . This is interpreted as each of the agents αi committing itself to
execute his part of the deal x ∩ Oi (recall that a deal x defines for each player
a subset of all its possible strategies. In this case that subset would consist of
those strategies in which each player αi performs all actions in x ∩Oi).

An agent that runs the NB3 algorithm builds a search tree which is explored
according to a best-first strategy. Each arc between a node and its parent is
labeled by a certain action from the set of possible actions ∪n

i=1Oi . Each node
can then be interpreted in four equivalent ways:

• Each node nd represents the deal that consists of all the actions that label
the arcs in the path from the root to nd ; this deal is denoted by path(nd).
The root node corresponds to the empty deal (i.e. no commitments at all).

• Equivalently, each node represents a set of deals,1 denoted deals(nd), con-
sisting of all deals that can be constructed by adding more actions to
path(nd). The root node then represents the entire agreement space and
the children of a given node form a partition of the set of deals represented
by the parent node. So if a node nd has children nd1, nd2, nd3, then
deals(nd) = deals(nd1) ∪ deals(nd2) ∪ deals(nd3).

• A third way of interpreting nodes is to see them as world states. The root
node then represents the initial world state ε0 and node nd represents the
world state εnd that results from letting path(nd) act on the initial world
state: εnd = F(ε0, path(nd)).

• Finally, each node represents the set End of all world states that can be
reached by the deals in deals(nd):

ε ∈ End iff ∃ x ∈ deals(nd) : F(ε0, x) = ε

The root node represents the set of all world states that can be reached by
letting any deal act on the initial world state ε0. If a node nd has children
nd1, nd2, nd3, then End = End1

∪ End2
∪ End3

.

To summarize: each node can be identified with a deal path(nd), a set of deals
deals(nd), a world state εnd , and a set of world states End . The relationship
between these objects is given by:

deals(nd) = {x | path(nd) ⊆ x}
1As mentioned before, to keep the discussion simple we assume that the order in which

actions are taken is irrelevant for the outcome of the state of the world, even though our
algorithm would work just as well without this restriction. Therefore, we see a deal as a set of
actions, rather than a sequence of actions. So a set of deals is a set of sets of actions.

88 Chapter 6. Applying Branch & Bound to the NSP

Figure 6.1: The search tree. Node n represents the deal consisting of the actions
ac1, ac4 and ac6.

εnd = F(ε0, path(nd))

End = {ε = F(ε0, x) | x ∈ deals(nd)}

In Figure 6.1 the node marked n represents the deal consisting of actions ac1,
ac4 and ac6, so path(nd) = {ac1, ac4, ac6}. The set deals(nd) consists of all
feasible deals that include these three actions. The world state εnd is the world
state that would result from letting these actions are executed in the initial world
state, and the set of world states End consist of all the world states that can still
be realized after these actions have been executed.

6.2.2 Making Decisions

In our environment the agreements among the negotiators have to be made
during the search process. This is because an agent cannot wait until it finds
the optimal deal before negotiating with other agents, as it might then be too
late to sign any agreement with them: they might already have committed
themselves to other, incompatible deals. Therefore, a trade-off exists between
optimality and availability.

When α1 receives a proposal from another agent, it has to decide whether to
accept it or not, but it may not take this decision immediately. It may prefer
to expand the tree a bit more, in order to see if it can find a better alternative
to the proposed deal. The more the agent explores the tree before making any
agreements, the more likely it is that it will find better deals. But, on the
other hand, the less likely it becomes that it will get the other agents to accept
those deals. How to solve this trade-off is a key decision when implementing an
instance of NB3.

Another important decision for any implementation of NB3 is the question
which node to split and how to split it. This may depend on the ongoing negoti-
ation thread. For example, when an agent (say agent α2) rejects a deal proposed

6.2. The NB3 Algorithm 89

by α1, this means the actions by α2 should get less priority in future selections
to be made by the algorithm. The idea behind this is that if you are under time
pressure and there are several negotiation partners, you would be more inclined
to negotiate with those partners that are showing more interest in reaching an
agreement with you. Otherwise, you would be wasting your time. Moreover, if
someone is not willing to concede, you can put him under pressure by suspending
negotiations with him and continue your negotiations with others. In Section 6.3
and 6.4 we show how we have solved these issues for a particular implementation
of NB3.

6.2.3 Bounding

Branch & Bound algorithms require that each node nd compute upper- and
lower bounds for the utility function in the subspace corresponding to this node.
In the case of negotiations, however, an agent should not only take its own utility
into account but also the utility functions of its negotiation partners. For this
reason, each node does not only compute bounds for the utility of agent α1, but
also for every other agent.

The algorithm, running on agent α1, is thus assumed to have a model2 of
the utility functions fi of the other agents, and uses this model to calculate for
every node nd and every agent αi ∈ Ag the following bounds. Given a node nd
we define εnd = F(εt , path(nd)), and given a deal x we define εx = F(εt , x).

• For each node nd and agent αi there is an upper bound: ubi(nd). This
is the maximum utility αi may receive from any deal that extends the deal
path(nd).

ubi(nd) = max x∈Agr{fi(εx) | path(nd) ⊆ x}

• For each node nd and agent αi an intermediate value: ei(nd). The
utility agent αi receives if it only commits to the deal path(nd).

ei(nd) = fi(εnd).

• For each node nd and agent αi a lower bound: lbi(nd). The minimum
utility that αi will receive from any deal that extends the deal path(nd).

lbi(nd) = minx∈Agr{fi(εx)) | path(nd) ⊆ x}

Lemma 2 The upper bound is decreasing, and the lower bound is increasing.
That is: for any node nd and any child nd ′ of nd we have:

ubi(nd) ≥ ubi(nd ′) and lbi(nd) ≤ lbi(nd ′)

2We will not discuss how it could obtain such a model, because there are many ways to do
this and depends on the domain. In the case of NSP this is simple, because it is known that
each agent wants to minimize its path.

90 Chapter 6. Applying Branch & Bound to the NSP

This implies that the upper bound for agent αi of the root node is the highest
utility agent αi could ever achieve. Below we indicate the root node with nd0.

Definition 52 The global lower bound glbi of an agent αi is the lower bound
for agent αi in the root node.

glbi = lbi(nd0)

The following lemma follows directly from the definition of the reservation value,
and the definition of the intermediate value.3

Lemma 3 The reservation value of an agent αi is equal to the intermediate
value of the root node:

rvi = fi(ε0) = ei(nd0)

The bounds defined here cannot always be calculated exactly, for two reasons.
First, because α1 may not have complete knowledge of the world state and of
the other agents’ utility functions fi . And second, because the time restrictions
often make it impossible for α1 to compute these quantities exactly in real time,
so α1 may only be able to estimate them. To be clear, in the rest of this paper
we will add a superscript index to any quantity if it does not represent the
exact value, but only the approximation that the agent with that index makes
of this quantity. For example, ub2(nd) indicates the theoretical value of agent
α2’s upper bound of node nd , while ub1

2(nd) denotes the approximation that α1

makes about agent α2’s upper bound.
The intermediate value of a node nd is the utility that the agent will receive

if the deals that are confirmed during the negotiations consist of exactly the
actions in path(nd). So if e1(nd) ≤ rv1 the deal path(nd) is not profitable for
α1. Therefore we say a node nd is rational for agent α1 iff e1(nd) ≥ rv1.

Definition 53 We say agent α1 believes a node nd to be rational for agent
αi iff e1

i (nd) > rv1
i .

Definition 54 We say α1 believes a node nd is individually rational iff it
believes it is rational for all agents participating in path(nd).

6.2.4 Searching and Pruning

Since NB3 performs a best-first search, we need a heuristic h that calculates a
value for each node: h(nd) ∈ R+ to rank the nodes. We call this heuristic the
expansion heuristic. Each time after splitting a node the algorithm picks the leaf
node with the highest expansion heuristic from the tree to be split next. The
value of h depends on the values of the bounds defined above. The precise way

3in Section 3.4.1 we argued that, depending on the domain, there may not be any satis-
factory definition of the reservation value. Nevertheless, this definition is still correct, but the
problem carries over to the fact that a generally satisfactory definition of the intermediate
value may not exist; it needs to be determined separately for each domain.

6.2. The NB3 Algorithm 91

in which h is calculated from the bounds might depend on the domain, but in
Section 6.2.5 we give an example of such a function that is domain independent.

The upper bound is used for pruning: it defines the highest utility an agent
could possibly receive from any descendant of the node. If ub1

i (nd) < rv1
i for

some agent αi participating in path(nd), it means that not only this deal is
unprofitable for agent αi , but also any deal that extends path(nd) would be
unprofitable for αi , so in that case agent αi would never agree with any deal
descending from node nd and therefore this node can be pruned. Of course α1

only has estimations of the true bounds for the utilities of the other agents, so
it is essential that these estimations are good.

Note that for general B&B algorithms a node is pruned if its upper bound is
below a global lower bound, which is defined as the highest lower bound among
all leaf nodes. This is however not the case in NB3. The reason for this is
that, if we look at the node with the highest lower bound, we cannot be sure
that its corresponding world state can actually be realized, since we are never
guaranteed that the other participating agents will accept the corresponding
deal. Therefore, we use the reservation value rather than the global lower bound
to prune nodes.

One should note that the kind of pruning described here does not have to
be done explicitly. After all, the heuristic h determines which node to expand
next, so as long as we make sure that h(nd) = 0 whenever ub1

i (nd) < rv1
i for

some participating agent αi , this node will always have lowest priority, which is
essentially the same as being pruned.

However, NB3 also applies another form of pruning which is done explicitly.
Whenever agent α1 gets committed to a deal x , some actions from the action sets
Oi may become infeasible, More precisely, given some deal x and some action oi

it may happen that oi 6∈ G(ε0, x , t), where G is the permission map of the action
stage. All such actions that have become incompatible with the actions in x
become unfeasible so α1 can prune all nodes that have any of the incompatible
actions in their paths to the root.

6.2.5 The Expansion Heuristic

A crucial property of NB3 is the expansion heuristic h, that determines in which
order the nodes are to be split. We will now discuss the default implementation
of this heuristic, which is independent of the domain in which the algorithm is
used. It can however be improved for specific cases where knowledge about the
domain may help guiding the search.

Definition 55 The set of participating agents of a node nd is denoted as
pa(nd) and is defined as the set of participating agents of its corresponding deal:
pa(nd) = pa(path(nd)).

The goal of NB3 is to maximize the utility of agent α1. However, α1 needs the
acceptance of other agents in order to make a deal, so it is not enough for α1 to
only look at its own utility. It is better to say that the search algorithm aims to

92 Chapter 6. Applying Branch & Bound to the NSP

find the deal for which the expectation value of α1’s utility is maximized. That
is: the deal for which the product of α1’s utility and the probability that all
other participating agents accept it, is maximal.

Definition 56 The node value V 1
1 (nd) of a node nd for agent α1 is the utility

of the node for α1 times the probability that the corresponding deal gets accepted
by all participating agents.

V 1
1 (nd) = f 1

1 (εnd) ·
∏

αi∈pa(nd)\{α1}

P1(acci(e1
i (nd))) (6.1)

Here P1(acci(u)) stands for the probability, estimated by α1, that agent αi

would accept a deal x for which fi(x) = u. Of course it is impossible to calculate
this probability exactly, but we will see below how it can be estimated.

NB3 aims to generate nodes with high node value. Now the question is: which
node should be expanded in order to generate descendant nodes with high node
value? The expansion heuristic of a node nd is therefore defined as the highest
node value that we expect to find among the descendants nd ′ of nd .

h(n) = V 1
1 (nd∗) = max{V 1

1 (nd ′) | nd ′ ∈ desc(nd)} (6.2)

with n∗ = arg maxnd′∈desc(nd) V 1
1 (nd ′) and desc(nd) denoting the set of nodes

in the subtree under nd . Of course, when the algorithm is calculating h(nd),
the subtree under nd has not been generated yet so it cannot directly calculate
the value V 1

1 (nd∗), but with some assumptions it can be estimated, as shown
below. For this we need one more definition:

Definition 57 The offer value off 1
i of an agent αi is the lowest utility that αi

would receive from any of the deals so far proposed or accepted by αi .

off 1
i = min{f 1

i (εx)) | x ∈ accept1i }

Here accept1i denotes the set of all deals (known to α1) that were proposed or
accepted by agent αi .

The offer value represents the lowest utility value that agent αi has demanded
so far. Now we will show how, for any node nd , NB3 estimates the probability
P1(acci(e

1
i (nd))). It is safe to assume that αi would never accept a deal for which

its utility e1
i (nd) is lower than its reservation value rv1

i . Also it is reasonable
to assume that this probability increases as the utility e1

i for agent αi increases.
Furthermore, since agent αi has already accepted a deal for which it would
receive a utility of off 1

i one can assume that αi would accept any proposal x
for which f 1

i (x) ≥ off 1
i . Therefore, this probability is modeled as a linearly

increasing function from 0 to 1 between the values rvαi and off α
i :

Pα(acci(u)) =

1 if u ≥ off 1

i
u−rv1

i

off 1
i −rv1

i
if rv1

i < u < off 1
i

0 if u ≤ rv1
i

(6.3)

6.2. The NB3 Algorithm 93

With this formula, we can calculate the probability that an agent will accept a
deal path(nd) that yields a utility of e1

i (nd). However, in order to use (6.2) we
need to calculate the probability that nd∗ will be accepted, while nd∗ has not
been generated yet, and therefore we cannot know the values e1

i (nd∗). Therefore,
for nd∗ we estimate the probability of acceptance as follows (to simplify notation
from now on we denote e1

i (nd∗) as e∗):

Pα(acci(e
∗)) =

∫ ∞
0

Pα(acci(u)) · Pα(e∗ = u)du (6.4)

In order to calculate this, the algorithm then needs to estimate a probability
distribution P1(e∗ = u). From the definition of the upper bound it follows
that e∗ can never be higher than the upper bound ub1

i (nd) of nd . Furthermore,
the algorithm assumes that the value e∗ will not be lower than e1

i (nd) (so it
makes the optimistic assumption that each node nd always has some descendant
node with higher intermediate value). Therefore, the probability distribution
P(e∗ = u), is modeled as a uniform distribution between e1

i (nd) and ub1
i (nd).

We can then rewrite (6.4) (we further simplify notation by denoting e1
i (nd) as

e and ub1
i (nd) as ub) as:

Pα(acci(e
∗)) =

1

ub − e

∫ ub

e

Pα(acci(u))du (6.5)

Finally, we need to estimate the value of f 1
1 (εnd∗). We know that nd∗ is by

definition in the subtree under nd , which means that the deal path(nd) is a subset
of the deal path(nd∗), so we can assume that f 1

1 (εnd∗) is not very different from
f 1
1 (εnd). Therefore, we make the simplifying assumption that f 1

1 (εnd∗) = f 1
1 (εnd).

Now we can calculate the expansion heuristic by combining (6.1) and (6.2):

h(nd) = f 1
1 (εnd) ·

∏
αi∈pa(nd)\{α1}

P1(acci(e
∗)) (6.6)

which can be calculated explicitly by combining it with (6.3) and (6.5).
One very important remark we would like to state here, is that every time

an agent makes a proposal or accepts a proposal its offer value can change,
which means the expansion heuristic of every node in the tree changes. If an
agent concedes, its offer value increases, and therefore the expansion heuristic
of every node in which this agent is participating increases. In other words: if
α2 concedes, it becomes more attractive for α1 to explore deals in which α2 is
participating. We see thus that not only is the negotiation influenced by the
search, but also the other way around: the search is influenced by the offers that
are made by the other agents. Search and negotiation have become intimately
intertwined with each other. This is a unique property of NB3.

6.2.6 Modeling Preferences of Other Agents

As explained above, the NB3 algorithm requires a model of the utility functions
of the other agents. We do not see this as a limitation because we believe that

94 Chapter 6. Applying Branch & Bound to the NSP

knowledge of your opponents’ preferences is essential in almost all negotiation
scenarios. If a negotiator does not know anything about the preferences of its
opponent, it is almost impossible to make any sensible proposal.

Agents may base their opponent models on prior knowledge of the domain
and the opponents, on the proposals made by the other agents during the nego-
tiations, on arguments exchanged between the agents, or on any other form of
information provided by the other agents (see for example [Sierra and Deben-
ham, 2007]).

In the case of NSP modeling the opponents’ utility functions is easy, because
we know that each agent is only interested in making its own path as short as
possible and the positions of all cities are known. In many other problems it may
be much more difficult to know the preferences of the other agents. Especially
since agents might hide their preferences or lie about them.

We have intentionally chosen to use a domain in which opponent modeling
is trivial, because we want to focus on the other aspects of the negotiation
algorithm. We consider modeling the preferences of the opponents a domain
specific matter and therefore we will not discuss how to do this for domains
other than NSP. Moreover, the problem of modeling opponents has already been
studied extensively, for example in [Hindriks and Tykhonov, 2008] and [Williams
et al., 2011].

6.3 Negotiation Strategy

In this section we explain the negotiation strategy applied by NB3 for negoti-
ations under the Unstructured Negotiation Protocol. Although NB3 applies a
model of the opponents’ utility functions, it does not apply any model of the
opponents’ negotiation strategies. We leave that as future work.

6.3.1 Proposing and Accepting

As the search tree is expanding, some nodes that are being generated represent
individually rational deals. The agent needs to determine which of them to
propose to the other agents.

The question when to accept an offer and what to propose has been solved
theoretically, under specific assumptions such as the presence of a discount factor
that decreases the utility as time passes and the assumption that the players
follow the alternating offers protocol, in [Rubinstein, 1982]. For more general
settings such as ours however, there is no known optimal strategy.

In classical bargaining models previously studied it is assumed the negotia-
tors have strictly opposing interests. For example: a car salesman aims to sell
the car for the highest possible price, while the client aims to buy it for the
lowest possible price. The assumption of strictly opposing interests implies that
‘concession’ can be defined in two equivalent ways: either as ‘demanding less
utility from the opponent’, or as ‘offering more utility to the opponent’. In our
situation this is no longer true. In our scenario the search for possible agreements

6.3. Negotiation Strategy 95

takes place simultaneously with the negotiations meaning that new solutions are
being found during the negotiations that may dominate earlier found solutions.
Therefore agents sometimes propose new offers that increase their own utilities
as well as their opponents’. Moreover, in most existing work when an agent
receives a proposal it only has two options: to reject it or to accept it. In
our situation however, there is a third option: to continue searching for better
solutions.

These differences motivate us to define a new negotiation strategy, in which
the agent takes into account not one, but two aspiration levels. This negotiation
strategy is in fact very similar to the one we described earlier in Chapter 5,
however, in that case we assumed no knowledge about the opponent’s utility
whatsoever, so we used a distance measure to represent the opponent’s utility.
In the current chapter on the other hand we assume there is an explicit model of
the opponent’s utility, so we directly use that model to compare a deal with an
aspiration level for the opponents. In order to keep the explanation simple we
first present this negotiation strategy for the case of bilateral negotiations and
then generalize it to the multilateral case.

6.3.2 Bilateral Negotiation Strategy

During the negotiations agent α1 regularly needs to make a choice between
making a new proposal, accepting a previous proposal from an opponent, or
continue searching. The agent bases its decision on three values: the time t
passed since the start of the negotiations, the normalized utility ū1

1 it receives
from a deal and the normalized utility ū1

2 the opponent α2 receives from a deal.

Definition 58 The normalized utility of a deal x for agent αi , is defined as

follows: ūi(x) = fi (εx)−rvi

gubi−rvi
.

To make a decision, agent α compares these utility values with two values,
denoted as η11(t) (the self-aspiration-level) and η12(t) (the opponent-aspiration-
level) respectively, which are time-dependent functions. Note that although η12
represents an aspiration level for the utility of α2, this value exists in the mind
of α1. It is the amount of utility that α1 considers necessary to offer to α2.

Definition 59 A deal x is more selfish than deal x ′ iff ū1
1 (x) > ū1

1 (x ′). For a
given time instant t we say x is selfish enough iff ū1

1 (x) > η11(t). Given a set
of deals X , the deal x ∈ X that maximizes ū1

1 (x) is called the most selfish deal
of X .

Definition 60 A deal x is more altruistic than deal x ′ iff ū1
2 (x) > ū1

2 (x ′).
For a given time instant t we say x is altruistic enough if ū1

2 (x) > η12(t).
Given a set of deals X , the deal x ∈ X that maximizes ū1

2 (x) is called the most
altruistic deal of X .

Notice that ‘selfish’ and ‘altruistic’ as defined here are not necessarily each other’s
opposites. If deal x yields more utility than deal x ′, for both negotiators, x is
more selfish and more altruistic than x ′.

96 Chapter 6. Applying Branch & Bound to the NSP

At given moments t separated by time intervals of fixed length, α1 decides
what to do: to propose a new deal, to accept a previously proposed deal, or to
continue searching for better deals (the length of these intervals is a parameter of
the algorithm). This decision is taken according to the following 6-step strategy:

1. First α1 determines the set X of all deals it has found so far and believes
to be individually rational.

2. Then, it determines the subset Y ⊂ X of all deals in X that are altruistic
enough.

3. If Y is not empty, α1 picks the deal x ∈ Y that is most selfish. If on
the other hand Y is empty, then α1 picks the deal x ∈ X that is most
altruistic.

4. Next, α1 determines the set Z of all deals that have been proposed to it
by other agents. From this set it picks the most selfish deal x ′ ∈ Z .

5. From the two deals x and x ′, it then picks the one which is most selfish.

6. Finally, α1 checks whether the deal chosen in the previous step is selfish
enough. If yes, then this deal will be proposed or accepted. If however
this deal is not selfish enough, the agent will continue to search for better
deals.

To summarize this: α1 will only accept or propose any deal that is individually
rational and selfish enough. It will only propose a new deal x if there is no
standing proposal x ′ proposed to α1 that is more selfish than x (because then it
prefers to accept x ′). And from all candidate deals it could propose, it prefers
to propose the most selfish deal that is altruistic enough. If however no deal is
altruistic enough, it prefers the deal that is most altruistic (also see Algorithm
6 in Section 6.4.5 for a description of this procedure in pseudo-code.)

Since α1 should start selfish, and concede as time passes, η11(t) is a decreasing
function, so that less selfish deals are proposed as time advances, and η12(t) is an
increasing function, so that more altruistic deals are proposed as time advances.

Notice that in order to be proposed or accepted, step 6 requires that the
deal is selfish enough, while, because of step 3, it does not need to be altruistic
enough. This is because if α1 has a deal that is probably not good enough for
α2 to be accepted, it does not harm much to try and propose it anyway. On the
other hand, if α1 would propose a deal that yields very little utility for itself,
and it gets accepted by α2, then α1 is committed to this deal, which might make
other, more profitable deals in the future impossible.

For the aspiration levels we have chosen the following expressions:

η11(t) = 1− e
−γ1 t

td − 1

e−γ1 − 1
(6.7)

η12(t) =
e
−γ2 t

td − 1

e−γ2 − 1
(6.8)

6.3. Negotiation Strategy 97

γ
1

γ
1

γ
1

η
1
1

γ
2

γ
2

γ
2

η
1

2

Figure 6.2: The graphs of η11 and η12 for several values of γ1 and γ2.

Their graphs are plotted in Figure 6.2. Notice that η11 decreases from 1 to 0 and
η12 increases from 0 to 1. The higher the values of γ1 and γ2, the faster the agent
concedes. Therefore γ1 and γ2 are called the concession degrees. The strategy
of the agent can be adapted by adjusting these two parameters.

The fact that η11 and η12 go to 1 and 0 respectively makes this strategy a
very weak one for bilateral negotiations, since it can be easily countered by any
opponent. The opponent α2 would simply not concede, but wait until η12 is so
high that α1 will propose a deal that is highly favorable to α2. However, one
should keep in mind that this strategy is developed for multilateral negotiations.
In the multilateral case, agent α2 does not have the opportunity to wait until α1

makes a highly altruistic offer, since α2 has competition from other agents. If
α2 does not concede, α1 might close deals with some of the other agents, leaving
α2 with nothing.

The algorithm intends to find deals for which the opponent-utility is as close
as possible to the opponent-aspiration-level. The self-aspiration level imposes
an extra criterion, that determines whether the deal is selfish enough to be
proposed, or whether it is better to continue searching instead. This solves the
trade-off problem discussed in section 6.2.2.

Finally, note that this strategy never rejects any proposal. Instead, it simply
ignores bad proposals. The advantage of this is that our agent never has to
worry about the question when to definitely reject a proposal and that it always
keeps every proposal as an option to accept in the future. On the other hand,
rejecting proposals would have the advantage that our agent could inform the
other agents about its preferences which could improve the proposals made by
them.

6.3.3 Comparison with Single Aspiration Level

To further justify why we are using two aspiration levels, we will now take a look
at what would happen if one of the two aspiration-levels would be set to zero,
so that there is effectively only one aspiration-level.

In general it can happen that the deal x chosen in step 3 is very unprofitable
for agent α1, even though it is the most selfish one. But step 6 then makes sure

98 Chapter 6. Applying Branch & Bound to the NSP

that such a deal is not proposed because it is not selfish enough. Now if η11 would
be zero however, every deal would be considered selfish enough so even bad deals
would be proposed. In simple negotiations, where the entire set of solutions is
known, this would not be a problem because x would simply be the most selfish
deal existing, so there would not exist any better solution for α1.

However, in our situation, because the search for good solutions runs simul-
taneously with the negotiations, it is only sure that deal x is the most selfish
solution found so far. It would therefore be better to continue searching than to
propose the bad deal. This is exactly the reason why we have η11 : it determines
whether the deal is selfish enough to propose, or if it is better to continue search-
ing for a better deal before proposing it. The more time available, the better it is
to continue searching. If however there is very little time left before the deadline,
there is little hope of finding a better deal. Therefore, the selfishness-criterion
should become weaker as the deadline approaches, so η11 must be a decreasing
function of time.

Now instead suppose that η12 is always zero. Each deal would be considered
altruistic enough and the agent would only have the following two options: pro-
pose the most selfish deal (if it is selfish enough) or continue searching until it
finds a deal that is selfish enough. But in this way α1 might never concede,
because there might exist a lot of very selfish deals. An agent that does not
concede at all is generally not a good negotiator, especially in a multilateral
environment where the opponents may ignore α1 and come to agreements with
each other, without α1.

6.3.4 Characterization of Strategies

Our concession strategy is parametric in the two concession degrees. We will now
discuss how the various settings of these parameters would affect negotiations.
We define four strategies by setting the values of γ1 and γ2 either high or low.

Greedy: low γ1, low γ2. Only proposes very selfish deals. If it hasn’t found
any deals that are selfish enough, it prefers to continue searching for them rather
than to concede.

Lazy: high γ1, low γ2. Proposes very selfish deals, but if it can’t find any,
it will propose less selfish deals, rather than to search for better solutions.

Picky: low γ1, high γ2. This strategy is willing to propose altruistic deals,
but only if they are also selfish, otherwise it prefers to continue searching. So it
keeps searching until it finds a deal that is both very selfish and very altruistic.

Desperate: high γ1, high γ2. Concedes fast, even if it has to give up a lot
of utility.

Roughly we can say that the higher the value of γ1, the less the agent likes
to search. The higher the value of γ2, the more altruistic the deals are that the
agent proposes (or is willing to accept). The Greedy strategy should only be
played if the agent has little competition. If the agent knows it has a stronger
position than its opponents it can use this strategy to exploit them. The Des-
perate strategy, on the contrary, should only be played in a highly competitive
environment. If there is a lot of competition it is better to try to come to an

6.3. Negotiation Strategy 99

agreement as soon as possible, before the competition takes away all the good
deals.

The other two are more moderate strategies. The Lazy strategy should be
played if good deals are scarce. In such an environment it is not likely to find
many deals that are better than the current options, so it is better to give up
some utility than to continue searching for a better deal. If good deals are
abundant, it is better to play the Picky strategy In that case, if the current
options are not good enough, instead of giving up utility it is better to keep
searching a bit more because it is likely that the agent will find some better
deal.

From basic experimentation we have concluded that good values of the con-
cession degrees for the NSP are γ1 = 2 and γ2 = 4 and have fixed these values
for our further experiments in Section 6.5. We leave a more thorough experi-
mentation to determine the best values for these parameters as future work.

6.3.5 Multilateral Negotiations

Things become more complicated when we want to apply our strategy to multi-
lateral negotiations. In order to make the agent capable of multilateral negotia-
tion, we have chosen a simplified model in which the agent treats the set of all
opponents as if it were one opponent, and then follows the same concession strat-
egy as above. It defines the opponent-utility of a deal as the product of all the
normalized utilities of the other agents participating in the deal. When choosing
whether to propose, accept, or wait, it applies exactly the same procedure as in
the bilateral case, only the quantity ū1

2 is replaced by ū1
pa with:

ū1
pa(x) =

∏
αi∈pa(x)\{α1} ū1

i .

with the extra condition that ū1
pa(x) is zero if ū1

i is negative for any αi ∈ pa(p).

This multilateral concession strategy does not take into account which agents
are involved in the proposals α1 makes. So when one proposal x1, made by α1,
is not accepted, α1 will try to make a new proposal x2 that gives more utility to
its participating agents than x1 did, even though the agents participating in x2
might be completely different from the ones in x1. The idea behind this is that
α1 considers all agents as equivalent. After all, we assume that the agents are
unknown, so we cannot distinguish between them. In the rest of this chapter
we will denote the opponent aspiration-level for multilateral negotiations as η1pa

instead of η12 .

A possible way of improving the multilateral strategy, which we leave for fu-
ture work, would be to store information about the opponents obtained during
the negotiations. We could then make a profile of each opponent and use this
to set a different opponent-aspiration-level for each individual opponent. Fur-
thermore we could try alternative definitions of ū1

pa , such as the minimum of the
opponent-utilities. Again, we leave this as future work.

100 Chapter 6. Applying Branch & Bound to the NSP

6.4 Branesal

Until now we have kept the description of NB3 as general as possible. In this
section however, we describe how we have implemented NB3 to be applied to
the NSP defined in Section 4.2. We call this implementation Branesal (BRAnch
and bound NEgotiating Salesmen ALgorithm).

6.4.1 Calculating the Bounds

We will now explain how the bounds of the search tree are calculated in the case
of the NSP. To calculate these bounds the agent needs to know the shortest path
that goes through a given set of cities. It is however much too costly to calculate
this length exactly. Therefore, we consider an estimation of the shortest path
by calculating the greedy path instead.

Definition 61 The greedy path through a set of cities is calculated as the path
that goes from the home city v0 to its nearest neighbor v1, then from v1 to v1’s
nearest neighbor v2, etc. until we have visited all cities and come back to v0.

So for any world state ε the path length li(ε) for agent αi , is estimated by agent
α1 as the length of the greedy path through the set of cities assigned to αi in
the world state ε. This estimated value is denoted by l1i (ε). Accordingly, the
estimated utility of an agent αi is denoted f 1

i (ε) and is calculated as f 1
i (ε) =

l1i (ε0)− l1i (ε)
This greedy heuristic may not be very accurate, but from experiments it

turns out to work quite well in practice. We have tried to use more accurate
heuristics, but the extra computations this involved were so costly that it was
not worth using them.

In the NSP an ‘action’ consists of one agent giving one city to another agent.
Each arc between two tree nodes is labeled by such an action, and the path from
a node back to the root represents the deal consisting of all the actions that
form the labels along the path. One can check that the definitions below are
consistent with the general definitions of the bounds as given in section 6.2.3.
The calculations of the intermediate values and the lower bounds are also given
in pseudo-code in Algorithm 7.

Upper Bound

The upper bound ub1
i (nd) is the difference between l1i (ε0) and the minimum

path length that αi could possibly achieve in any deal descending from node
nd . The most optimistic scenario is the case in which αi is able to give away
all its interchangeable cities, except those that it has acquired in path(nd). The
idea is that once a city v is acquired from some agent αj in path(nd) it will
not be given away again to some other agent αk in any deal that descends from
nd . This is because our agent would not consider such a deal because it would
already consider an equivalent deal, in which v is given directly from αj to αk ,
somewhere else in the tree.

6.4. Branesal 101

The upper bound of a node nd for an agent αi is therefore calculated as
l1i (ε0) minus the length of the greedy path through the home city, the fixed
cities owned by αi and the cities given to αi in any of the actions in path(nd).

Intermediate Value

In order to calculate the intermediate value of node nd , we take the set of cities
currently assigned to αi , remove all the cities that are given away by αi in any
of the actions in path(nd), and add all the cities that are acquired by αi in any
of the actions in path(nd). We then calculate the greedy path through this new
set.

Lower Bound

Although the specification of the NB3 algorithm defines a lower bound for every
node and every agent, the Branesal implementation does not calculate it. The
reason for this is that the expansion heuristic defined in Section 6.2.5 does not
use it. Other implementations of NB3 may however use another implementation
of the expansion heuristic.

6.4.2 Splitting

Besides the bounding and the expansion heuristic, a very important design-issue
for any B&B algorithm is the question of how to split the nodes. Since a deal
is built up from actions, it would be natural to split a node according to the
several alternative actions that can be performed. This would mean adding a
new node for each action that is compatible with path(nd). However, in many
cases this would result in a huge amount of child nodes, making the algorithm
very inefficient (if there are m interchangeable cities per agent and n agents,
then the total number of actions is in the order of m · n2). Therefore we have
chosen an implementation in which an ‘action’ is split up in smaller components.

An action in the NSP consists of three components: an agent that gives away
one of its cities (the donor) the city that is being given away, and the agent that
receives the city (the acquirer). So instead of adding a child node for each
possible action, we first add a child for each possible donor, then pick the best
of these children (i.e. the child node with the highest expansion heuristic) and
expand it by adding a child for each of the cities that the donor can give away.
Finally, we pick the best of these nodes and add to it a set of children, each one
of which corresponds to one of the possible acquirers. So each arc between two
nodes is not labeled by an action but by a component of an action, and a path
of three consecutive nodes corresponds to one action. In this way, the maximum
number of children that could be needed to be generated in each cycle is reduced
to only m + 2n (only n of these nodes however correspond to a new deal).

In the rest of this chapter however we will continue as if these three steps
were taken in one step. That is: as if each arc between a parent and a child
node is labeled with an action, rather than only one component of an action.

102 Chapter 6. Applying Branch & Bound to the NSP

6.4.3 Handling Proposals

When a proposal from another agent is received, α1 adds a new branch to the
tree to represent the proposed deal. The bounds and expansion heuristic are
then calculated for every new node in this branch, and all these new nodes are
put into the open list. In this way α1 can explore extensions or adaptations to
the received proposal.

As soon as a proposal becomes confirmed, the agent will act acts as if the com-
mitted actions are immediately executed (although technically we have defined
our model such that they are executed in the action stage, after the negotiation
stage has finished). Therefore, α1 has to update its internal representation of the
new world state. Many of the branches in the search tree can then be removed
from the tree because they represent deals that are incompatible with the new
world state.

6.4.4 Data Structures

In order to describe the Branesal algorithm we first describe its most important
data structures: WorldState, Commitment, Message, Node and Tree. These data
structures will then be used in the next section to describe the implementation
of Branesal in pseudo code.

We assume there is a set of names of cities given, as well as a set of agent
identifiers:

City = {v0, v1, v2, . . . vn(m+1)}
AgentID = {a1, a2, a3, . . . an}

The program contains one WorldState object, that represents the current as-
signment of the cities of the NSP instance. There is a home city, a set of fixed
cities and a set of interchangeable cities. The assign function represents the
assignment of the fixed cities and interchangeable cities to the agents.

WorldState
homeCity : City
fixedCities : 2City

intCities : 2City

assign : fixedCities ∪ intCities → AgentID

The components of the WorldState structure satisfy the following constraints:

∀ ai ∈ AgentID : |{v ∈ fixedCities | assign(v) = ai}| = 1

fixedCities ∩ intCities = ∅
homeCity 6∈ fixedCities ∪ intCities

homeCity ∪ fixedCities ∪ intCities = City

The first of these constraints says that each agent has exactly one fixed city as-
signed to it. The other three constraints together state that the set of fixed cities,

6.4. Branesal 103

the set of interchangeable cities and the home city together form a partition of
the set of all cities.

An Action object represents the action of one agent giving one city to one
other agent. The agent that gives the city is called the donor and the agent that
receives the city is called the acquirer.

Action
donor : AgentID
city : City
acquirer : AgentID

Agents send messages to each other to propose, accept or reject deals. Note
that in Section 3.5 we mentioned that the protocol does not formally include
a ‘propose’ message because a proposal is simply the first ‘accept’ message in
the conversation regarding to a certain deal. It turns out however that the
algorithm is easier to implement if it internally does make a distinction between
a proposal and an acceptance. Therefore, whenever the algorithm receives an
accept message for a new deal, the algorithm internally treats it as a ‘propose’
message, and whenever the algorithm proposes a new deal, the communication
layer of the agent converts it to an ‘accept’ message to comply with the protocol.
If we compare this data structure with our definitions of Chapter 3 then we see
that the content of a message in this domain consists of a ‘type’ and a ‘deal’.
Furthermore we see that we have left out the time stamp from the data structure,
because it is not necessary for the implementation of the algorithm.

Message
sender : AgentID
receivers : 2AgentID

type : {propose, accept , reject}
deal : 2Action

The tree nodes of the search tree are implemented as the Node data structure.
Each node contains a reference to its parent node, and is labeled by an Action.
The set of all labels of all the ancestors of the node, including the node itself, is
what we call the path of the node and the set of all donors and acquirers of all
the actions in the path forms the set of participating agents (pa). Furthermore,
each node contains an intermediate value, an upper bound and an expansion
heuristic for each agent. From these values one can calculate the normalized
utility u1

1 and the opponent-utility u1
pa . Finally, the node contains the set of

participating agents that still need to accept the deal (as we will see later, it is
initialized as the set of participating agents pa of the node, and each time one
of these agents accepts the deal, this agent is removed from the set).

104 Chapter 6. Applying Branch & Bound to the NSP

Node
parent : Node
label : Action
pa : 2AgentID

ub1 : AgentID → R+

e1 : AgentID → R+

h : R
ū1 : AgentID → R
ū1

pa : R
haveNotAcceptedYet : 2AgentID

Tree represents the search tree, which maintains a root node, an open list, and
for every agent a reservation value and a global upper bound.

Tree
root : Node
rv1 : AgentID → R+

gub1 : AgentID → R+

openList : 2Node

6.4.5 Procedures

We now describe the Branesal algorithm itself, which is given in Algorithm 2.
We see that after initialization, it consists of a while loop that repeatedly calls
three functions: expand, handleIncomingMessages and acceptOrPropose, which
are described below. The algorithm keeps looping until the deadline for the
negotiations has passed.

The expand method starts by extracting the node with the highest expansion
heuristic from the open list and determining for which actions it should add
child nodes to it (we do not provide here the implementation of the function
that determines what actions to split over, but it works as explained in Section
6.4.2). For each action to split over, we create a new node, label it with the
given action, set its participating agents, calculate its bounds (see Algorithm 7
for details on that), calculate its expansion heuristic (in the way explained in
Section 6.2.5), add the new node as a child of the original node and add the
new node to the open list. Finally, if the new node is individually rational (i.e.
for each participating agent the intermediate value is lower than the reservation
value) we can add it to the list of deals that are candidates to be proposed.
HandleIncomingMessages checks whether a message has been received from any
of the other agents. If not, the method returns. Otherwise, if the incoming
message is a proposal, then a new node nd ′ is created that corresponds to the
proposed deal and is added to the tree. The agent does not decide how to reply
to this proposal yet, because this is done later by the acceptOrPropose() function
(Algorithm 6). If the incoming message is an acceptance of a deal, the agent
retrieves the deal from the tree. Note that this deal can indeed be found in the

6.4. Branesal 105

Algorithm 2 Branesal

Require: startTime, timePassed, expandInterval, lastAcceptOrProposeCall,
td : R

Require: ε : WorldState
Require: theTree : Tree
Require: foundByMe = ∅
Require: proposedToMe = ∅
Require: η11 : [0, td]→ [0, 1]
Require: η1pa : [0, td]→ [0, 1]
Require: off 1 : AgentID → R+

1: initializeTree(ε, theTree)
2: startTime ← getCurrentTime()
3: timePassed ← 0
4: lastAcceptOrProposeCall ← 0
5:

6: while timePassed < td do
7: expand(ε, theTree, foundByMe)
8: handleIncomingMessages(theTree, off 1)
9: if timePassed - lastAcceptOrProposeCall > expandInterval then

10: acceptOrPropose(foundByMe, proposedToMe, η11 , η1pa , timePassed)
11: lastAcceptOrProposeCall ← timePassed
12: end if
13: timePassed ← getCurrentTime() - startTime
14: end while

Algorithm 3 initializeTree(ε, theTree)

Require: home, fixed, interchangeable, current, minimal : 2City

1: home ← {ε.homeCity}
2: for all ai ∈ AgentID do
3: fixed ← {v ∈ ε.fixedCities| ε.assign(v) = ai}
4: interchangeable ← {v ∈ ε.intCities| ε.assign(v) = ai}
5:

6: current ← home ∪ fixed ∪ interchangeable
7: minimal ← home ∪ fixed
8:

9: theTree.root.e1
i ← 0

10: theTree.root.ub1
i ← greedyPath(current) − greedyPath(minimal)

11:

12: theTree.rv1
i ← root .e1

i

13: theTree.gub1
i ← root .ub1

i

14:

15: theTree.root.ū1
i ← 0

16: end for
17: theTree.root.ū1

pa ← 0
18: theTree.openList ← {theTree.root}

106 Chapter 6. Applying Branch & Bound to the NSP

Algorithm 4 expand(ε, theTree, foundByMe)

Require: nd : Node
Require: splitActions : 2Action

1: //Get the node with the highest expansion heuristic and remove it from the
open list:

2: nd ← arg maxnd′{nd ′.h | nd ′ ∈ openList}
3: theTree.openList ← theTree.openList \{nd}
4:

5: //Get the set of actions to split over.
6: splitActions ← chooseSplitActions(nd)
7:

8: //For each such action: create a new node, calculate its properties and add
it to the tree.

9: for all action ∈ splitActions do
10: nd ′ ← new Node
11: nd ′.label ← action
12: nd ′.pa ← nd .pa ∪ {action.acquirer}
13: nd ′.haveNotAcceptedYet ← nd ′.pa
14: calculateBounds(ε, nd ′, theTree)
15: nd ′.h ← calculateExpansionHeuristic(nd ′)
16: theTree.openList ← theTree.openList ∪{nd ′}
17: nd ′.parent ← nd
18:

19: //If the node is individually rational, then add it to the list of proposals
we might want to propose.

20: if ∀ ai ∈ nd ′.pa : rv1
i > nd ′.e1

i then
21: foundByMe ← foundByMe ∪{nd ′}
22: end if
23: end for

6.4. Branesal 107

tree, because the agent had stored the deal in the tree when the deal was first
proposed.

In either case, α1 checks whether the proposing or accepting agent is willing
to receive less utility than before, and if that is indeed the case the offer value of
that agent is adapted. This means the expansion heuristic of each node in the
open list needs to be recalculated.

Finally, if the deal in the incoming message is accepted by all participating
agents, the execute method is called (Algorithm 8), which updates the world
state and resets the root of the tree. The acceptOrPropose method determines
whether α1 itself should accept or propose a deal, according to the procedure
described in Section 6.3.1. The calculateBounds function (Algorithm 7) calcu-
lates the intermediate values and the upper bounds of each agent. Also, it uses
the reservation values and the global upper bounds to calculate the normalized
utility of each agent. Finally it calculates the opponent utility by taking the
product of all the normalized utilities of the other agents participating in the
node’s deal.

6.4.6 Complexity

We will now discuss the amount of time and memory that is needed for each
new deal generated by the search algorithm.

Time Complexity

The most time consuming part of the algorithm is the calculation of the bounds
and the expansion heuristic each time a new node is added. The time complexity
of calculating the expansion heuristic is proportional to the number of agents
O(n), because for each participating agent we have to calculate the value of
P1(aci(e∗)).

Calculating the bounds of a node for one agent is quadratic in the number
of cities that that agent owns. This is because finding the greedy path involves
finding the nearest neighbor for each city owned by a certain agent. The bounds
have to be calculated for each agent, so if there are m interchangeable cities per
agent, calculating the bounds has a time-cost of O(nm2). Generating a new
node therefore has a time complexity of O(n + nm2).

Each time a node is split we need to generate m + 2n new children (as
explained in Section 6.4.2). Splitting a node therefore has a time cost in the
order of (m + 2n) · (n + nm2), that is: O(n2m2 + nm3). Each time that such a
split is made there are n deals generated so we can say that the amount of time
needed to explore one possible deal is O(nm2 + m3).

Another point regarding the time complexity that we would like to stress,
is that each time the agent receives a proposal (or the acceptance of an earlier
made proposal), the offer value of the agent that made the proposal (or accepted
the proposal) must be adapted. This means that for every node in the open list
the expansion heuristic needs to be recalculated. Moreover, the open list has
to be reordered (it is implemented as a priority queue so the node with highest
expansion heuristic can be retrieved fast).

108 Chapter 6. Applying Branch & Bound to the NSP

Algorithm 5 handleIncomingMessages(theTree, off 1)

Require: msg : Message
Require: nd ′ : Node
Require: ai : AgentID

1: msg ← getMessageFromMessageQueue()
2: ai ← msg.sender
3:

4: if msg.type = propose then
5: nd ′ ← insertProposedDealIntoTree(theTree.root, msg.deal)
6: proposedToMe ← proposedToMe ∪{nd ′}
7:

8: //If the proposer offers to pay a higher price than he it offered before,
9: //update its offer value and re-calculate the expansion heuristic for every

node in the
10: //tree.
11: if off 1

i < nd ′.e1
i then

12: off 1
i ← nd ′.e1

i

13: for all nd ∈ theTree.openList do
14: nd .h ← calculateExpansionHeuristic(nd)
15: end for
16: end if
17: end if
18:

19: if msg.type = accept then
20: nd ′ ← getNodeCorrespondingToDeal(msg.deal)
21:

22: //If the accepting agent accepts a price to pay higher than it has offered
before,

23: //update its offer value and re-calculate the expansion heuristic for every
node in the

24: //tree.
25: if off 1li < n ′.e1

i then
26: off 1

i ← nd ′.e1
i

27: for all nd ∈ theTree.openList do
28: nd .h ← calculateExpansionHeuristic(nd)
29: end for
30: end if
31:

32: //The sender of the message has accepted the proposed deal,
33: //so we can remove it from the list of agents that have not accepted it

yet.
34: //If all agents have accepted the deal, it can be executed.
35: nd ′.haveNotAcceptedYet ← nd ′.haveNotAcceptedYet \ {msg.sender}
36: if nd ′.haveNotAcceptedYet = ∅ then
37: execute(nd ′)
38: end if
39: end if

6.4. Branesal 109

Algorithm 6 acceptOrPropose(foundByMe, proposedToMe, η11 , η1pa ,
timePassed)

Require: myAspiration, opponentAspiration : R
Require: bestFound : Node
Require: bestProposed : Node

1: myAspiration ← η11(timePassed)
2: opponentAspiration ← η1pa(timePassed)
3:

4: bestFound ← getMostSelfish(foundByMe)
5:

6: //Get the most selfish node that is altruistic enough
7: repeat
8: bestProposed ← getMostSelfish(proposedToMe)
9: until bestProposed.ū1

pa > opponentAspiration or proposedToMe = ∅
10:

11: //If no node is altruistic enough, then get the most altruistic one instead
12: if bestProposed.ū1

pa ≤ opponentAspiration then
13: bestProposed ← getMostAltruistic(proposedToMe)
14: end if
15:

16: //If the best deal found by us (or proposed to us) is selfish enough, then
propose it (or accept it).

17: if bestFound.ū1
1 >bestProposed.ū1

1 then
18: if bestFound.ū1

1 > myAspiration then
19: propose(bestFound)
20: foundByMe ← foundByMe \{bestFound}
21: end if
22: else
23: if bestProposed.ū1

1 > myAspiration then
24: accept(bestProposed)
25: proposedToMe ← proposedToMe \{bestProposed}
26:

27: //If we are accepting a deal that all others already have accepted,
28: //then the deal will be executed.
29: if bestProposed.haveNotAcceptedYet = {α1} then
30: execute(bestProposed)
31: end if
32: end if
33: end if

110 Chapter 6. Applying Branch & Bound to the NSP

Algorithm 7 calculateBounds(ε, nd , theTree)

Require: home, fixed, interchangeable, acquired, donated, current, minimal :
2City

Require: path : 2Action

1: path ← getPath(nd)
2: home ← {ε.homeCity}
3: for all i ∈ nd .pa do
4: fixed ← {v ∈ ε.fixedCities | ε.assign(v) = ai}
5: interchangeable ← {v ∈ ε.intCities| ε.assign(v) = ai}
6: acquired ← {ac.city | ac ∈ path, ac.acquirer = ai}
7: donated ← {ac.city | ac ∈ path, ac.donor = ai}
8:

9: initial ← home ∪ fixed ∪ interchangeable
10: current ← home ∪ fixed ∪ acquired ∪ interchangeable \ donated
11: minimal ← home ∪ fixed ∪ acquired
12:

13: nd .ub1
i ← greedyPath(initial) − greedyPath(minimal)

14: nd .e1
i ← greedyPath(initial) − greedyPath(current)

15:

16: nd .ū1
i ← (nd .e1

i − theTree.rv1
i)/(theTree.gub1

i − theTree.rv1
i)

17: end for
18: nd .ū1

pa ←
∏

ai∈pa\{α1} ū1
i

Algorithm 8 execute(nd , theTree)

Require: path : 2Action

1: //Get the set of actions that form the path from the root to nd
2: path ← getPath(nd)
3:

4: //Update the world state by letting the actions in path act on it.
5: //That is: change the assignment of the cities to the agents
6: for all ac ∈ nd .path do
7: ε.assign ∪{v 7→ ac.acquirer} \ {v 7→ ac.donor}
8: end for
9:

10: //Node nd becomes the new root node
11: //and the rv and glb are set equal to the bounds of this new root.
12: theTree.root ← nd
13: theTree.rvα ← nd .eα

14: theTree.glbα ← nd .lbα

6.5. Experiments and Results 111

In order to recalculate the expansion heuristic of a node, we only need to
update the value P1(aci(e

∗)) of the agent for which the offer value has changed.
Therefore, this can be done in constant time and thus the recalculation of the
expansion heuristics of all of the nodes is done in O(k) time (with k the size of
the open list).

Reordering the open list can be done in O(k log(k)) time. Although k can
be a very large number, it turns out from experiments that the time spent on
updating the open list is in practice negligible. This is because the number of
times that a proposal or acceptance from another agent is received is very small
compared to the number of times that a node is expanded.

Space Complexity

Regarding the space complexity it is important to note that in each node we
need to store the bounds for each agent, so the memory needed for each node
is O(n). Therefore, each time we expand a node, the extra memory we need is
(m + 2n) · n, that is: O(n2 + nm). And, since expanding a node yields n new
deals, the average amount of memory needed for generating a single new deal is
O(n + m).

6.5 Experiments and Results

We have conducted a number of experiments with Branesal and in this section
we present their results.

6.5.1 Experimental Setup

For our experiments we have made use of two types of NSP instances that differ
in the way they are generated: random instances and simple instances. For
the random instances all cities are represented as points in the two-dimensional
plane, with the home city located at the coordinates (0, 0). The x and y coordi-
nates of all other cities are integers randomly chosen from a uniform distribution
over the interval [−100, 100]. After generating the coordinates of the cities, the
cities are randomly divided among the agents, such that every agent owns the
same amount of cities. Also, for each agent, one of its cities is randomly chosen
to be its fixed city. All other cities (except the home city) are interchangeable.
The distance between two cities is given by the Euclidean distance. In all exper-
iments except those in Section 6.5.6 we have used the random instances. The
generation of simple instances is explained there.

For each run of the experiments we store for each agent the coordinates of
the cities it initially owns and the coordinates of the cities it owns after the
negotiations. When the run has finished we find the shortest path through each
of these sets of cities, by feeding them into the Concorde TSP Solver 4.

4http://www.tsp.gatech.edu/concorde

112 Chapter 6. Applying Branch & Bound to the NSP

Recall that we denote the length of the shortest path through the initial
set of cities owned by agent αi as li(ε0). Similarly, we denote the length of
the shortest path through the final set of cities owned by agent αi as li(εf)
(here εf denotes the final world state). With this notation we then define our
performance measure for the random instances as the percentual cost reduction
averaged over all agents:

Q =
100

n

n∑
i=1

li(ε0)− li(εf)

li(ε0)
(6.9)

This is the result of one run. The results presented in this section are all averaged
over 100 runs, each with the same parameters, but with a different instance of
the NSP. We should stress however, that the agents do not try to optimize
this value, but rather each agent tries to minimize its individual path length.
Therefore, we are not so much interested in the value of Q, but rather in how it
changes as the problem instances get more complex.

Note that in the literature on bilateral negotiations one often uses the product
of the agents’ utility gains (the Nash Product [Nash, 1950]) rather than the sum
to define a measure of performance. The problem with this is that when we are
dealing with multilateral negotiations, the set of agents participating in a deal
is often a subset of all the agents involved in the negotiations. Therefore it can
happen that one agent does not decrease its cost at all, while all other agents
do manage to obtain low costs. If we would then take the product of all utility
gains, the result would be zero, because of the single agent that did not succeed
in its negotiations.

For each data point we have also calculated the standard error, as σk√
k

with

k = 100, where σk is the standard deviation of Q over k runs. For each exper-
iment we will mention the highest and lowest standard errors among the data
points. All experiments were conducted on an iMac with 3.4 GHz Intel Core i7
processor and 8 GB of memory. The agents were implemented in Java on top of
the Jade platform.5

6.5.2 Varying Negotiation Length

In order to determine how the results improve with longer negotiations, we have
done a number of tests, each with the negotiation length set to a different value.
Each of these tests involved 10 agents, all running the Branesal algorithm, with
10 interchangeable cities per agent.

Because in some of the following experiments we vary the number of agents,
we always measure the length of negotiations in milliseconds per agent. So if we
say that the negotiation length was 500 ms per agent and there were 10 agents,
this means that the deadline of the negotiations was set to 5 seconds. We should
remark however that, since all agents are running on the same machine, we had
no control over the amount of CPU cycles assigned to each agent, since this is

5http://jade.tilab.com

6.5. Experiments and Results 113

controlled by the Java Virtual Machine and the operating system. Therefore, we
can only be sure that the amount of time that an agent has to run the algorithm
is 500 ms on average.

Figure 6.3: Cost reduction as a function of time.

The results are presented in Figure 6.3. We see that the costs of the agents
decrease significantly and that the results get better as the available time in-
creases. After all, the more time the agents have, the more good deals they will
find, and therefore the better the final agreements they will make. The highest
value (48%) is reached with 550 ms per agent. It seems this value does not
improve with more time. The standard errors of these data points lie between
0.38 and 0.69.

6.5.3 Varying the Number of Agents

To determine how the algorithm scales with the number of agents, we have per-
formed a number of tests with each a different number of agents, all running the
Branesal algorithm. In each test 10 interchangeable cities were assigned to each
agent and the negotiation length was set to 250 ms per agent. According to the
results presented in the previous section, 250 ms is not enough for the agents
to reach their maximum score. We have chosen this value however in order
to put the agents under pressure, increasing the contrast between the various
tests. The results are presented in the left graph of Figure 6.4. Interestingly, it

Figure 6.4: Cost reduction as a function of the number of agents and of the
number of cities.

seems from this graph that at first, the results get better as the number of agents

114 Chapter 6. Applying Branch & Bound to the NSP

increases, even though the problem becomes more complex. Apparently, the in-
creased computing power resulting from the larger number of agents and the
fact that agents can profit from the deals discovered by other agents outweighs
the increased complexity of the problem. Unfortunately this only remains true
as long as the number of agents is less than or equal to 16. With more than 16
agents we see that the complexity of the problem becomes more important and
the results start to decrease. It is still unclear to us why this turning point takes
place at 16 agents. The standard errors of these data points lie between 0.35
and 0.98.

6.5.4 Varying the Number of Cities per Agent

We now look at what happens if we make the agreement space larger (more
interchangeable cities per agent), while keeping the number of agents constant.
In each test there were 10 agents, all running the Branesal algortithm, with a
negotiation length of 250 ms per agent. The results are presented in the right
graph of Figure 6.4. As expected, with an increasing number of cities, the results
decrease, but we think this decrease is relatively small, as the number of cities
more than triples, while the value of Q only drops from 43 to 27. This can be
explained by the fact that the expansion heuristic successfully manages to steer
the search such that only interesting deals are explored and the unprofitable
deals are skipped. In this way the increased size of the problem hardly decreases
the efficiency of the algorithm. Therefore, we can conclude from this that the
expansion heuristic successfully manages to limit the number of redundant nodes
that are explored, as it is supposed to do. The standard errors of these data
points lie between 0.41 and 1.07.

6.5.5 Comparing with Random Search

In the previous sections all agents have been running the Branesal algorithm.
However, the most important question is how it performs when negotiating with
agents that run different algorithms. Since there exists however no comparable
negotiation algorithm, we have tested it instead against a copy of itself that
applies random search.

We let some agents running Branesal (the “smart agents”) negotiate with a
number of agents running a random search (the “dumb agents”). With “random
search” we mean that the agent is running an algorithm that is identical to
Branesal, except that the expansion heuristic for each node is replaced with a
random number.

We did four tests. Each test involved 10 agents, but for each test the number
of dumb agents among those 10 was different. The negotiation length was set to
250 ms per agent. The results are presented in Figure 6.5. For each test we show
the average score of the dumb agents (the left graph), the average score of the
smart agents (center), and the score averaged over all agents together (right).
When we compare the left graph with the middle graph, we can clearly see that,
as expected, the smart agents score significantly better than the dumb agents. In

6.5. Experiments and Results 115

Figure 6.5: Cost reduction of dumb agents (left), smart agents (center), and all
agents (right), as a function of the number of dumb agents.

other words: the expansion heuristic is effective. It is also interesting to see that
if there are only a few dumb agents the dumb agents still manage to decrease
their cost considerably. This can be explained by the fact that, although the
deals they discover are bad, they still get offered good proposals from the smart
agents. Since the deals found by the smart agents are generally better than the
ones found by the dumb agents, the smart agents have more bargaining power,
and are thus able to exploit the dumb agents. The standard errors of the results
of the dumb agents lie between 0.54 and 1.05, the standard errors of the results
of the smart agents lie between 0.47 and 1.30, and the standard errors of the
overall results lie between 0.43 and 0.59.

6.5.6 Comparing with the Optimal Solution

In this section we compare the results of our algorithm with the optimal solution.
Note however, that the notion of ‘optimal solution’ can be difficult to define in
Automated Negotiations. A common way of defining optimality in games is to
use some equilibrium concept such as the Nash Equilibrium [Nash, 1951]. The
problem however is that a game often needs very specific properties in order to
be able to calculate such an equilibrium (e.g. the presence of a discount factor
in bargaining games). Moreover, even if one is able to play a strategy to reach
the equilibrium solution, this would only be optimal under the assumption that
the opponent also plays that strategy. A negotiator that manages to exploit
suboptimal play of its opponents would be even better. Another definition of
‘optimal solution’ would be the outcome in which your agent achieves the max-
imum possible utility. However, this definition is unpractical since it is highly
unlikely that the opponents of the agent would accept such a solution. For ex-
ample, when two agents negotiate on how to divide a pie between them, the
optimal outcome for agent α1 would be that α1 gets all of the pie and α2 gets
nothing. Of course, α2 would never agree with such a deal, so this definition of
optimality is unrealistic. A third way of defining the optimal solution would be
to define it as the solution that maximizes the social utility, that is: sum of the
utility values of all agents. The problem with this however is that the agents are
simply not interested in reaching the social optimum. Every agent would prefer
to try to obtain another, more selfish, solution.

So generally speaking, there is no such thing as an ‘optimal solution’ in

116 Chapter 6. Applying Branch & Bound to the NSP

Automated Negotiations. This is a fact that actually occurs in many games. In
robot-soccer for example, one can compare one robot-soccer team with another
team and see which one is best, but there is no way to compare the team with
any kind of theoretically optimal soccer team.

Nevertheless, we have come up with a solution that allows us to define a kind
of optimal solution in special cases. We have created a set of special instances of
the NSP that have the nice property that there exists one specific solution that is
clearly the most reasonable one, because any other solution for which one agent
increases its utility would imply a strong decrease in the utility of another agent
and would therefore be unrealistic. The idea is that the cities are distributed in
clusters around the fixed cities of the agents. The optimal solution is reached
whenever each agent has exactly those cities in the cluster around its fixed city.
We call these instances simple instances.

The cities of these simple instances are again given as 2-dimensional coordi-
nates and their distances are the Euclidean distances. The graphs are however
generated in two stages: in the first stage we create n random cities (where n is
equal to the number of agents), far away from each other. Each of these cities is
assigned to one of the agents as its fixed city (each agent gets exactly one fixed
city). For each such fixed city we then randomly generate m cities nearby that
city. In this way we have created n clusters of m + 1 cities each. So after this
first stage all the cities of one cluster are assigned to the same agent. We refer
to this assignment as the ‘optimal assignment’. This assignment is optimal in
the sense that every agent owns a set of cities that lie very close to each other
so the agents cannot decrease their path length any further by negotiation.

Then, in the second stage, for each agent we ‘swap’ some of its cities with
cities from other clusters. A swap means that we randomly pick one city assigned
to the agent, and one city assigned to an other agent and interchange them. For
each agent we make m/3 swaps, so after swapping each agent owns at least
one city from another cluster, and on average for each agent two thirds of its
interchangeable cities are in another cluster (we make m/3 swaps for each agent,
and each swap involves 2 cities, so in total 2/3 ·m · n cities change owner). We
refer to this new assignment as the ‘initial assignment’, because this will be the
assignment of the cities at the start of the negotiations.

The length of the shortest path through the set of cities that are assigned
to agent αi in the optimal assignment, is denoted by l∗i . The score of a test is
calculated as follows:

Qsimple =
100

n

n∑
i=1

li(ε0)− li(εf)

li(ε0)− l∗i
(6.10)

We have only used NSP instances for which li(ε0) − l∗i ≥ 10 for each agent.
With these instances we have repeated the experiments of Section 6.5.2 with
four different values of m, namely: 6, 9, 12, and 15. We see that the algorithm
is able to reach a score of 80% of the optimal solution. Furthermore, we note
that as the number of cities increases, the algorithm converges more slowly, but
still manages to reach 80%. The standard errors of the data points in these four

6.5. Experiments and Results 117

Figure 6.6: Increasing negotiation length, with simple NSP instances. Top left:
6 interchangeable cities per agent, top right: 9 interchangeable cities per agent,
bottom left: 12 interchangeable cities per agent, bottom right: 15 interchange-
able cities per agent

graphs lie between 0.72 and 1.70.
We expect that non-selfish negotiating agents could reach a higher score than

this. Also, a (distributed) constraint optimization algorithm would probably
be more successful in increasing the social utility. However, it is important
to note that NB3 is designed to optimize individual utility, rather than social
utility, so one cannot compare this result with results from non-selfish scenarios
(one could make NB3 a non-selfish algorithm by defining the individual utility
functions to be equal to the social utility, but it would then still be less efficient
than other non-selfish algorithms, because the agents could be searching through
overlapping regions of the agreement space).

Also one should note that the fact that a score of 100% is not reached, does
not mean that the optimal solution has not been found by any of the agents.
Even if an agent finds the solution that maximizes social utility it may still
try to propose other, more selfish, solutions. It might for example happen that
agents α1 and α2 come to a deal that yields high utility to both agents, but that
is incompatible with the socially optimal solution, especially if the resulting
individual utilities for α1 and α2 are higher than what they would get in the
socially optimal solution. And even if a deal is individually worse than the social
optimum, agents still might prefer to come to a quick individually suboptimal
solution rather than wait and hope they can find a better solution, since the
available time for search is limited and agents fear missing good deals because
of competition.

One alternative way of solving the NSP might be to use clustering rather
than heuristic search to find good solutions. We have intentionally not tried to

118 Chapter 6. Applying Branch & Bound to the NSP

do this, because clustering would only be applicable to NSP and not to general
negotiation problems. Our goal was not to find the best solution to the NSP,
but to use NSP as a testbed for general negotiation algorithms.

Yet another way of solving the NSP would be to apply a centralized approach
in which a mediator finds a solution that benefits all agents and is the most fair
solution according to some fairness criterion. However, once again, this is not
the goal of our work. In real-world situations it is not always possible to find an
impartial mediator, to have all agents to agree on the definition of fairness, or
to make agents cooperate in finding social solutions.

6.6 Conclusions

In this chapter we have introduced a new family of negotiation algorithms for
very large and complex agreement spaces, with multiple selfish agents, non-linear
utility functions and a limited amount of time. This family is called NB3 and
applies best-first Branch and Bound to search for good proposals.

Our main motivation for doing so is to bring automated negotiations closer to
real-world negotiations. Therefore, we have had to discard a number of assump-
tions that are usually made in existing literature, as we consider them unrealistic.
One of those assumptions is the application of the Alternating Offers protocol.
Instead, we have made use of the much more flexible Unstructured Negotiation
Protocol.

We have defined a general purpose heuristic to guide the Branch & Bound
search of the NB3 algorithm. Just as in Chapter 5 we have applied a new
negotiation strategy that does not use a single aspiration level for the utility, as
in most existing work, but that uses two aspiration levels because it considers
the utility aspired by our agent and the utility to be conceded to the opponents
as two separate quantities. This allows our agent to not only determine what
to propose, but also to determine whether it should make a proposal or rather
continue searching for better proposals.

We have implemented an instance of NB3 for the NSP that we call Branesal
and we have performed several experiments with it, with extremely large search
spaces (of size up to 20200). From these experiments we draw the following
conclusions:

• Our agent indeed manages to decrease its costs significantly by negotiation.

• Most of this decrease is obtained within half a second.

• If we increase the complexity of the problem by increasing the number of
agents, the results remain stable, up to 18 agents.

• If we increase the complexity of the problem by increasing the number of
cities, the results only get slightly worse.

• The heuristic search applied by our algorithm successfully manages to
prune redundant nodes.

6.6. Conclusions 119

• The heuristic search applied by our algorithm is significantly better than
random search.

• For problem instances that have a clear optimal solution, the algorithm
manages to reach a solution which is at 80% of the optimal solution.

For the future, we are planning to fine-tune some of the components of NB3

such as the expansion heuristic and the negotiation strategy. We plan to ex-
periment with different values of the concession degrees, for example, and with
different initial and final values of the aspiration levels, which currently only
take the values 0 and 1. Moreover, as explained in Section 6.3, in the current
implementation the agent treats the set of opponents as if it were one oppo-
nent to which it should concede. We will improve the negotiation strategy by
dropping this assumption, so that our agent can treat every single other agent
as a different opponent. Furthermore, we have mentioned in Section 6.3.2 that
there is a parameter that determines how long the agent continues expanding
the search tree before deciding whether to make a new proposal or not (the ex-
pandInterval parameter in Algorithm 2). We will investigate the influence of the
value of this parameter on the results. In the NSP, the preferences of the agents
are expressed explicitly as utility values. We think that for practical applications
it is unrealistic to assume that user preferences can be expressed explicitly as
numerical utility functions. Therefore, we plan to adapt the algorithm so that
it can handle qualitative preference relations instead.

Chapter 7

Applying Branch & Bound
to Diplomacy

We now take a look at the last, and most complex of three negotiation domains
given in Chapter 4: Diplomacy. Diplomacy has been used as a test-bed for Au-
tomated Negotiations before, such as in [S. Kraus, 1989, Kraus, 1995], but these
papers mainly focus on the modular structure of their agent rather than on the
algorithms they apply. It remains unclear how their agent searches through the
large space of possible deals and determines what to propose. An informal online
community called DAIDE exists which is dedicated to the development of Diplo-
macy playing agents.1 Many agents have been developed by this community but
only very few are capable of negotiation. In [Fabregues and Sierra, 2011] a new
platform called DipGame was introduced to make the development of Diplomacy
agents easier for scientific research. Several agents have been developed on this
platform such as in [Fabregues, 2014] and in [Ferreira et al., 2015]. The agent
we present in this chapter is also based on the DipGame framework and we will
compare it with the agents presented in these two papers.

7.1 Constraint Optimization Games

In Chapter 3 we have explained how a negotiation game NG can be defined over
any one-shot game G . We will here however restrict our attention to a specific
kind of game, which we call a Constraint Optimization Game (COG). The idea
of a COG is that it is a one-shot game that can be decomposed as a number
of smaller games that are played simultaneously but that are not independent.
The key point of our Diplomacy algorithm is the observation that the game Dip,
defined in Chapter 4, can be modeled as a COG and therefore that a single
round of Diplomacy can be modeled as a Negotiation Game over a COG.

Let MG be a set of m one-shot games: MG = {G1,G2, ...Gm}, each with

1http://www.daide.org.uk

121

122 Chapter 7. Applying Branch & Bound to Diplomacy

the same n players. We call these games the micro-games. The set of moves
for player αi in micro-game Gj is denoted as Oi,j . Then a Constraint Opti-
mization Game GMG is a game with n players, such that the set of actions
Oi for player αi in GMG is a subset of the Cartesian product of the moves of
each micro-game: Oi ⊆ Oi,1 ×Oi,2 × ...Oi,m . A joint move o of GMG can then
be viewed as a matrix in which each column oj represents a joint move from the
micro-game Gj . The utility function for a player αi is defined as:

f GMG
i (o) =

m∑
j=1

f
Gj

i (oj)

So the game GMG consists of a number of smaller one-shot games that cannot
be played independently from each other, because the set of moves Oi of αi is a
subset of the product of the sets Oi,j . In other words: there are hard constraints
between the moves of the several micro-games that must be satisfied. Each player
αi can pick for any micro-game Gj any move from Oi,j , but not all combinations
of such moves are allowed. Therefore, the best strategy for the game GMG is
not simply the combination of the best strategies of each individual micro-game.
For example, player α1 may have the optimal move a ∈ Oi,1 for micro-game G1

and an optimal move b ∈ Oi,2 for micro-game G2, but the combination of a and
b may be illegal, so he is forced to choose a suboptimal move in at least one of
these two micro-games.

We see that the concept of a COG combines aspects from Constraint Op-
timization Problems with aspects from Game Theory. Just like in a COP an
agent αi needs to pick m values for m different variables, such that the com-
bination is consistent and maximizes its utility. However, unlike normal COPs,
the utility of an agent does not only depend on the values he himself chooses,
but also on those chosen by his opponents, which have different utility functions
to maximize, just as in Game theory. Another way to look at it, is to see it
as a variation of a Distributed Constraint Optimization Problem in which there
is not one single utility function to maximize, but rather each agent aims to
maximize its own individual utility function.

7.2 Dip as a COG

We now show that the game Dip can be modeled as a COG. A natural way to
play Dip is to determine for each supply center separately whether, and how, it
can be conquered. However, the decision how to attack one supply center may
restrict the possibilities to attack another supply center if the same units are
involved. This is indeed the essence of a COG.

We model Dip as a COG by defining a micro-game Dipp for each supply
center p ∈ SC in which the actions Oi,p for player αi are the battle plans for p.

Definition 62 A battle plan for a supply center p is a set of orders that con-
sists of one move-to order for a unit to move into p, zero or more orders sup-

7.3. D-Brane 123

porting that unit, and zero or more move-to orders that intend to cut those units
of the opponents that may support a competing move into p.

If one battle plan for supply center p requires unit u to move to p, while another
battle plan for supply center p′ requires the same unit to move to p′ then these
two battle plans are incompatible with each other, so, there is a constraint
between micro-games Dipp and Dipp′ .

The utility function f
Dipp

i is defined as having value 1 for those joint moves
in which αi conquers p and 0 otherwise. Note that the question who manages to
conquer the supply center p indeed depends on (and only on) the battle plans
that each player chooses for that supply center. Therefore, a round of Diplomacy
can be correctly described as a set of micro-games where each micro-game is a
battle for a specific supply center.

From personal experience playing the game we know that, in general, it is not
difficult to determine for every supply center which battle plans are guaranteed
to succeed. The difficulty of Diplomacy is that those battle plans are often
incompatible with each other so one needs to determine the best consistent
combination of such battle plans.

7.3 D-Brane

We have implemented a Diplomacy-playing agent called D-Brane (Diplomacy
BRAnch & bound NEgotiator). It regards each round of Diplomacy as an in-
stance of the negotiation game NDip (with the Unstructured Negotiation Pro-
tocol of Section 3.5 as the negotiation protocol) and hence tries to maximize
the number of supply centers to conquer during that round. We should note
however that this is a short-sighted simplification: in reality a good player does
not always try to maximize its number of conquered supply centers in the cur-
rent round, but may sometimes give up some supply centers in the short term in
order to conquer more supply centers in the future. Furthermore, it is important
to understand that D-Brane is a selfish player: it does help its allies in the game,
but only because it expects help from them in return in later rounds.

D-Brane was implemented in Java, using the DipGame framework [Fabregues
and Sierra, 2011]. It consists of two main components: the strategic component
and the negotiation component. During the negotiation stage of NDip the nego-
tiation component applies the NB3 algorithm to search through the agreement
space, and determines which deals to propose to its coalition partners.

Recall that in Dip a move is a vector of orders (one order for each unit).
Therefore, a deal x defines for each player a subset of the space of all such
vectors. D-Brane uses the model in which a deal is represented by a set x of
commitments, where each commitment is an order. For example, suppose we
have a set of orders x = {a, b, c} consisting of three orders a, b, and c. Some of
these orders maybe for player α1 and some may be orders for other players. If
we use x i to denote those orders in x that are orders for αi then the subset of
moves Oi [x] that αi can make if x gets confirmed, is the set of all vectors that

124 Chapter 7. Applying Branch & Bound to Diplomacy

contain the orders in x i .

o ∈ Oi [x]⇔ x i ⊂ ô

(here ô is the set that consists of exactly the orders in the vector o).
For each deal x that D-Brane considers, it calls the strategic component

to calculate for every player αi in pa(x) (including itself) the minimum utility
it can obtain in the game Dip[x]. The negotiating component then uses this
value to determine whether to propose that deal to the others. Furthermore, in
the action stage of NDip the strategic component is called again to determine
the best possible moves to make, given the deals that were made during the
negotiation stage.

7.3.1 The Strategic Component

Given a deal x and a player αi the strategic component tries to find the best
set of orders for αi in the game Dip[x] and the minimal utility for αi resulting
from those orders. In theory this could be achieved by determining the set of
all consistent combinations of battle plans for each power and then calculate
the Nash Equilibrium, but this is computationally too expensive as the number
of such combinations can easily be of the order 1010. Our algorithm however
manages to quickly make very good approximations by exploiting the fact that
Dip[x] can be modeled as a COG. It works as follows:

1. For each p ∈ SC determine all invincible plans: battle plans that cannot
be defeated by any opponent battle plan.

2. For all pairs (p1, p2) ∈ SC×SC determine all invincible pairs; consistent
pairs of battle plans that cannot be defeated both at the same time by any
pair of opponent battle plans.

3. Remove all invincible plans and invincible pairs that are not consistent
with x .

4. Find the largest consistent combination of invincible plans and pairs, using
an And/Or tree search with Branch & Bound.

5. Return that combination of plans, together with its minimal utility value.
This will be the utility value for αi assigned to the deal x .

The idea behind the use of invincible pairs is that we may have a battle plan
a for one supply center which can only be defeated by an opponent’s battle
plan a ′, and we may have a battle plan b for another supply center that can
only be defeated by an opponent’s battle plan b′. The assumption that a and
b can be discarded because they can both be defeated is too strong, because
it may be the case that a ′ and b′ are incompatible. In that case if we play
both a and b we are guaranteed that at least one of them will succeed. In
theory, we could continue this reasoning and also determine invincible triples,

7.3. D-Brane 125

invincible quadruples, etcetera, to improve the algorithm even further. However,
the number of combinations of plans that need to be checked grows exponentially,
so this would make the algorithm very slow.

7.3.2 Generalizing to Other COGs

The algorithm described above was designed by us, specifically for Diplomacy.
However, we think it can be generalized easily to other COGs as well. We here
give a rough sketch of how to do that. The essence of our algorithm can be
described in three steps:

1. Determine a utility value for every move o1 ∈ O1,j of player α1 in every
micro-game Gj .

2. Do the same for every pair of moves (o1, o
′
1) ∈ O1,j × O1,k for every pair

of micro-games (Gj ,Gk).

3. Find the combination of moves that maximizes the sum of utilities, using
And/Or search with B&B.

The idea is that assigning a single value to each move in each micro-game in
fact reduces the COG to a standard COP, which can be solved with an And/Or
search and B&B. One straight-forward way to assign a value to a move o1 is
to find the vector of opponent moves o−1 that minimizes the utility function
f1(o1, o−1). In other words: the utility value obtained in the worst-case scenario
that the opponents pick those moves that minimize α1’s utility. If we apply
this principle to Dip, then this means that every invincible plan receives a value
of 1 and all other plans receive a value of 0, which essentially means that all
non-invincible plans are discarded, which is indeed what we did.

7.3.3 The Negotiating Component

During the negotiation stage of NDip we apply in instance of the NB3 algorithm
to explore the agreement space and find good deals to propose to the coalition
partners. As explained, a deal consists of a set of orders. More precisely, D-
Brane generates a tree in which each arc between a node nd ′ and its parent nd
is labeled with a battle plan, and the path from the root to that node therefore
represents a deal xnd that consists of all orders of all battle plans along the path
from the root node to nd . For any node its set of children represents a set of
alternative battle plans for the same supply center.

The intermediate value ei(nd) of a node nd for player αi is calculated by
calling the strategic component. The strategic component will determine the
best set of moves for player αi in the game Dip[xnd] and the number of supply
centers conquered by αi for that set of moves. This number of conquered supply
centers is then returned and assigned to the variable ei(nd).

126 Chapter 7. Applying Branch & Bound to Diplomacy

7.4 Experiments

In this section we compare D-Brane with two other agents recently presented in
[Ferreira et al., 2015] and [Fabregues, 2014]. In both papers a negotiating agent
was tested by letting it play against a standard non-negotiating bot called the
DumbBot. We have repeated some of their experiments with our own agent and
compared the results.

When two or more players in Diplomacy are in a coalition, this usually implies
two things: it means they will not attack each other and it means that they
may support each other when attacking an opponent. We call the first kind of
agreement an implicit agreement because it is implied by the fact that the players
are allies, so no negotiation is needed to establish such agreements. The second
kind we call an explicit agreement and can only be made by negotiating. The
ability of D-Brane to negotiate (i.e. to make explicit agreements) and its ability
to obey implicit agreements can both be switched on and off, so it can play in
4 different modes: with negotiations on or off and with implicit agreements on
or off. The reason for this is that on one hand it is unrealistic to play without
implicit agreements, because any reasonable player would always apply them.
On the other hand however, we are testing our agent against the DumbBot
which plays entirely individually, so if a coalition of D-Branes beats a number
of DumbBots this could be the consequence of implicit agreements rather than
negotiations. Furthermore, Note that switching implicit and explicit agreements
off essentially means the D-Branes do not form a coalition at all and play entirely
individually.

In each of the experiments we performed with negotiations off we played 100
games (playing 100 games without negotiations takes about half an hour). For
experiments with negotiations we set the deadline for negotiations to 15 seconds
per round. Since such experiments therefore take much more time we only played
50 games in each such experiment. (playing 50 games with negotiations takes
about 10 hours, but this depends mainly on the negotiations deadline which we
could have made shorter). Each game was stopped after 40 rounds.2

In all experiments we assume the D-Branes form a coalition against the
DumbBots. All experiments were performed on a single desktop computer with
3.4 GHz Intel Core i7 processor and 8 GB of memory.

7.4.1 D-Brane Compared with DipBlue

In [Ferreira et al., 2015] a negotiating Diplomacy agent called DipBlue was in-
troduced. In their experiments they let two instances of this agent play against
5 instances of the DumbBot. As a measure of success they used the average
rank of their two agents over 75 games. That is: after each game the best player
gets rank 1, the 2nd best player gets rank 2, etcetera, and the worst player gets
rank 7. A player is considered better than another player if it finishes with more
supply centers, or if it is eliminated later. If two or more players rank equally

2For readers more familiar with Diplomacy: we mean that we stopped each game after the
Winter 1920 phase.

7.4. Experiments 127

Table 7.1: 2xD-Brane vs 5xDumbBot. The numbers indicate the average rank
of the D-Branes. For comparison: DipBlue achieves 3.57.

nego off nego on
impl. agr. off 2.63± 0.10 2.47± 0.14
impl. agr. on 2.46± 0.11 2.35± 0.16

they both received the average of their ranks (e.g. if two players share the second
place they both get rank 2.5).

In this way one can objectively determine whether a certain agent plays
better than the DumbBot, because a player equally strong to the DumbBot
would achieve an average rank of 4. With 2 instances of the player to test the
best possible average rank is 1.5 and the worst is 6.5. The best average rank
that DipBlue achieves in their experiments is 3.57.

We have done the same experiment, but with 2 instances of D-Brane against
5 DumbBots. We repeated this four times: one time for each playing mode of
D-Brane. The results are shown in Table 7.1. It displays the average rank of the
D-Branes in the four different modes, with their respective standard errors. We
note that in all cases the average rank is around 2.5, even when negotiations were
switched off. This means that not only our agent is better than the DumbBot,
but also that even without negotiating D-Brane plays significantly better than
DipBlue with negotiations.

7.4.2 D-Brane Compared with Fabregues’ Agent

In [Fabregues, 2014] a nameless agent was presented, which was also compared
with the DumbBot. Fabregues did 8 experiments, varying from 0 to 7 instances
of her negotiating agent against the DumbBot. In each experiment she played
100 games. As a measure of success she counted the number of victories of her
agent. It is important to note however, that her experiments were performed
on a super computer and that she used negotiation deadlines of 5 minutes per
round, considerably more than our deadlines of 15 seconds per round.

To compare, we did an experiment with 4 D-Brane agents against 3 Dumb-
Bots, and counted how often a D-Brane ranked first. Again, we repeated this
experiment 4 times, one for each setting of the D-Brane, The results are shown
in Table 7.2. For comparison: Fabregues’ agent achieves a victory in about 85%
of the games. We conclude that D-Brane scores significantly better than Fab-
regues’ negotiating agent, even if D-Brane was not negotiating, and even though
our experiment ran on a single desktop computer, playing 100 games in half an
hour, rather than on a super computer.

128 Chapter 7. Applying Branch & Bound to Diplomacy

Table 7.2: 4xD-Brane vs 3xDumbBot. Displayed are the percentages of victories
of the D-Branes. For comparison: Fabregues’ negotiator achieves about 85%

nego off nego on
impl. agr. off 97% 95%
impl. agr. on 99% 97%

7.4.3 Evalution of Experiments

These experiments make clear that D-Brane plays much better than DumbBot,
DipBlue and Fabregues’ agent, even when it does not negotiate. We also see
however that negotiations only have a small effect on the final results. In the
experiment with 4 D-Branes the results even seem to decrease with negotiations,
but one should take into account that the number of victories is a more crude
measure than the average rank.

After studying the logfiles it seems that whenever there is a good opportunity
to make a deal, the D-Branes indeed find it, and make that deal. However, it
seems that such opportunities simply do not occur very often, so that although
the D-Branes do benefit from such deals, their impact on the final result of
the entire game is rather small. The conclusion we draw from this is that only
negotiating joint battle plans is not enough to really benefit from negotiations.
Indeed, we know from personal experience with the game that a good player not
only negotiates battle plans for the current round, but also looks farther ahead
and negotiates future actions.

In [Ferreira et al., 2015] and [Fabregues, 2014] negotiations had a stronger
positive impact on the respective agents. We think this is because both their
agents were implemented by extending the DumbBot with negotiation capabili-
ties, while the DumbBot is not a very good player. It is likely that negotiations
have a much bigger impact on bad players, because good players have less room
for improvement. Moreover, it is not clear whether their results were due to
implicit agreements or explicit agreements, because they do not make this dis-
tinction.

7.5 Conclusions

In this chapter we have presented a new Diplomacy-playing agent called D-
Brane. We have introduced the concept of a Constraint Optimization Game,
which combines aspects of Constraint Optimization with Game Theory, and we
have showed that a single round of Diplomacy can be modeled as a Negotia-
tion Game over a COG. We have explained that D-Brane exploits this fact by
applying And/Or search with B&B to determine the utility value of any given
deal. Furthermore we have explained that D-Brane applies the NB3 algorithm
to explore the agreement space and determine which proposals to make. Finally,

7.5. Conclusions 129

we have presented experiments in which we compare D-Brane with two other
negotiating agents and show that D-Brane plays significantly better. However,
it also shows that the negotiation algorithm seems to have only a small impact
on the results.

We think that D-Brane will be very important for future negotiations re-
search, because it allows researchers to compare their strategies not only with
the DumbBot but also with our much stronger agent. We therefore plan to make
D-Brane publicly available and we will detach the negotiating component from
the strategic component so that other researchers can put their own negotiation
algorithms on top of the strategic component of D-Brane.

Part III

User-friendly Electronic
Institutions

Chapter 8

Humans Negotiating with
Agents

In this chapter we will introduce a new tool that we have developed on top of the
EIDE framework and that allows human users to participate in an Electronic
Institution, through a web browser.

8.1 Motivation

So far we have defined protocols, world states and world state evolution maps as
mathematical objects. We have ignored the question how they are implemented.
Although they can be implemented in an ad hoc manner, a general model for
implementing protocols is provided by a so-called Electronic Institution (EI).
Electronic Institutions are related to negotiations in two ways: firstly they may
enforce the negotiation protocol, and secondly they may enforce the obedience
of the agreements made during negotiations. This first point can be seen as the
implementation of the negotiation stage, while the second can be seen as the
implementation of the action stage in a Negotiation Game as defined in Chapter
3.

One of the most comprehensive EI infrastructures is the EIDE platform,
that we introduced in Section 1.4.3. However, this framework was originally
developed mainly with software agents in mind. Support for human participation
existed, but was very user-unfriendly and only suitable for experts with deep
knowledge of the EIDE framework. Therefore, we have implemented a new, user-
friendly, extension to EIDE to create Graphic User Interfaces (GUI) that allows
humans to enter into an EI and interact with other users or software agents. We
think that this tool could be very useful for real negotiation platforms that allow
people to engage in negotiations with each other or with software agents.

Our tool generates a default user interface automatically from the EI spec-
ification, without the need for extra programming. But, on the other hand, if
one does require a more case-specific user interface, it still provides an API that

133

134 Chapter 8. Humans Negotiating with Agents

enables any web designer to easily design a custom GUI without the need for
much knowledge of Electronic Institutions, or Java programming. Our approach
is completely web-based, meaning that the GUI is in fact a website, implemented
using standard web-technologies such as HTML5, Javascript and Ajax. In short,
we have developed our framework with the following goals:

• To allow people to interact in an EI through a web browser.

• To have a generic GUI that is generated automatically.

• To allow any web designer to easily design a new customized GUI, if
wanted.

• To allow testing of an EI under development, before having implemented
its agents.

Visual user interfaces for Electronic Institutions have been created before, for
example in [Trescak et al., 2013]. In their work the user controls an avatar that
walks around in a 3-dimensional virtual world that represents the EI. Although
a 3D-virtual world may be more impressive visually, we think that a simple
website that runs in a web browser has several advantages:

• Websites are cross-platform.

• No need for heavy hardware: it works on mobile phones and tablets.

• More practical as one does not have to walk around an environment, but
simply has all options directly available in the form of buttons or menu-
items.

• We think a 2-dimensional environment is more common in the context of
social media1 and therefore users will feel more familiar with it.

The goal of our the work presented in this chapter is to enable human users
to participate in Electronic Institutions, negotiating with one another as well
as with software agents. One can for example imagine a website where travel
agencies and travelers may come together and that acts as a market place so
that the clients can negotiate with the agencies about the price and components
of their holidays. The EIDE platform ensures that these negotiations can take
place under specific protocols and that all commitments are registered. Although
such websites can also be made without Electronic Institutions, the application
of EI technology could make such websites much more flexible as protocols can
be adapted and replaced easily. Another example could be a social network
where users set up their own communities and negotiate the rules that apply to
those communities. The EI then provides the environment for the negotiation
of those rules as well as for the enforcement of those rules that were negotiated.

1Although the 3D social game Second Life has been very popular for a while, it has never
been nearly as popular as 2D media such as Facebook and Twitter.

8.2. GENUINE 135

Figure 8.1: Left: a ‘classic’ EI with only software agents. Right: an EI with one
software agent and two users.

8.2 GENUINE

We will now present the tool that we have developed, called GENUINE, which
stands for GENerated User INterface for Electronic institutions.

8.2.1 Components

A human user would interact in an EI by clicking buttons in a browser window.
To allow these actions to have effect in the EI, we have implemented a soft-
ware agent that represents the user inside the EI and that executes the actions
requested by the user. This agent is called the GuiAgent. Its current implemen-
tation does not do anything autonomously, but, if necessary, it can be extended
with more sophisticated capabilities, such as giving intelligent strategic advice
to the user.

When developing the framework we took into account that, on one hand, one
may want to have a good-looking GUI that is specifically designed for a given
institution. But, on the other hand, one may not want to develop an entirely
new GUI for every new institution, or one may want to have a generic GUI
available to test a new EI during its development, so that one can postpone the
design of its final GUI until the EI is finished. Therefore, our framework allows
for both. It generates a GUI automatically from the EI-specification, but at the
same time provides an API that enables web designers to easily create a custom
GUI for every new EI. GENUINE is used on top of the existing EI-framework
and consists of the following components:

• A Java agent called GuiAgent that represents the user in the EI.

• A Java component that encodes all relevant information the agent has
about the current state of the institution into an xml file.

136 Chapter 8. Humans Negotiating with Agents

• A Javascript library called GenuineConnection that translates the xml file
into a Javascript object called EiStateInfo.

• A Javascript library called GenuineDefaultGUI that generates a default
Graphic User Interface (as html) based on the EiStateInfo object.

8.2.2 How it Works

In order for a user to participate in an institution, there must be an instance of
that EI running on some server. To join the institution, the user then needs to
open a web browser and navigate to institution’s url. The process then continues
as follows:

1. A web page including the two Javascript libraries is loaded into the browser.

2. The page sends a login request to the server.

3. Upon receiving this request the server starts a GuiAgent for the user and,
depending on the specific institution, other agents necessary to run the
institution.

4. When the GuiAgent is instantiated it analyzes the EI-specification to re-
trieve all static information about the institution.

5. The page starts a polling service that periodically (typically several times
per second) requests a status update from the GuiAgent.

6. When the GuiAgent receives a status update request it asks its Governor
for the dynamic information about the current status of the institution.

7. The GuiAgent converts both the static and the dynamic information into
xml which is sent back to the browser.

8. The GenuineDefaultGUI Javascript library then uses this information to
update the user interface (more information about this below).

9. The user can now execute actions in the institution or move between its
scenes by clicking buttons on the web page.

10. For each action the user performs, a http-request is sent to the GuiAgent.

11. The GuiAgent uses the information from the http-request to create an
EI-message which is sent like any other message in a standard EI.

As explained, the GuiAgent uses two sources of information: static information
from the EI-specification stored on the hard disk of the server and dynamic
information from the Governor. The static information consists of:

• The names and protocols of the scenes defined in the institution.

• The roles defined in the institution.

8.2. GENUINE 137

Http-Request Description
/login?name=alice&role=guest Enter the EI with given name and role.
/sendMessage?name=alice&receiver=bob
&msg=bid&amount=1000

Send a message with given parameters.

/gotoScene?name=alice&role=guest
&sceneName=Admission

Enter the given scene with the given
role.

/exitScene?name=alice Exit the given scene.
/gotoTransition?name=alice
&transitionName=transition1

Go to the given transition.

/request update?name=alice Request an update of the status of the
EI.

Figure 8.2: The http-requests sent from the browser to the GuiAgent

• The ontology of the institution.

While the dynamic information consists of:

• The current scene and its current state.

• The actions the user can perform in the current state of the scene.

• For each of these actions: the parameters to be filled out by the user.

• Which agents are present in the current scene

• Whether it is allowed to leave the scene and, if yes, to which other scenes
the user can move.

8.2.3 Generating the GUI

Every time the browser receives information from the GuiAgent, it updates the
GUI. This takes place in two steps, handled by the two Javascript libraries re-
spectively. In the first step the GenuineConnection library converts the received
xml into a Javascript object called EiStateInfo, which is composed of smaller
objects that represent the static and dynamic information as explained above.

In the second step the EiStateInfo-object is used by the GenuineDefaultGUI
library to draw the GUI. This GUI is completely generic, so it looks the same
for every institution. If one requires a more fancy user interface tailored to one
specific EI, one can write a new library that replaces the GenuineDefaultGUI
library.

The fact that these two steps are handled by two different libraries enables
developers to reuse the GenuineConnection library when designing a new GUI,
so one does not have to worry about how to retrieve the relevant information
from the EI. All information will be readily available in the EiStateInfo-object,
so one only needs to determine how to display it on the screen.

138 Chapter 8. Humans Negotiating with Agents

Hard disk

GenuineConnection.js

GenuineDefaultGUI.js

GUI

xml

JS objects

User

actions

Http-request

Institution spec (xml)

GuiAgent

Dynamic Info

(java)

Browser

EI-Messages

Governor
Server

Client

Figure 8.3: The components necessary to generate the GUI. Solid arrows indicate
exchange of information. The dashed arrow indicates that the GUI is created
by the GenuineDefaultGUI library

8.2.4 The Default User Interface

The default user interface is displayed in Figure 8.4. It is divided in three main
sections:

• A menu bar in the top that allows for navigating from scene to scene.

• A screen on the left (the interaction screen) where the user can see the
other participants and send messages to them.

• A screen on the right showing all messages in the user’s individual message
history.

Furthermore, in the top left a personal avatar is displayed, and the user name
and role of the participant. We have chosen to make navigation between scenes
resemble as much as possible the way a user navigates between menu-items on
a regular website. The menu bar contains the name of the current activity in
the left, and a list of menu items that one can use to move from one activity to
the next. Some of these menu items may be disabled. This happens when the
user is not yet allowed to move to those activities. Furthermore, in the right of
the menu there is a ‘Map’ button. Clicking the Map button will make a map
appear that gives an overview of the performative structure (see Section 1.4.3).

The interaction screen displays a number of icons. For each participant in the
current scene there is a circular icon containing the avatar of that participant. A

8.2. GENUINE 139

Figure 8.4: The default Gui

number is displayed in the upper left of the avatar which indicates the number
of actions undertaken by this participant in the current activity. In the bottom
right of each avatar two letters are displayed that represent the role of that
participant.

The icon shaped like a cog-wheel represents a message that the user can
currently send, according to the protocol. The user can send a message by
clicking on its corresponding icon. Doing so, a pop-up screen will appear with a
form where the user can enter the content of the message and its receivers. In
Chapter 3 we have defined the content of a message to be a natural number, that
represents any kind of content. In the EIDE framework however, the content can
be any list of parameters of different types. The form therefore shows one input
control for each parameter of the content of the message. The type of control
depends on the type of the parameter. For example, if the the parameter is
of type integer, a numeric input control appears, while if the parameter is of
type string, a text box appears. In case the parameter is of a user-defined type,
a sub-form appears with several controls, one for each of the variables of the
user-defined type.

8.2.5 Shortcomings of the Default GUI

Although an automatically generated user interface can be very useful for testing
purposes during the development of an application, we think that it is less useful
for a user-friendly end product. The problem with the automatic GUI, is that it
is only able to represent the messages that can be send by the user or that have

140 Chapter 8. Humans Negotiating with Agents

been received by the user, but it is not capable of automatically representing the
current world state.

There are two reasons for this. The first reason, is that world states in EIDE
are represented in terms of variables, which can be of certain basic types, such as
strings, integers and booleans, or types that are composed of these basic types.
It is very difficult to translate such abstract types into something user friendly.
For example, one can encode the board configuration of a chess-game into an
abstract representation of variables, but given such an abstract representation
it is almost impossible to automatically translate this into a graphical picture
displaying the chess-game. Such translations can normally only be made by a
human programmer that knows that the variables represent a chess-game and
that knows how a chess-game can be displayed in a manner understandable to
users.

A second problem is that even if we could display the world state, the EIDE
framework does not allow this, because EIDE considers the world state as private
information that cannot be shared with the participants. The reason for this,
is that participants are only allowed to know any information that they have
received through messages sent by other participants. Since not every message
is sent to every participant, not every participant can have the same information.
Note that this is precisely what we discussed in Chapter 3; every agent has an
individual message history, and can thus not always know the world state ε
because this is determined by the full message history. In the original idea of
EIDE as a platform purely for software agents, this was not a big problem. After
all, the programmer of the agent can implement an individual representation of
the world state, which depends only on the the individual message history of
that agent. However, for humans, it is simply too complicated to understand
the current state purely by looking at a list of messages. It is as if a chess-
player does not see the board configuration of the game, but only sees the list of
moves that have been made by the two players and needs to determine his next
move purely based on that. Therefore, we think that any truly user-friendly
application would need a customized user interface in which the user’s view
of the world state is manually implemented and presented in a user-friendly,
domain-specific way.

8.2.6 Customizing the GUI

A customized GUI-generator can retrieve all necessary information from the
EiStateInfo-object. For example: if the user wants to make a propose a price
in a car deal, the GUI-generator would read from the EiStateInfo-object that
an Integer parameter must be set to represent the price the user wants to pro-
pose. The programmer of the GUI-generator should make sure that whenever
a parameter of type Integer is required, the GUI displays an input-control that
allows the user to introduce an integer value.

The fact that one can also define user-defined types in an EI adds a lot of
flexibility. Suppose for example that one would like a user to record an audio
file and send this in a message to an other agent. Electronic Institutions do not

8.3. Conclusions 141

support audio files by default. However, the institution designer may define a
new type with the name ‘Audio’. Once the user chooses to send a message that
includes audio, the EiStateInfo-object will indicate that a parameter of type
Audio is needed. A customized GUI-generator could then be programmed such
that a microphone is activated whenever this type of parameter is required.

8.3 Conclusions

We have managed to add a new tool, called GENUINE, to the existing EIDE
framework that allows humans to interact with each other and with software
agents in an Electronic Institution. Specifically, it allows humans to negotiate
with each other or with agents, inside the EIDE framework. The tool generates
a default GUI automatically, so the creator of an institution can directly use it
without having to design anything. However, GENUINE also makes it easy for
interface designers to design a customized GUI, tailored to a specific institution.
The designer does not have to worry about how the EI technically works or
about how to get the necessary information from the EI. We argue that the
default GUI is useful for testing purposes, but less useful for a user-friendly end
product, because it is only able to represent messages, but not world states. In
that case we think having a customized user interface is essential.

Another advantage of having a user interface for Electronic Institutions is
that it allows developers to test an institution during its development, without
having to program any agents. While an EI is still under construction human
users can take the place of the software agents that would later participate in it,
for testing purposes. This will allow for faster development.

Chapter 9

Towards the Negotiation of
Protocols

In this chapter we argue that the fact that many social networks are nowadays
existing next to each other is inefficient and is due to the fact that users are not
able to adapt norms and protocols to their own needs. We argue that Electronic
Institutions would provide a solution to this problem, because it would allow
users to create their own social networks with custom rules. Moreover, it would
allow the users to negotiate which protocols and rules should apply to the social
network.

Recall that the negotiations determine a set of confirmed deals Xd , and that
the action stage involves playing a game G restricted by Xd . The restriction of
the game may mean that the underlying protocol of G is still valid, but only with
a few parameters changed. However, it can also mean that the protocol itself
is entirely changed. We could imagine that in the original game G anything is
allowed (so essentially there is no protocol) but that the negotiators agree on
a highly restricted protocol for the action stage. In that case we can say, in a
sense, that the agents have negotiated which protocol to follow in the action
stage.

At this point however, the EIDE framework does not yet allow for the def-
inition of protocols at run-time. It only allows the parameters of a protocol to
be adapted at run-time. Therefore, the negotiation of protocols and other ideas
presented in this paper should be seen as ongoing work. In the next chapter
however, we do show a first step towards this goal, as we define a language that
should make it easier for people to define protocols and negotiate their rules.

9.1 Social Networks as Electronic Institutions

In the past few years there has been an enormous increase in the popularity of
social networks and many different ones nowadays exist next to each other, such
as Facebook, Twitter, LinkedIn and Couch Surfing. Although they are all based

143

144 Chapter 9. Towards the Negotiation of Protocols

on the same idea: making contacts and sharing information with them, each
of these networks applies different protocols and has different interpretations
of what it means to be connected to someone. While on Facebook a friend is
someone you share your pictures with, a connection on LinkedIn is someone you
share your CV with. In this section we make two important observations:

• Social networks are institutions, each with their own rules and protocols.

• The flexibility of Electronic Institutions allows for a more generic type of
social network, in which the users can determine their own rules.

Clearly, different kinds of relationships require different rules of behavior, and we
claim that this is an important reason why so many social networks exist simul-
taneously. To illustrate this we will next compare two popular social networks:
Facebook and Couch Surfing, regarding to their respective rules and protocols.

9.1.1 Rules and Protocols of Facebook and Couch Surfing

Facebook is mainly designed for friends to share social activities with each other.
Due to the informal nature of these activities, like sharing pictures and playing
games together, it does not require very strict norms.

Roughly, we can summarize Facebook as follows:

• Meaning of friendship: Friends can see each others’ pictures.

• Protocols: Becoming friends requires only two actions: one person re-
quests the friendship, the other accepts it.

• Rules: Users have full control over their profiles: the user can remove
anything that anyone else writes on his or her profile.

• What could go wrong: The user may by accident share pictures with
someone he or she does not like.

Couch Surfing is a social network for travelers1. The main idea of this network
is that any traveler, instead of booking a hotel, can find somebody who is willing
to host him or her for free at home. When planning a trip the user can search
for profiles of people at the destination and if the user likes somebody’s profile
the user can request that person to host him or her.

While Facebook focuses on online shared experiences with friends you already
know, Couch Surfing focuses on meeting new people, in real life. This means
that Couch Surfing requires much stricter policies than Facebook. After all,
hosting a complete stranger in ones house, or being hosted by a stranger, can
be dangerous (cases are known of women getting raped using Couch Surfing
[DailyMail, 2012]). Becoming friends on Couch Surfing therefore requires more
effort, and there are several mechanisms to verify the trustworthiness of members
that Facebook lacks, discussed for example in [Lauterbach et al., 2009].

Roughly, we can summarize Couch Surfing as follows:

1http://www.CouchSurfing.org

9.1. Social Networks as Electronic Institutions 145

• Meaning of friendship: Friends express trust in one another so that
other people know they can safely host or be hosted by either of the two
friends.

• Protocols: To become friends, one needs to indicate how well one knows
the other person, how much one trusts the friend and specify details on
how and where you met.

• Norms: If somebody posts a negative comment about you on your profile,
you cannot remove it.

• What could go wrong: Hosts may get robbed by their guests, or worse.

9.1.2 Designing EI-based Social Networks

The fact that the establishment and maintenance of different kinds of social
contacts require different protocols, has lead to the creation of many different
social networks, even though they often have overlapping communities of users.
We now discuss how the application of Electronic Institutions could put an end
to this inefficiency by allowing users to set up new sub-communities within a
given social network, and invent their own set of rules and protocols for these
sub-communities, without having to create an entirely new website.

One problem we have to overcome when implementing a social network as
an EI is the fact that Electronic Institutions are based on the assumption that
all users that communicate with each other are together in one scene instance.
Social networks on the other hand have a much more asynchronous design, in
which it is not assumed that all users are online at the same time: when a user
shares an image with a friend, the user is in fact uploading it to a database. The
friend will not see it until he or she also appears online. At that moment the
image is automatically downloaded from the database to the friends’ browser,
so that he or she can see it.

To overcome this discrepancy we have come up with the following design:
each activity a user can do in an EI-based social network takes place in a scene
instance where the user and the database are both represented by an agent.
So in each scene instance there are exactly two agents: the GuiAgent and a
DataBaseAgent. When the user uploads a picture, for example, this is modeled
as a message which is being sent from the GuiAgent to the DataBaseAgent.
When the other user appears online his or her GuiAgent will also enter a
scene together with a DataBaseAgent, and the image will be sent from the
DataBaseAgent to the GuiAgent. A second problem we needed to tackle is that
the current implementation of Electronic Institutions does not allow for any bulk
data (i.e. images, video or audio) to be sent in a message. We therefore have
to send the data itself outside the institution. The action of sending this data
however, is still represented as a message inside the EI, so that the EI can still
verify whether the user is actually allowed to undertake that action. We just
need to make sure that when such a message is blocked, this is also prevents

146 Chapter 9. Towards the Negotiation of Protocols

Figure 9.1: Left: a standard website. Right: an EI-based website.

the user from sending the actual data. This can be achieved for example by
disabling an upload button.

Finally, one more problem to tackle is the fact that moving from one scene
to another scene in an EI is made in three steps: first the agent exits the current
scene, then the agent moves to a so-called transition and finally the agent moves
to the new scene. We think it is very user-unfriendly, since going from one web
page to another is usually done with one single menu click. The reason for this
3-step process is that it allows agents to choose to move into more than one
scene instance at a time, or to synchronize with other agents before moving
into the new scene. Although this is fine for software agents, we think this is
overly complex for human users, and not necessary for the application to social
networks.

We have solved this by making sure that these three steps are all triggered
automatically, one by one, by a single click on a menu-item. The downside
of this, however, is that it removes the possibility for the user to make any
choices at the transition. Also it could happen that a user chooses to move to
a scene instance that is not available. A scene can be unavailable because one
needs to wait for other agents to participate in the same scene. However, in
the model described above the GuiAgent and its associated DataBaseAgent are
always together and never need to participate in any scene instance with any
other agents. Therefore, as long as we stick to this model no scene can ever be
unavailable.

9.2 Case Studies: MusicCircle and WeBrowse

As a test case we have applied our EI-technology to a social network for online
music learning, called MusicCircle, which is currently under development. On
this website students can learn to play an instrument, with and from their friends,

9.3. Conclusions 147

in a community-driven way. Imagine for example a student who is learning to
play the piano. He or she can play a piece and record it, and then upload it to
the social network. The student can then ask the other community-members for
feedback. These community members may be friends of the student, professional
music teachers or even automated music analyzing agents.

MusicCircle will allow users to create their own sub-communities. For ex-
ample, one can set up a community for guitar players, or for jazz-musicians,
or a community consisting only of colleagues from work. We are providing the
EI framework underneath this social network. This will enable users to set or
change the rules of their communities as they wish.

Some communities may for example have serious users and strict rules, be-
cause their members want to study seriously, and want to discuss their progress
with other serious students. Other communities may be much more non-committal,
consisting of hobbyist who just want to spend some free time playing music as a
hobby, without taking it too seriously. A few examples of rules that a community
may set, could be the following:

• This group is only for advanced guitar-players: to join, you need to be at
least at stage 10 of the guitar course.

• Only active users can receive feedback: to be able to receive feedback a
user must give feedback to others at least 5 times a week

• Experts will only help serious students: if a user wants to get help from
an expert player, the user needs to practice at least 3 times a week.

Another social application where we are applying our technology is the We-
Browse application [Hazelden et al., 2012], [Yee-King et al., 2013] which enables
friends to simultaneously visit a museum online, each from his or her own mobile
device. It allows friends, even though they are in different locations, to have a
shared experience when they visit the museum. The users see the same artifacts
on their respective computer screens, and they can see each others’ actions, such
as zooming in on an object, or adding tags and ‘likes’.

Furthermore, the users need to make joint decisions on what to see or do
next in the museum. Since people may have different opinions on this matter,
protocols are needed to determine how individual decisions and opinions are
aggregated into social group decisions that are acceptable to all group members.
An underlying EI could enforce these protocols.

9.3 Conclusions

We have argued that many different social networks nowadays exist next to each
other, because they all require different rules to be imposed on their users. We
think that social networks in the future could be based on EI technology, so that
rules can be flexible and allow people to develop their own communities within
existing social networks, with their own regulations tailored to the needs of that
community. This would require users to negotiate which protocols should be

148 Chapter 9. Towards the Negotiation of Protocols

followed within such a community. As yet, EIDE does not yet allow for the
dynamic definition of protocols, so this is ongoing work.

Furthermore, we have shown that if an EI is to represent a social network, we
should not model the users in that network as directly sending messages to one
another, but rather we should apply a model in which the user sends messages
to a database agent, which then at a later stage forwards those messages to the
intended recipient.

Chapter 10

Simple Protocol Language

In the previous chapter we have discussed the advantages of people negotiating
which protocols to follow. However, the protocols in EIDE are currently defined
in a very complicated way. They consist of a finite state machine, plus constraints
and consequences on the state transitions of that machine, plus a set of variables
defined for the protocol. This makes it very difficult for humans to negotiate
such protocols, as there is a very big difference between the intuitive meaning of
a protocol and its formal implementation.

Therefore, in this chapter we introduce a new language for the specification
of protocols, which is much simpler than the existing tools such as Islander. Our
language is very close to natural language so it is easy to negotiate about the
rules of a protocol and any such rules that one agrees upon can be directly imple-
mented by the EI, without translating it to some more abstract representation
language.

We should note however, that the EIDE framework currently does not allow
protocols to be defined at run-time; once the institution is launched, all protocols
are fixed. Therefore, the development of this language is only a first step towards
the goal of having negotiable protocols.

10.1 Motivation

As explained in the introduction, many frameworks for Electronic Institutions
have been developed. However, they all have one important characteristic in
common, namely that they have been designed mainly with computer scientists
as their target users in mind. They require knowledge of multi-agent systems,
programming languages and/or formal logic. For people with no more than
average computer skills they are unfortunately too complicated.

We expect however that agent technologies will become more and more com-
mon in the near future, creating a demand for simple tools to maintain and
organize such systems, and that can be used by ordinary people. We can com-
pare this for example with the evolution of web development. In the early days

149

150 Chapter 10. Simple Protocol Language

of the Internet, developing a web page was considered an advanced task that
would only be undertaken by computer experts, and hence web development
languages such as HTML, PHP and SQL were invented for professional pro-
grammers. However, as web pages became more and more abundant and every
shop, social club, or sports team wanted to have its own web page, tools such as
DreamWeaver and WordPress were introduced to make the creation of web pages
a much simpler task. We strive for a similarly easy tool for the development of
multi-agent systems.

A good example of where such a tool would be useful is the organization of
online classes, because teachers often want to put restrictions on their students.
Teachers may for example require that students can only take a certain exam if
they have passed all previous exams. In this way teachers can make sure they
do not waste their time correcting exams of students that do not study seriously
anyway. Another example could be the process of organizing a conference, where
one requires authors to submit before a deadline, or one requires the program
chair to appoint at least 3 reviewers to each paper. Also, one can think of a tool
that allows users to set up their own social networks, with their own specific
community norms, as we suggested in Chapter 9.

Another interesting point of view, is that with this language, we can treat
protocols themselves as the subject of negotiation. That is: agents could nego-
tiate the rules of the protocol to follow in some scene of an institution. In this
way, the scene protocols in an EI can be can be defined while that EI is already
running. We think this is much easier to do with the structured sentences of
SIMPLE, than with the graphical representation of Islander that currently used
to define protocols in EIDE.

Although many programming languages claim to be similar to natural lan-
guage [pla, 2014] [hyp, 2014], most of them still aim at real programmers, albeit
that they aim for beginning programmers. The only exception that we know of,
is a language called Inform 7 [Nelson, 2014]. This is a language that in many
cases truely reads like natural language. The main difference with our language
however is that it is developed for an entirely different domain. Inform 7 is a lan-
guage to write Interactive Fiction: an art form that lies somewhere in between
literature and computer games.

We argue that one of the main reasons that Inform 7 can indeed be very close
to natural language, is that it is highly adapted to a very specific domain. This
restricts the possible things a programmer may want to express and hence keeps
the language manageable. We have taken a similar approach: our language is
only intended to be used as a language for implementing protocols for multiagent
systems, and although it could possibly also be useful for other domains, we
restrict our attention purely to this domain.

Therefore, in this chapter we present the first version of a new language to
define protocols for multi-agent systems. This language is very close to nat-
ural language so that it can be understood directly by anyone without prior
knowledge of any programming language. We call this language SIMPLE, which
stands for SIMple Protocol LanguagE. Although this language looks very simi-

10.2. Basic Ideas 151

lar to natural language, it has in fact a very strict syntax. Together with this
language we also present two tools: an editor that makes it very easy for users
to write well-formed sentences, and an interpreter that parses the source file
and makes sure that the rules defined in it are indeed enforced upon the agents.
The fact that the language comes with an editor is very important, because it
enables the users to write correct protocols without having to know the rules
of the language by heart. In fact, this editor even makes it impossible to write
syntactically incorrect sentences.

We have developed SIMPLE with the following guidelines in mind:

• The language should stay as close as possible to natural language.

• The syntax should remain strict: sentences must be well formed, and every
well formed sentence can only have one correct interpretation.

• Given a protocol written in this language anyone should immediately be
able to understand what it means, even if he or she has never heard of our
language before.

• Users should be able to write a protocol in this language without having
to spend any time learning the language.

The only thing we require from the user is that he or she be familiar with the
English language. The language as presented here is only the very first version,
and we plan to extend it much further in the future.

10.2 Basic Ideas

We assume a multi-agent system in which agents exchange messages according to
some protocol, as defined in Chapter 3. This protocol is written in the SIMPLE
language. The agents may be autonomous software agents, or may be humans,
acting through a graphic user interface. The agents are however not in direct
contact with one another. Every message any agent sends first passes a central
server (an Electronic Institution) that verifies whether the protocol allows that
message to be sent in the current world state. If a message is not allowed then it
is blocked by the EI and it will not arrive at its recipients. Moreover, the world
state will only be updated if the message is allowed, thus the EI ensures that
the protocol is regimented.

We assume that the life-cycle of the MAS is as follows:

1. A user (the protocol designer) writes a protocol in SIMPLE using our
editor and stores it in a text file.

2. He or she launches an EI on a server, with the location of the text file as
a parameter.

3. The interpreter, which is part of the EI, parses the text file.

152 Chapter 10. Simple Protocol Language

4. Agents connect to the server through a TCP/IP connection and send mes-
sages to one another.

5. Every such message is checked by the interpreter. If it does not satisfy
the protocol, it is blocked. If it does satisfy the protocol it is forwarded
to its intended recipients and the world state is updated, according to the
protocol.

6. The agent that intended to send the message is notified by the server
whether the message has been delivered correctly or not.

The text file contains the protocol as a set of sentences that follow the SIMPLE
syntax, and are therefore human readable. However, it also stores the protocol
in JSON format so that it can be parsed easily by the interpreter.

Just like in the EIDE framework, protocols written in SIMPLE have a closed-
world interpretation: every message is considered illegal by default, unless the
protocol specifies that it is legal. In order to determine which messages are legal,
we use a system based on the notion of ‘rights’ and ‘events’, meaning that an
agent obtains the right to send a specific message if a certain event has (or has
not) taken place. The assignment of such rights is determined by if-then rules
in the protocol.

As explained in Chapter 3 messages are of the form (ai ,A, c, t). However, in
this case the content c is restricted to only follow one of these two patterns:

• c = (‘say’, x)

• c = (‘tell’, y , z)

in which the sending agent can replace x , y and z by any character string (we
will see later that the ‘tell’ message has the interpretation that the value filled
in for z will be assigned to a variable of which the name is the string filled in for
y). The current version of the language does not yet allow users to specify the
receivers of a message, so for now we assume that any message is always sent
to all the other agents in the MAS. We plan this to change in future versions
of SIMPLE. Also, we expect that future versions will support more types of
messages.

The interpreter keeps a world state εt which consists of a list of rights for
each agent in the MAS. A right is a tuple of one of the two following forms:

• (‘say’, v)

• (‘tell’, w)

Definition 63 We say that a right (‘say’, v) matches a the message-content
c = (‘say’, x) if and only if x is equal to v, or v is the key word ‘anything’. A
right (‘tell’, w) matches the message-content (‘tell’, y, z) if and only if y equals
w. We also say that a right matches a message, if it matches the content of that
message.

10.3. Description of the Language 153

For example: if the agent has the right (‘tell’, ‘price’) then it matches the the
message with content (‘tell’, ‘price’, ‘$100’). A message is considered legal if
the agent sending the message has at least one right that matches the message.
Whenever the interpreter determines that a message is legal, it stores a copy of
that message in the interpreter’s message history.

One concept that we have borrowed from EIDE is the concept of a role. The
rules in the protocol never refer to specific individuals, because we assume that
at design time one cannot know which agents are going to join the MAS at run
time. Instead, the protocol assigns rights to agents based on the roles they are
playing. Every agent that enters the MAS (i.e. connects to the communication
server) must choose a specific role to adopt, from a number of roles that are
defined in the protocol. An auction protocol for example, could define the roles
buyer and auctioneer. The protocol could then define a rule saying that a buyer
can only make a bid after the auctioneer has opened the auction.

10.3 Description of the Language

A protocol is written as a set of sentences that look like natural language, but
nevertheless have a strict syntax. Although in this chapter we will often start
sentences of the language with a capital, this is not necessary, as the language is
in fact entirely case-insensitive. Like in natural language, the end of a sentence
is marked with a period. Unlike most other programming languages, variable
names are allowed to contain spaces. Another important property of this lan-
guage, as we will see at the end of this section, is that it is impossible to write
inconsistent protocols.

10.3.1 Roles

Definition 64 A role definition sentence is a sentence of the form:

This protocol defines the role r1 (plural: r2).

Where the protocol designer can replace r1 and r2 by any character string. The
string r1 is called the singular role name and r2 is called plural role name.

For each role in the protocol there must also be exactly one such role definition
sentence. For example:

This protocol defines the role buyer (plural:buyers).

Definition 65 A role constraint sentence is a sentence of one of the follow-
ing forms:

• There can be any number of r.

• There must be at least x r.

• There can be at most x r

154 Chapter 10. Simple Protocol Language

• There must be at least y and at most x r.

• There must be exactly x r.

Where x and y can be any positive integer with y < x and r is a plural role
name from one of the role definition sentences, except in the case that x = 1, in
which case r must be a singular role name.

The following two sentences are examples of role constraint sentences:

There must be at least 2 buyers.

There must be exactly 1 auctioneer.

For each role in the protocol there must be exactly one such role constraint
sentence. The interpreter makes sure that these role constraints are not violated.
That is, when an agent tries to connect to the EI server with a role for which
there are already too many participants, the connection will be refused. If there
are not yet enough participants for every role, then every message is considered
illegal. In other words: the agents can only start sending messages to one another
when there are enough participants for every role.

10.3.2 Conditions and Consequences

The main idea of the language, as explained above, is that rights are assigned
to the agents by means of if-then rules. An example of such a rule could be:

If the auctioneer has said ‘open’

then any buyer can tell his bid price.

In order to define precisely which sentences are well formed we first need to
introduce a number of terms, namely: quantifiers, identifiers, conditions, and
consequences.

Definition 66 A quantifier is any of the following keywords: no, any, every,
a, an, the, that

Definition 67 An identifier is a sequence of characters of one of the following
forms:

• q r

• no one

• anyone

• everyone

• he

10.3. Description of the Language 155

Where q can be any quantifier and r can be any singular role name. Identifiers
of the form no r as well as the identifier no one are called negative identifiers.
All other identifiers are called positive identifiers.

Definition 68 A past-event condition is a string of characters of one of the
following forms:

• id has said ‘x ’

• id has told x

• pid has not said ‘x ’

• pid has not told x

where id can be any identifier and x can be any character string, and pid can
be any positive identifier. A past-event condition is called negative if it contains
the keyword not or if it contains a negative identifier. A past-event condition is
called positive otherwise.

A past-event conditions is a specific type of condition. Other types of condition
are defined later.

The idea behind this is that a positive past-event condition is considered
true if there is any message in the message history that matches the condition.
For example the condition any buyer has said ‘hello’ is considered true if
there exists a message in the message history of the form (‘say’, ‘hello’) which
was sent by an agent playing the role buyer. A negative past-event condition is
considered true if there is no message in the message history that matches the
condition.

Definition 69 A right-update consequence is a string of characters of one
of the following forms:

• pid can say ‘x ’

• pid can tell x

where pid can be any positive identifier and x can be any character string.

A right-update consequence is a specific type of consequence. Other types of
consequences are defined later on.

We can now construct sentences (‘rules’) of the form If A then B , where A is
a conjunction of conditions and B is a conjunction of right-update consequences.
We say that a rule is active if all its conditions are true. Then the idea is that
an agent has the right to send a specific message if and only if there is an active
rule with right-update consequence that matches that message.

As we have seen above, identifiers are used inside conditions and consequences
to determine to which set of agents these conditions and consequences apply. We
would like to remark that the quantifiers a, an, any and the all have exactly

156 Chapter 10. Simple Protocol Language

the same meaning, so the language contains some redundancy. However, we
still consider it very useful to have all of them in the language to help the
protocol designer to write more natural sentences. For example, if an auction
protocol contains only one auctioneer it makes much more sense to talk about
‘the auctioneer’ than about ‘any auctioneer’.

Also note that we have included the quantifier that. This quantifier refers to
any agent that was also referred to by the last quantifier earlier in the sentence.
For example, suppose that a buyer called Alice says ‘hello’ and then a buyer
called Bob says ‘hi’. Then the condition

any buyer has said ‘hello’ and any buyer has said ‘hi’

is true. However, the condition

any buyer has said ‘hello’ and that buyer has said ‘hi’

is false, because ‘that buyer’ refers to the same agent as the one that said ‘hello’
(which is Alice). This second condition would only be true if the messages (‘say’
‘hello’) and (‘say’ ,‘hi’) had been sent by the same agent. Likewise, we have
included the identifier he, which refers to the same agent as the last identifier
that appeared earlier in the sentence. For example:

If any buyer has said ‘hello’ and he has said ‘hi’

10.3.3 Properties

Recall that, according to our definitions in Chapter 3, the realized world state
only depends on the initial world state and the messages that have been sent
by the agents. Indeed, so far we have seen that rights are obtained by if-then
rules that depend on the messages that have been sent. However, sometimes it
is much easier to assign rights in a more indirect way, depending on the values of
some variables. These variables have initial values and their values may change
depending on the messages that are being sent. Therefore, if the rights of an
agent depend on such variables, they indirectly still depend only on the initial
world state and the realized message history.

Variables in SIMPLE are called properties. A property can be assigned to
the protocol, or can be assigned to individual agents. For example, an auction
may have a property ‘highest bid’ and each buyer may have a property ‘bid
price’ to represent the price he or she has bid. If we have for example properties
‘the price’ and ‘account balance’ then we can say things like:

If the price is lower than account balance

then any buyer can say ‘buy’.

If the price is higher than 10

then the auctioneer can say ‘sold’.

Properties can be added to a protocol by including property initialization sen-
tences.

10.3. Description of the Language 157

Definition 70 A property initialization sentence is a sentence of one of
the following forms:

• Initially, x is v.

• Every r has a x , which is initially v.

• Every r has an x , which is initially v.

where x can be any character string, v can be any character string, number, or
identifier and r can be any singular role name.

For example:

Every buyer has an age, which is initially 0.

Definition 71 A property condition is a clause of one of the following forms:

• x is v

• x is not v

• x is higher than n

• x is lower than n

where x can be any character string, v can be any string, number or identifier,
and n can be any number. The string x is called the property name, and v
and n are called the value.

Note that the current version of SIMPLE supports three types of properties:
strings, numbers and identifiers. The type of a property is determined implicitly.
That is: if the parser of the protocol is able to interpret the initial value of a
property as a number, then the property is considered to be of type number,
and likewise for identifiers. In all other cases the property is considered a string.

Definition 72 A property-update consequence is a clause of the form:

• x becomes y

• x is v

• x is increased by n

• x is decreased by n

where x and y can be any character string, v can be any string, number of
identifier, and n can be any number.

Definition 73 A current-event condition is a string of characters of one of
the following forms:

• id says ‘x ’

158 Chapter 10. Simple Protocol Language

• id tells x

where id can be any identifier and x can be any character string.

In order to change the values of properties we can use property-update rules.

Definition 74 A property-update rule is a sentence of the form:

• When x then z .

Where x is a current-event condition and z is a conjunction of property-update
consequences.

Example of property-update rules are:

When any buyer says ‘bid!’ then his bid price is increased by

10.

When the auctioneer says ‘sold’ then the last bidder becomes the

winner.

Note that the clause x becomes y means that the value of property y is overwrit-
ten with the value of property x . This can be understood as follows: suppose
we have a property called Carol’s sister and a property called Bob’s wife.
Furthermore suppose that Carol’s sister is initialized to the value ‘Alice’.
Then the clause Carol’s sister becomes bob’s wife means that the value
‘Alice’ is copied into the property Bob’s wife. Furthermore, note that when
a property is assigned to an agent we use the key word his to refer to the agent
that owns the property. To be precise: it refers to the last agent that appears
earlier in the sentence. So in the above example, his bid price refers to the
property named bid price assigned to the agent that said ‘bid!’.

Finally, note that property-update rules are written in present tense, while
right-update rules are written in past tense. This is because they are interpreted
in a fundamentally different way, which we will explain in Section 10.4.

Another way that values of properties are updated is when a message with
content (‘tell’, x , y) is sent. In that case the value y is assigned to a property
with name x . For example, whenever an agent sends a message with content
(‘tell’, ‘the price’, 100), the value 100 is automatically assigned to a property
with the name ‘the price’. The protocol does not need to contain any property-
initialization sentence for such a property.

10.3.4 Constraints

Right-update rules can be extended with so called constraints:

If the auctioneer has said ‘open’ then any

buyer can tell his bid price, as long as his

bid price is higher than the current price.

10.3. Description of the Language 159

the clause as long as x is higher than y is called a constraint. A constraint
is very similar to a property condition, but is written at the end of the sen-
tence, indicated by the keywords as long as. A rule containing constraints is
considered active if and only if all its conditions and constraints are satisfied.

The difference between constraints and conditions however, is that con-
straints refer to property values inside the consequences, whereas other con-
ditions may only refer to past events or properties that do not appear inside
the consequences. This distinction means that the truth of a condition can be
determined independent of a message, and therefore can already be determined
before the message is sent, while the truth value of a constraint on a message X
can only be determined after the participant has submitted message X , when
the interpreter is verifying whether message X is legal. In the example sentence
above for instance, the constraint says that the bid price told by the buyer, must
be higher than the current price. This can of course only be checked when the
buyer is telling his bid price, and not before.

We are now ready to give the full definition of a right-update rule.

Definition 75 A right-update rule is a sentence of the form:

• id can always say v.

• id can always tell v.

• If x then y.

• If x then y, as long as w.

where id is an identifier, v can be any character string, x and w are conjunc-
tions of past-event conditions and/or property conditions and y is a conjunction
of right-update consequences (the conditions in w are also referred to as con-
straints).

Note that we allow such a rule to have no conditions at all, so that it is always
active. In that case the protocol designer needs to include the keyword always

after the keyword can.
Furthermore, we would like to remind the reader that right-update conse-

quences can only have positive identifiers. This is important, because it means
that a consequence can only give rights to an agent, but not take them away.
Nevertheless, we can still make agents lose rights, but we do that by using
negative conditions, rather than negative consequences. Take for example the
following rule:

If the auctioneer has not said ‘sold!’ then any buyer can say

‘bid!’.

Here, every buyer initially has the right to say ‘bid!’, but loses that right once
the auctioneer says ‘sold!’, because the condition becomes false.

The big advantage of only allowing positive consequences, is that this makes
it impossible to write inconsistent rules. An inconsistency would mean that

160 Chapter 10. Simple Protocol Language

there is one rule that specifies that you can do something, while another rule
says you can’t do that. This is serious problem that one often encounters, for
example in law. However, since we only allow positive consequences, this could
never happen in our language.

Lemma 4 A protocol written in SIMPLE is guaranteed to be free of inconsis-
tencies.

It is easy to prove this: in our language an agent has the right to do something
if and only if there is an active rule with a consequence that gives this right to
the agent. This can never lead to inconsistencies: either such a rule exists or
not.

10.3.5 Summary

A protocol consists of sentences. There are four kinds of sentences:

• Role definition sentences

• Role constraint sentences

• Property initialization sentences

• Rules

There are two kinds of rules:

• Right-update rules

• Property-update rules

Rules consist of conditions, consequences and constraints. There are three kinds
of conditions:

• Past-event conditions

• Current-event conditions

• Property conditions

and two kinds of consequences:

• Right-update consequences

• Property-update consequences

A right-update rule consists of:

• 0 or more past-event conditions

• 0 or more property conditions

• 1 or more right-update consequences

10.4. The SIMPLE Interpreter 161

Figure 10.1: Two screen shots of the SIMPLE editor. Users write sentences
simply by selecting available options, and they can only write free text whenever
the syntax rules indeed allow that. Therefore, it is impossible to write malformed
sentences.

• 0 or more constraints

A property-update rule consists of:

• Exactly 1 current-event condition

• 1 or more property-update consequences

10.4 The SIMPLE Interpreter

We will now describe the software component that interprets the protocols and
enforces them. Whenever an agent tries to send a message, this message is first
analyzed by the interpreter. The interpreter verifies if the agent sending the
message indeed has the right to say that message and, if so, updates its internal
state and forwards the message to the other agents connected to the server. If
the sender of the message does not have the right to send that message he or
she is notified that the message has failed. The message will in that case not
be forwarded to the other agents and the internal state of the interpreter is not
updated. In fact, we consider this message as not sent.

The interpreter keeps a list of all messages that have so far been sent success-
fully (the realized message history), and a world state that consists of a table
that maps the name of each property to the current value of that property. Fur-
thermore it keeps a table that maps the name of each agent in the MAS to the
role it is playing, and a table that maps the name of each agent in the MAS to
a list of rights for that agent (this table can be seen as an implementation of the
permission map G of the protocol). Every time an agent tries to send a message,
the interpreter follows the following procedure:

162 Chapter 10. Simple Protocol Language

1. The list of rights of that agent is made empty.

2. For each right-update rule in the protocol, the interpreter verifies if its
conditions are true:

• If the condition is a property condition then it checks whether that
property currently has the proper value to make the condition true.

• If the condition is a past-event condition, the interpreter tries to find
a message in the message history that matches the condition. If such
a message is indeed found, then the condition is considered true.

A rule for which all conditions are true is labeled as ‘active’.

3. For each right-update consequence in each active rule, the interpreter
checks whether the identifier matches the sender of the message and, if
yes, adds the right corresponding to this consequence to the sender’s list
of rights. If this consequence has any constraints assigned to it, they are
stored together with the right.

4. After all the rights of the sending agent have been determined the inter-
preter verifies whether any of them matches the message that the agent is
trying to send.

5. Next, if the agent indeed has that right the interpreter checks whether its
constraints (if any) are satisfied.

6. If the sending agent has the proper right, and all its constraints are satisfied
then the interpreter determines if there are any property-update rules in
the protocol for which the condition matches the message. If yes, the
properties in the rule’s consequences are updated accordingly.

7. Finally, if the agent has the right to send the message and its constraints
are satisfied, a copy of the message is added in the message history, and
the message is forwarded to all other agents in the MAS.

It is important to note here that property-update rules and right-update
rules are treated in a different way. To be precise: to verify whether a past-
event condition is true, the interpreter compares the condition with all messages
in the message history. Since messages are never removed from the message
history this means that whenever a past-event condition becomes true, it remains
true forever. For example, when a buyer says ‘hello’ then the condition any

buyer has said ‘hello’ becomes true, and remains true forever. For negative
conditions exactly the opposite holds: the condition no buyer has said ’bye’

is initially true, but as soon as a buyer says ’bye’ it becomes false, and will stay
false forever.

The current-event conditions on the other hand are only considered true at
the moment that the corresponding message is under evaluation of the inter-
preter. That is, the condition when a buyer says hello is considered to be
true only while the interpreter is evaluating the message with content (‘say’,

10.5. Examples 163

‘hello’) sent by some agent playing the role of buyer. As soon as the interpreter
handles the next message this condition is considered false again.

The reason for this is that we consider that when you obtain a right, you keep
that right for an extended period of time, until one of the negative conditions in
the rule becomes false. Updating of a property on the other hand, is a one-time
event that only takes place at the moment a certain message is sent.

10.5 Examples

We here provide two examples of protocols. Both have been tested and are
correctly executed by the interpreter.

10.5.1 An English Auction Protocol

ROLES:

This protocol defines the role buyer

(plural:buyers).

This protocol defines the role auctioneer

(plural:auctioneers).

There must be exactly 1 auctioneer.

There must be at least 2 buyers.

PROPERTIES:

Initially, the highest bidder is no one.

Initially, the winner is no one.

Initially, the current price is 0.

Every buyer has a bid price which is initially 0.

RULES:

If the auctioneer has not said ‘close’

then he can say ‘open’.

If the auctioneer has said ‘open’

then the auctioneer can say ‘close’.

If the auctioneer has said ‘open’ and

the auctioneer has not said ‘close’ then

any buyer can tell his bid price, as long as his bid price is higher

than the current price.

164 Chapter 10. Simple Protocol Language

When a buyer tells his bid price then his bid

price becomes the current price and he becomes

the highest bidder.

When the auctioneer says ‘close’ then the highest bidder becomes

the winner.

10.5.2 A Dutch Auction Protocol

ROLES:

This protocol defines the role buyer (plural:buyers).

This protocol defines the role auctioneer (plural:auctioneers).

There must be exactly 1 auctioneer.

There must be at least 2 buyers.

PROPERTIES:

Initially, the price is 1000.

Initially, the winner is no one.

RULES:

If no buyer has said ‘mine’ then the auctioneer can tell the next

price, as long as the next price is lower than the price.

When the auctioneer tells the next price then

the next price becomes the price.

If the auctioneer has told the price and

no buyer has said ‘mine’ then any buyer can

say ‘mine’.

When a buyer says ‘mine’ then he becomes the winner.

10.6 Conclusions

We have introduced an initial version of a new language, called SIMPLE, for the
definition of protocols. Its distinguishing property is that its syntax looks very
similar to natural language and should therefore be easy enough to be used and
understood by average people without specialist knowledge of programming or
Electronic Institutions.

We have implemented an editor that should make it easy for people to write
protocols in this language and an interpreter that verifies whether messages sent
by agents obey the protocol or not. We have given two complete examples of

10.6. Conclusions 165

auction protocols specified in SIMPLE, and we have tested that these examples
are executed correctly by the interpreter.

Our goal is to integrate the interpreter and the editor with the EIDE frame-
work so that people can use SIMPLE to specify scene protocols. We think
however that the current version of the language is still too limited to be of real
practical use. We here list the shortcomings that we consider most important
and that we plan to fix in the near future, as well as other improvements that
we are considering.

Firstly, we will add the possibility to specify the recipient of a message.
Currently every message is sent to all other agents in the MAS, which makes it
impossible to send confidential information. This means we will allow to write
sentences such as:

If the auctioneer has said ‘welcome’ to a

buyer then that buyer can say ‘hello’ to the

auctioneer.

Secondly, we would like the protocol designer to be able to express that a certain
event must have taken place a certain number of times. For example:

If a buyer has told his bid price more than

5 times...

Thirdly, we would like to add more types of messages. and maybe even allow
the protocol designer to define message types. That would make it possible to
use certain domain-specific verbs. For example:

If the student has finished the assignment...

We could even take this a step further and allow the protocol designer to define
new data types. Defining new types of objects is typically something that In-
form 7 can handle well, so we may draw some inspiration from that language.
Furthermore, we will add a system that determines at run time, whenever an
agent tries to send an illegal message, which conditions first need to be fulfilled
before the agent can indeed legally send that message. In this way the system
can explain to the user why he or she made a mistake and will help the user
to understand new protocols. In order to make the language more flexible and
expressive, we will delve into literature about linguistics and apply some of its
principles to our language.

Part IV

Conclusions & Future Work

Chapter 11

Conclusions

In Chapter 3 we have developed a formal model that unifies the subjects of Au-
tomated Negotiations, Game Theory, and Electronic Institutions. This model is
based around the notions of agents, messages and world states. A protocol de-
fines which agent can send which messages in which world state, and determines
how the world state evolves as a consequence of the messages sent by the agents.
We make a distinction between active messages (or actions) and informative
messages. Active messages are sent in order to change the world state, while
informative messages are only meant as a means of communication between the
agents, in order to coordinate their actions. An action is called infeasible in a
world state ε if it does not change that particular world state. A protocol is said
to be regimented if all actions that are not allowed, are infeasible.

We have defined a game as a protocol, together with a utility function and
a deadline for each agent. We have defined a negotiation protocol as a protocol,
together with a space of possible deals (the agreement space) and a confirmation
function that defines for each world state of the protocol which agreements are
considered confirmed, and therefore binding. A deal over a one-shot game G
is an agreement between a number of players that each will only play a move
from a certain subset of its complete set of moves. Given a negotiation protocol
N and a game G we have defined the negotiation game over G , which consists
of two stages: the negotiation stage and the action stage. In the negotiation
stage the players negotiate which moves from the game G they will make, and
in the action stage they will make their moves, restricted by the deals they have
committed themselves to during the negotiation stage. We have argued that
under this model of negotiations, there is no clear and satisfactory notion of a
reservation value.

We have introduced a new negotiation protocol, called The Unstructured
Negotiation Protocol, in which negotiators are not obliged to reply to proposals,
and after making a proposal negotiators are not obliged to wait for response
from the opponents; they may make a new proposal whenever they want.

In Chapter 4 we have presented the three negotiation scenarios of investi-
gated in this thesis, each involving large agreement spaces and non-linear utility

169

170 Chapter 11. Conclusions

functions. In the first case, the ANAC domain, the negotiations are bilateral
and utility functions are expressed as a sum over constraints. Although in prin-
ciple any function over a finite domain can be expressed in this way, it is in
many cases impossible in practice to explicitly write down a given function in
this way. The second test case described is a new problem, called the NSP, for
which calculating the utility value of a deal is harder, as it involves solving an
NP-hard problem. We also explain how the NSP could be adapted in order to
make it a more realistic model for real-world package delivery. The third test
case described is the game of Diplomacy which is a widely played board game
that involves negotiations. This test case is even more complex than the other
test cases, because a deal only partially restrict the players’ moves and because
the outcome also depends on the opponents’ moves, so calculating the utility
value of a deal is a Game Theoretical problem.

In Chapter 5 we have introduced an agent that makes use of Genetic Algo-
rithms in order to negotiate over a domain where the utility functions are given
in terms of constraints, which are in turn defined by rectangular subspaces. The
trade-off between maximizing the agent’s own utility and maximizing the oppo-
nent’s utility was solved by using an time-based aspiration level for our agent’s
own utility, and at the same time demanding that the proposed deals were close
to earlier proposals made by the opponent. If both criteria are met by more than
one deal, then our agent proposes the deal that is most different from earlier pro-
posals made by our agent. Furthermore, we have introduced a new acceptance
strategy.

Our agent has participated in the ANAC’14 competition and obtained the
second and third place in its two respective categories, among more than 20
participants. We conclude that our agent is a good negotiator and that Genetic
Algorithms are a good search technique for the given domain. We think however
that the utility functions as given in the competition were too simplistic, because
in reality constraints are not always given by rectangular subspaces and often
involve more than 4 variables.

In Chapter 6 we have introduced a new family of negotiation algorithms
for very large and complex agreement spaces, with multiple selfish agents, non-
linear utility functions and a limited amount of time. This family is called
NB3 and applies best-first Branch and Bound to search for good proposals. We
have defined a general purpose heuristic to guide the B&B search of the NB3

algorithm. Furthermore we have defined a new concession strategy that applies
two aspiration levels because it considers the utility aspired by our agent and the
utility to be conceded to the opponents as two separate quantities. This allows
our agent to determine not only what to propose, but also whether it should
make a proposal or rather continue searching for better proposals.

We have implemented an instance of NB3 for the NSP that we call Branesal
and we have performed several experiments with it. From these experiments we
conclude that, our agent indeed manages to decrease its costs significantly by
negotiation, that the results remain stable with increasing size of the problem
instances, that redundant nodes in the search tree are successfully pruned, that

171

our heuristic search performs significantly better than random search, and that in
the case of simple problem instances with a clear optimal solution our algorithm
manages to approach that solution.

In Chapter 7 we have introduced the concept of a Constraint Optimization
Game, which combines aspects of Constraint Optimization with Game Theory,
and show that a single round of Diplomacy can be modeled as a Negotiation
Game over a COG. Furthermore, we have implemented an agent, called D-Brane,
that applies the NB3 algorithm to explore the agreement space and applies
And/Or search with B&B to determine the utility value of any given deal.

We have presented experiments in which we compare D-Brane with two other
negotiating agents and show that D-Brane plays significantly better. However, it
also shows that the negotiation algorithm seems to have only a small impact on
the results. We think that D-Brane will be very important for future negotiations
research, because it allows researchers to compare their strategies not only with
the DumbBot but also with our much stronger agent.

In Chapter 8 we have presented a new extension to the EIDE framework,
called GENUINE, which allows humans to interact with each other and with
software agents in an Electronic Institution. The tool generates a default user
interface automatically, so the creator of an institution can directly use it without
having to design anything. However, it still allows designers to design a custom
GUI, tailored to a specific institution, without having to worry about getting the
necessary information from the EI. We argue that the default interface is useful
for testing purposes, but less useful for a user-friendly end product, because it
is only able to represent messages, but not world states.

Furthermore, in Chapter 9 we have argued that many different social net-
works nowadays exist next to each other, because they all require different rules
to be imposed on their users. We think that social networks in the future could
be based on EI technology, so that rules can be flexible and allow people to
develop their own communities within existing social networks, with their own
regulations tailored to the needs of that community. Humans could negotiate
the rules of such communities and may even have automated agents to negotiate
those rules on their behalves.

Finally, in Chapter 10 we have introduced a new language, called SIMPLE,
for the definition of protocols. The syntax of this language looks very simi-
lar to natural language and should therefore be easy enough to be used and
understood by average people without specialist knowledge of programming or
Electronic Institutions. We have implemented an editor that should make it
easy for people to write protocols in this language and an interpreter that ver-
ifies whether messages sent by agents obey the protocol or not. We have given
two complete examples of auction protocols specified in SIMPLE, and we have
tested that these examples are executed correctly by the interpreter. Our goal
is to integrate the interpreter and the editor with the EIDE framework so that
people can use SIMPLE to specify scene protocols. However, the current ver-
sion of the language still lacks a number of important features that we think are
necessary before it can be used in practice.

Chapter 12

Future Work

The NB3 algorithm is still based on the assumption that we have some expression
of the agents’ preferences in terms of numerical utility functions. We think that
for practical applications this is an unrealistic assumption. Instead, we think it
is much more realistic to assume a model in which preferences are modeled in
terms of a partial ordering. Therefore, we will adapt NB3 so that it can handle
qualitative preferences that are expressed in terms of logical sentences, such as
in the theoretical work done by Dongmo Zhang [Zhang, 2005].

Another aspect of the NB3 algorithm that deserves more attention is the
concession strategy. Currently, the values of the concession degrees need to be
determined per domain. We hope to find a strategy that allows the concession
degrees of the aspiration levels to be determined at run time. We may also allow
the final values of the aspiration levels to be variable (currently they only take
the values 0 and 1 respectively). Furthermore, as explained in Section 6.3, in the
current implementation the agent treats the set of opponents as if it were one
opponent to which it should concede. The negotiation strategy can be improved
by dropping this assumption, so that our agent can apply a different concession
strategy for every opponent. Also, we have mentioned in Section 6.3.2 that
there is a parameter that determines how long the agent continues expanding
the search tree before deciding whether to make a new proposal or not (the
expandInterval parameter in Algorithm 2). We will investigate the influence of
the value of this parameter on the results.

Since we have successfully applied And/Or search to the strategic component
of D-Brane, we consider it a logical next step to also apply And/Or search to the
negotiation algorithm. That is: we will develop an improved version of NB3 that
applies And/Or search as well as B&B. We expect that this will highly improve
the efficiency of NB3.

We plan to develop yet another test case for negotiation problems. However,
this time we will make this domain as realistic as possible. That is: plan to
create a virtual travel agency in which the clients can negotiate with the agency
about the prices and components of their holidays. By taking such an explicit
example we can make sure that nothing essential is abstracted way, and we force

173

174 Chapter 12. Future Work

developers of negotiation algorithms to take all practical problems into account.
We plan to make this domain available online so that researchers can test and
demonstrate their algorithms online. This web site will contain an example
negotiator based on the NB3 algorithm.

We plan to make D-Brane publicly available on the DipGame website and
we will detach the negotiating component from the strategic component so that
other researchers can put their own negotiation algorithms on top of the strategic
component of D-Brane. Furthermore, we will further develop the negotiation
component of D-Brane so that it may make more sophisticated deals rather than
just battle plans. In this way we hope to improve the impact of negotiations
on the results of D-Brane. Also, we plan to endow the DumbBot with our
negotiation algorithm, to see if negotiations in that case have a greater impact.
Finally, we would like to see if our approach for solving COGs indeed can be
generalized. We may for example define games in Game Description Language
(GDL) [Genesereth et al., 2005] so that the strategic component can decompose
the game into micro-games at runtime.

Regarding our language SIMPLE, we think that it is currently still too limited
to be of real practical use. We here list the main shortcomings that we consider
most important and that we plan to fix in the near future, as well as other
improvements that we are considering. Firstly, we will add the possibility to
specify the receivers of a message. Currently every message is sent to all other
agents in the MAS, which makes it impossible to send confidential information.
This means we will allow to write sentences such as:

If the auctioneer has said ‘welcome’ to a buyer then that buyer can say
‘hello’ to the auctioneer.

Secondly, we would like the protocol designer to be able to express that a certain
event must have taken place a certain number of times. For example:

If a buyer has told his bid price more than 5 times...

Thirdly, we would like to add more types of messages. and maybe even allow
the protocol designer to define message types, which would make it possible to
use verbs other than ‘to say’ or ‘to tell’ which are more specific for the domain
of application. We could even take this a step further and allow the protocol
designer to define new data types. Defining new types of objects is typically
something that Inform 7 can handle well, so we may draw some inspiration from
that language. Furthermore, we will add a system that determines at run time,
whenever an agent tries to send an illegal message, which conditions first need
to be fulfilled before the agent can indeed legally send that message. In this
way the system can explain to the user why he or she made a mistake and will
help the user to understand new protocols. In order to make the language more
flexible and expressive, we will study the literature about linguistics and apply
some of its principles to our language. Finally, we will make sure a demo version
of the protocol editor and the interpreter will be available online.

Bibliography

[hyp, 2014] (2014). Hypertalk. http://en.wikipedia.org/wiki/HyperTalk.

[pla, 2014] (2014). The osmosian order of plain english programmers. http:

//www.osmosian.com/.

[Alberti et al., 2006] Alberti, M., Gavanelli, M., Lamma, E., Chesani, F., Mello,
P., and Torroni, P. (2006). Compliance verification of agent interaction: a
logic-based software tool. Applied Artificial Intelligence, 20(2-4):133–157.

[An et al., 2009] An, B., Gatti, N., and Lesser, V. (2009). Extending
alternating-offers bargaining in one-to-many and many-to-many settings. In
Proceedings of the 2009 IEEE/WIC/ACM International Joint Conference on
Web Intelligence and Intelligent Agent Technology - Volume 02, WI-IAT ’09,
pages 423–426, Washington, DC, USA. IEEE Computer Society.

[An et al., 2006] An, B., Sim, K. M., Tang, L., Li, S., and Cheng, D. (2006).
Continuous time negotiation mechanism for software agents. IEEE Trans. on
Systems, Man and Cybernetics, Part B: Cybernetics, 36(6):1261–1272.

[Arcos et al., 2005] Arcos, J. L., Esteva, M., Noriega, P., Rodŕıguez-Aguilar,
J. A., and Sierra, C. (2005). Engineering open environments with electronic
institutions. Engineering Applications of Artificial Intelligence, 18(2):191–204.

[Argente et al., 2008] Argente, E., Criado, N., Botti, V., and Julian, V. (2008).
Norms for agent service controlling. EUMAS-08, pages 1–15.

[Artikis et al., 2005] Artikis, A., Kamara, L., Pitt, J., and Sergot, M. (2005). A
protocol for resource sharing in norm-governed ad hoc networks. In Leite, J. a.,
Omicini, A., Torroni, P., and Yolum, p., editors, Declarative Agent Languages
and Technologies II, volume 3476 of Lecture Notes in Computer Science, pages
221–238. Springer Berlin Heidelberg.

[Baarslag et al., 2013] Baarslag, T., Hindriks, K., and Jonker, C. (2013). Ac-
ceptance conditions in automated negotiation. In Complex Automated Negoti-
ations: Theories, Models, and Software Competitions, pages 95–111. Springer
Berlin Heidelberg.

175

176 Bibliography

[Baarslag et al., 2010] Baarslag, T., Hindriks, K., Jonker, C. M., Kraus, S., and
Lin, R. (2010). The first automated negotiating agents competition (ANAC
2010). In Ito, T., Zhang, M., Robu, V., Fatima, S., and Matsuo, T., edi-
tors, New Trends in Agent-based Complex Automated Negotiations, Series of
Studies in Computational Intelligence. Springer-Verlag.

[Bektas, 2006] Bektas, T. (2006). The multiple traveling salesman problem: an
overview of formulations and solution procedures. Omega, 34(3):209–219.

[Belnap and Perloff, 1990] Belnap, N. and Perloff, M. (1990). Seeing to it that:
A canonical form for agentives. In Kyburg, Henry E., J., Loui, R. P., and
Carlson, G. N., editors, Knowledge Representation and Defeasible Reasoning,
volume 5 of Studies in Cognitive Systems, pages 167–190. Springer Nether-
lands.

[Broersen et al., 2004] Broersen, J., Dignum, F., Dignum, V., and Meyer, J.-
J. C. (2004). Designing a deontic logic of deadlines. In Deontic Logic in
Computer Science, pages 43–56. Springer Berlin Heidelberg.

[Cardoso et al., 2013] Cardoso, H. L., Urbano, J., Rocha, A. P., Castro, A. J.,
and Oliveira, E. (2013). Ante: Agreement negotiation in normative and trust-
enabled environments. In Ossowski, S., editor, Agreement Technologies, vol-
ume 8 of Law, Governance and Technology Series, pages 549–564. Springer
Netherlands.

[Cranefield, 2005] Cranefield, S. (2005). A rule language for modelling and mon-
itoring social expectations in multi-agent systems. Technical report, In: Se-
lected and Revised papers from the AAMAS 2005 Workshop on Agents, Norms
and Institutions for Regulated Multiagent Systems. Volume 3913 of Lecture.

[Cranefield and Winikoff, 2011] Cranefield, S. and Winikoff, M. (2011). Verify-
ing social expectations by model checking truncated paths. Journal of Logic
and Computation, 21(6):1217–1256.

[DailyMail, 2012] DailyMail (2012). http://www.dailymail.co.uk/news/article-
1205794/rape-horror-tourist-used-couchsurfing-website-aimed-
travellers.html#ixzz29y3wxuck.

[Dastani et al.,] Dastani, M., Tinnemeier, N. A., and Meyer, J.-J. C. A pro-
gramming language for normative multi-agent systems.

[Dechter and Mateescu, 2007] Dechter, R. and Mateescu, R. (2007). And/or
search spaces for graphical models. Artificial Intelligence, 171(23):73 – 106.

[d’Inverno et al., 2012] d’Inverno, M., Luck, M., Noriega, P., Rodŕıguez-Aguilar,
J. A., and Sierra, C. (2012). Communicating open systems. Artificial Intelli-
gence, 186:38–64.

Bibliography 177

[Endriss, 2006] Endriss, U. (2006). Monotonic concession protocols for multi-
lateral negotiation. In Proceedings of the fifth international joint conference
on Autonomous agents and multiagent systems, AAMAS ’06, pages 392–399,
New York, NY, USA. ACM.

[Esteva, 2003] Esteva, M. (2003). Electronic Institutions: From Specification to
Development. PhD thesis, Technical University of Catalonia.

[Esteva et al., 2002] Esteva, M., de la Cruz, D., and Sierra, C. (2002). Islander:
en electronic institutions editor. volume 3, pages 1045–1052, Bologna, Italy.
ACM PRESS.

[Esteva et al., 2008] Esteva, M., Rodŕıguez-Aguilar, J. A., Arcos, J. L., Sierra,
C., Noriega, P., Rosell, B., and de la Cruz, D. (2008). Electronic institutions
development environment. pages 1657–1658, Estoril, Portugal. International
Foundation for Autonomous Agents and Multiagent Systems, International
Foundation for Autonomous Agents and Multiagent Systems.

[Esteva et al., 2004] Esteva, M., Rosell, B., Rodŕıguez-Aguilar, J. A., and Arcos,
J. L. (2004). Ameli: An agent-based middleware for electronic institutions.
volume I, pages 236–243. ACM, ACM.

[Fabregues, 2014] Fabregues, A. (2014). Facing the Challenge of Automated Ne-
gotiations with Humans. PhD thesis, Universitat Autònoma de Barcelona.

[Fabregues and Sierra, 2011] Fabregues, A. and Sierra, C. (2011). Dipgame: a
challenging negotiation testbed. Engineering Applications of Artificial Intel-
ligence.

[Falkenauer, 1998] Falkenauer, E. (1998). Genetic Algorithms and Grouping
Problems. John Wiley & Sons, Inc., New York, NY, USA.

[Faratin et al., 1998] Faratin, P., Sierra, C., and Jennings, N. R. (1998). Nego-
tiation decision functions for autonomous agents. Robotics and Autonomous
Systems, 24(3-4):159 – 182. Multi-Agent Rationality.

[Faratin et al., 2000] Faratin, P., Sierra, C., and Jennings, N. R. (2000). Using
similarity criteria to make negotiation trade-offs. In International Conference
on Multi-Agent Systems, ICMAS’00, pages 119–126.

[Fatima et al., 2009] Fatima, S., Wooldridge, M., and Jennings, N. R. (2009).
An analysis of feasible solutions for multi-issue negotiation involving nonlin-
ear utility functions. In Proceedings of The 8th International Conference on
Autonomous Agents and Multiagent Systems - Volume 2, AAMAS ’09, pages
1041–1048, Richland, SC. International Foundation for Autonomous Agents
and Multiagent Systems.

[Ferreira et al., 2015] Ferreira, A., Lopes Cardoso, H., and Paulo Reis, L. (2015).
Dipblue: A diplomacy agent with strategic and trust reasoning. In 7th In-
ternational Conference on Agents and Artificial Intelligence (ICAART 2015),
pages 398–405.

178 Bibliography

[Fornara et al., 2013] Fornara, N., Cardoso, H. L., Noriega, P., Oliveira, E.,
Tampitsikas, C., and Schumacher, M. I. (2013). Modelling Agent Institutions,
chapter 18, pages 277–307. Number 8. Springer-Verlag GmdH.

[Garćıa-Camino, 2008] Garćıa-Camino, A. (2008). Ignoring, forcing and ex-
pecting simultaneous events in electronic institutions. In Proceedings of the
2007 International Conference on Coordination, Organizations, Institutions,
and Norms in Agent Systems III, COIN’07, pages 15–26, Berlin, Heidelberg.
Springer-Verlag.

[Genesereth et al., 2005] Genesereth, M., Love, N., and Pell, B. (2005). General
game playing: Overview of the aaai competition. AI Magazine, 26(2):62–72.

[Governatori et al., 2005] Governatori, G., Rotolo, A., and Sartor, G. (2005).
Temporalised normative positions in defeasible logic. In Procedings of the
10th International Conference on Artificial Intelligence and Law, pages 25–
34. ACM Press.

[Hazelden et al., 2012] Hazelden, K., Yee-King, M., Amgoud, L., d’Inverno, M.,
Sierra, C., Osman, N., Confalonieri, R., and de Jonge, D. (2012). Wecu-
rate: Designing for synchronised browsing and social negotiation. Dubrovnik,
Croatia.

[Hemaissia et al., 2007] Hemaissia, M., El Fallah Seghrouchni, A., Labreuche,
C., and Mattioli, J. (2007). A multilateral multi-issue negotiation protocol.
In Proceedings of the 6th international joint conference on Autonomous agents
and multiagent systems, AAMAS ’07, pages 155:1–155:8, New York, NY, USA.
ACM.

[Hindriks and Tykhonov, 2008] Hindriks, K. and Tykhonov, D. (2008). Oppo-
nent modelling in automated multi-issue negotiation using bayesian learning.
In Proceedings of the 7th international joint conference on Autonomous agents
and multiagent systems - Volume 1, AAMAS ’08, pages 331–338, Richland,
SC. International Foundation for Autonomous Agents and Multiagent Sys-
tems.

[Hübner et al., 2006] Hübner, J. F., Sichman, J. S. a., and Boissier, O. (2006).
S-moise+: A middleware for developing organised multi-agent systems. In
Boissier, O., Padget, J., Dignum, V., Lindemann, G., Matson, E., Ossowski,
S., Sichman, J. S. a., and Vázquez-Salceda, J., editors, Coordination, Orga-
nizations, Institutions, and Norms in Multi-Agent Systems, volume 3913 of
Lecture Notes in Computer Science, pages 64–77. Springer Berlin Heidelberg.

[Ito et al., 2008] Ito, T., Klein, M., and Hattori, H. (2008). A multi-issue ne-
gotiation protocol among agents with nonlinear utility functions. Multiagent
Grid Syst., 4:67–83.

[Klein et al., 2003] Klein, M., Faratin, P., Sayama, H., and Bar-Yam, Y. (2003).
Protocols for negotiating complex contracts. Intelligent Systems, IEEE,
18(6):32 – 38.

Bibliography 179

[Koenig et al., 2006] Koenig, S., Tovey, C., Lagoudakis, M., Markakis, V.,
Kempe, D., Keskinocak, P., Kleywegt, A., Meyerson, A., and Jain, S. (2006).
The power of sequential single-item auctions for agent coordination. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence (AAAI), pages
1625–1629.

[Kollingbaum, 2005] Kollingbaum, M. J. (2005). Norm-governed practical rea-
soning agents. PhD thesis, University of Aberdeen.

[Kraus, 1995] Kraus, S. (1995). Designing and building a negotiating automated
agent. Computational Intelligence, 11:132–171.

[Krishna and Serrano, 1996] Krishna, V. and Serrano, R. (1996). Multilateral
bargaining. Review of Economic Studies, 63(1):61–80.

[Kröger, 1987] Kröger, F. (1987). Temporal Logic of Programs. Springer-Verlag
New York, Inc., New York, NY, USA.

[Lai et al., 2008] Lai, G., Sycara, K., and Li, C. (2008). A decentralized model
for automated multi-attribute negotiations with incomplete information and
general utility functions. Multiagent Grid Syst., 4:45–65.

[Lauterbach et al., 2009] Lauterbach, D., Truong, H., Shah, T., and Adamic,
L. (2009). Surfing a web of trust: Reputation and reciprocity on couchsurf-
ing.com. In Computational Science and Engineering, 2009. CSE ’09. Inter-
national Conference on, volume 4, pages 346–353.

[Lawler and Wood, 1966] Lawler, E. L. and Wood, D. E. (1966). Branch-and-
bound methods: A survey. Operations Research, 14(4):699–719.

[Lewis, 1974] Lewis, D. (1974). Semantic analyses for dyadic deontic logic. In
Stenlund, S., editor, Logical Theory and Semantic Analysis: Essays Dedicated
to Stig Kanger on His Fiftieth Birthday, pages 1–14. Reidel, Dordrecht.

[Lopez y Lopez et al., 2004] Lopez y Lopez, F., Luck, M., and Puebla, A.
(2004). A model of normative multi-agent systems and dynamic relationships.
In Regulated Agent-Based Social Systems. Volume 2934 of Lecture Notes in
Artificial Intelligence, pages 259–280. Springer.

[Makinson and Van Der Torre, 2000] Makinson, D. and Van Der Torre, L.
(2000). Input/output logics. Journal of Philosophical Logic, 29(4):383–408.

[Marsa-Maestre et al., 2009a] Marsa-Maestre, I., Lopez-Carmona, M. A., Ve-
lasco, J. R., and de la Hoz, E. (2009a). Effective bidding and deal identifi-
cation for negotiations in highly nonlinear scenarios. In Proceedings of The
8th International Conference on Autonomous Agents and Multiagent Systems
- Volume 2, AAMAS ’09, pages 1057–1064, Richland, SC. International Foun-
dation for Autonomous Agents and Multiagent Systems.

180 Bibliography

[Marsa-Maestre et al., 2009b] Marsa-Maestre, I., Lopez-Carmona, M. A., Ve-
lasco, J. R., Ito, T., Klein, M., and Fujita, K. (2009b). Balancing utility
and deal probability for auction-based negotiations in highly nonlinear utility
spaces. In Proceedings of the 21st International Jont Conference on Artifi-
cal Intelligence, IJCAI’09, pages 214–219, San Francisco, CA, USA. Morgan
Kaufmann Publishers Inc.

[Meyer, 1987] Meyer, J.-J. C. (1987). A different approach to deontic logic:
deontic logic viewed as a variant of dynamic logic. Notre Dame Journal of
Formal Logic, 29(1):109–136.

[Modi et al., 2005] Modi, P. J., Shen, W.-M., Tambe, M., and Yokoo, M. (2005).
Adopt: Asynchronous distributed constraint optimization with quality guar-
antees. Artif. Intell., 161(1-2):149–180.

[Nash, 1950] Nash, J. (1950). The bargaining problem. ”Econometrica”,
”18”:155–162.

[Nash, 1951] Nash, J. (1951). Non-cooperative games. Annals of Mathematics,
54(2):pp. 286–295.

[Nelson, 2014] Nelson, G. (2014). Natural language, semantic analysis and in-
teractive fiction. http://inform7.com/learn/documents/WhitePaper.pdf.

[Nguyen and Jennings, 2004] Nguyen, T. D. and Jennings, N. R. (2004). Co-
ordinating multiple concurrent negotiations. In Proceedings of the Third In-
ternational Joint Conference on Autonomous Agents and Multiagent Systems
- Volume 3, AAMAS ’04, pages 1064–1071, Washington, DC, USA. IEEE
Computer Society.

[Noriega, 1997] Noriega, P. (1997). Agent Mediated Auctions: The Fishmarket
Metaphor. PhD thesis, Autonomous University of Barcelona.

[Nute, 1997] Nute, D. (1997). Defeasible Deontic Logic. Springer.

[Ortner, 2012] Ortner, J. M. (2012). A continuous time model of bilateral bar-
gaining.

[Osborne and Rubinstein, 1994] Osborne, M. and Rubinstein, A. (1994). A
Course in Game Theory. MIT Press.

[Papadimitriou, 1994] Papadimitriou, C. H. (1994). Computational Complexity.
Addison-Wesley.

[Poundstone, 1993] Poundstone, W. (1993). Prisoner’s Dilemma. Doubleday,
New York, NY, USA, 1st edition.

[Robu et al., 2005] Robu, V., Somefun, D. J. A., and Poutré, J. A. L. (2005).
Modeling complex multi-issue negotiations using utility graphs. In Proceedings
of AAMAS’05, pages 280–287.

Bibliography 181

[Rosenschein and Zlotkin, 1994] Rosenschein, J. S. and Zlotkin, G. (1994). Rules
of Encounter. The MIT Press, Cambridge, USA.

[Rossi et al., 2006] Rossi, F., Beek, P. v., and Walsh, T. (2006). Handbook of
Constraint Programming (Foundations of Artificial Intelligence). Elsevier Sci-
ence Inc., New York, NY, USA.

[Rubinstein, 1982] Rubinstein, A. (1982). Perfect Equilibrium in a Bargaining
Model. Econometrica, 50(1):97–109.

[S. Kraus, 1989] S. Kraus, D. Lehman, E. E. (1989). An automated diplomacy
player. In Levy, D. and Beal, D., editors, Heuristic Programming in Artifi-
cial Intelligence: The 1st Computer Olympia, pages 134–153. Ellis Horwood
Limited.

[Schmitt, 2001] Schmitt, L. M. (2001). Theory of genetic algorithms. Theoretical
Computer Science, 259(12):1 – 61.

[Sergot and Craven, 2006] Sergot, M. and Craven, R. (2006). The deontic com-
ponent of action language nc+. In Goble, L. and Meyer, J.-J. C., editors, De-
ontic Logic and Artificial Normative Systems, volume 4048 of Lecture Notes
in Computer Science, pages 222–237. Springer Berlin Heidelberg.

[Serrano, 2008] Serrano, R. (2008). bargaining. In Durlauf, S. N. and Blume,
L. E., editors, The New Palgrave Dictionary of Economics. Palgrave Macmil-
lan, Basingstoke.

[Sierra and Debenham, 2007] Sierra, C. and Debenham, J. (2007). The logic
negotiation model. In Sixth International Joint Conference on Autonomous
Agents and Multiagent Systems, AAMAS ’07, pages 1026–1033. ACM.

[Tampitsikas et al., 2012] Tampitsikas, C., Bromuri, S., and Schumacher, M.
(2012). Manet: A model for first-class electronic institutions. In Cranefield,
S., Vazquez-Salceda, J., van Riemsdijk, B., and Noriega, P., editors, Coordi-
nation, Organizations, Institutions, and Norms in Agent Systems VII, volume
7254 of Lecture Notes in Artificial Intelligence. Springer Verlag.

[Trescak et al., 2013] Trescak, T., Rodriguez, I., Sanchez, M. L., and Almajano,
P. (2013). Execution infrastructure for normative virtual environments. En-
gineering Applications of Artificial Intelligence, 26(1):51 – 62.

[Uszok et al., 2008] Uszok, A., Bradshaw, J. M., Lott, J., Breedy, M., Bunch,
L., Feltovich, P., Johnson, M., and Jung, H. (2008). New developments in
ontology-based policy management: Increasing the practicality and compre-
hensiveness of kaos. Policies for Distributed Systems and Networks, IEEE
International Workshop on, 0:145–152.

[van der Hoek et al., 2007] van der Hoek, W., Roberts, M., and Wooldridge, M.
(2007). Social laws in alternating time: effectiveness, feasibility, and synthesis.
Synthese, 156(1):1–19.

182 Bibliography

[Vázquez-Salceda et al., 2004] Vázquez-Salceda, J., Aldewereld, H., and
Dignum, F. (2004). Implementing norms in multiagent systems. Multiagent
system technologies, pages 313–327.

[von Wright, 1951] von Wright, G. H. (1951). Deontic logic. Mind, 60:1–15.

[Williams et al., 2011] Williams, C. R., Robu, V., Gerding, E. H., and Jennings,
N. R. (2011). Using gaussian processes to optimise concession in complex nego-
tiations against unknown opponents. In Proceedings of the Twenty-Second In-
ternational Joint Conference on Artificial Intelligence - Volume Volume One,
IJCAI’11, pages 432–438. AAAI Press.

[Yee-King et al., 2013] Yee-King, M., Confalonieri, R., de Jonge, D., Hazelden,
K., Sierra, C., d’Inverno, M., Amgoud, L., and Osman, N. (2013). Multiuser
museum interactives for shared cultural experiences: an agent based approach.
Saint Paul, Minnesota, USA.

[Zhang, 2005] Zhang, D. (2005). A logical model of nash bargaining solution.
In IJCAI-05, Proceedings of the Nineteenth International Joint Conference
on Artificial Intelligence, Edinburgh, Scotland, UK, July 30-August 5, 2005,
pages 983–990.

