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Abstract

We will start out by giving a short introduction into the concept of
categorification of natural numbers and polynomials with positive coef-
ficients. Next we will give some examples of how categorification arises
in several branches of physics and mathematics. Especially in topological
string theory because here lies it’s connection with knot theory. Also we
will give a short introduction to knot theory and give a description of
the most important knot invariants. Then we will go a little deeper into
the theory of categorification and show how chain complexes are natural
structures to categorify integers. Also we will show some properties of the
category of chain complexes and do some calculations that will turn out
to be crucial in the rest of this thesis. We will show how the Kauffman
bracket can be constructed from a cube-construction. Then we will try to
categorify everything in order to improve the Jones polynomial leading to
Khovanov homology.

Instead of defining Khovanov homology straight away and then show-
ing that it is Reidemeister invariant, we will try to construct it ourselves
such that it becomes Reidemeister-invariant automatically. We will see
that this works out for RI moves and for most cases of RII moves in
a very natural way. This strongly improves our understanding of Kho-
vanov homology. Having derived Khovanov homology we will then use it
to calculate the Khovanov polynomial of the Trefoil knot as an example.
Finally we give a very brief introduction to Khovanov-Rozansky theory,
which is a categorification of the Homfly polynomial.

In Appendix A we will give a short review of homology theory in alge-
braic topology and show how this serves as a blueprint for other theories
in which information is stored in chain complexes. Appendix B contains
a review of the theory of Hopf-algebras and quantum groups and shows
how knot-invariants are related to representations of quantum groups.
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1 Introduction

The central subject of this thesis will be Khovanov Homology. Khovanov Ho-
mology is a new topic in knot theory that emerged a few years ago with an article
by Khovanov [9]. In this article Khovanov describes a clever way to improve
the strength of the Jones Polynomial by using a trick called categorification.
Categorification is a means of replacing certain objects of a theory by objects
in some category so that also morphisms between them are defined.

Take for instance the set of natural numbers N. It is wat we call a commuta-
tive rig that is: a set with to abelian operations: ’addition’ and ’multiplication’
denoted by + and · . Addition and multiplication are both associative and
multiplication acts distributive on a sum: a · (b+ c) = a · b+a · c. In other words
it is a ring that does not necessarily have additive inverses.

Now the category of vector spaces over some field k denoted by V ect(k)
contains a similar structure: it has a direct sum and a tensor product. We
say V ect(k) is a monoidal tensor category. So categorification of the natural
numbers means replacing a theory which involves natural numbers by a theory
which involves vector spaces (or ring modules). Every number n is then replaced
by an n-dimensional vector space. The expression m+n is then replaced by the
direct sum V ⊕W where V is anm-dimensional space andW is an n-dimensional
space. Also the expression m · n is replaced by V ⊗W . In this category the
trivial vector space {0} behaves like the number 0 since we have:

V ⊕ {0} ∼= V

and the ground field k (which can be interpreted as a 1-dimensional vector
space) behaves like the number 1:

V ⊗ k ∼= V

The opposite operation (going from a category to a set) is called decatorification.
In this case decatorification is given by taking the dimension of a vector space.

There are some important subtleties however. For instance the tensor prod-
uct is not associative. We don’t have (U ⊗ V ) ⊗W = U ⊗ (V ⊗W ). However
we do have (U ⊗ V ) ⊗W ∼= U ⊗ (V ⊗W ). This is a very important aspect of
categorification: certain expressions which are equal in one theory may lead to
different, but isomorphic objects after categorification. This is however mostly
an advantage. It means that we can store much more information in our new
category. While in the set of natural numbers we can only decide wether two
expressions are equal or not, in the category of vector spaces we can not only
ask ourselves whether two objects are isomorphic or not but, if so, we can also
wonder which isomorphisms we can establish between them. Moreover we also
have non-invertible morphisms in the category of vector spaces, defining extra
relationships between objects.

Especially in the case of knot-theory this is an advantage. The Jones polyno-
mial can only describe knots, but after categorification we also have morphisms
between them, describing (as we will see) 2-dimensional surfaces between knots.
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It is important to notice that this construction works only because we are
dealing with positive integers. Within the set of positive integers there is no
well defined notion of subtraction since after subtraction of two such numbers
we might end up with a negative integer. However in calculating the Kauffman
bracket we do need to subtract integers. So in order to categorify the Kauffman
bracket we need a way to categorify negative integers. Khovanov does this using
chain complexes. An expression of the form a − b can be replaced by a map
V a → V b. So any integer number can now be replaced by a sequence of maps
between vector spaces. However, since we are now talking about sequences it is
more natural to assign the sequence 0 → V a → 0 to a instead of just V a. And
then we naturally assign 0 → V a → V b → 0 to a − b. We define the sequence
0 → V a → V b → V c → 0 to correspond to the expression a− (b− c). This way
we get back our original integer number by taking the Euler characteristic of
the sequence (with ’Euler characteristic’ we simply mean here the alternating
sum of the dimensions of the spaces). Notice that the sequence we get from
categorifying any integer number depends on the expression:

a+ b ⇒ 0 → V a ⊕ V b → 0

a− (0− b) ⇒ 0 → V a → 0 → V b → 0

This is not a problem however. In fact, this is exactly what we want. We want
to have more expressions then in our original category so we can distinguish
more knots.

Khovanov states that we can categorify the Jones polynomial in this way,
such that these sequences are actually chain complexes. Furthermore he states
that we can do this such that not only the Euler characteristic of such a complex
(which is the Jones polynomial) is an invariant for knots but even the homol-
ogy. And since the homology contains strictly more information than the Euler
characteristic, it is a stronger invariant then the Jones polynomial.
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2 Graded Vector Spaces

Another example of categorification that will be very important to us is the
categorification of polynomials. Notice that a polynomial can be described by
an ordered set of numbers indexed by the natural numbers such that only a
finite amount of these numbers is nonzero. These numbers are the coefficents of
the polynomial and the indices are the degrees of the corresponding monomials:

a+ bq + cq3 ∼= (a, b, 0, c, 0, 0, 0, ...)

If we look at Laurent-polynomials (polynomials in both q and q−1) we look at
ordered sets indexed by the integer numbers.

aq−2 + b+ cq + dq3 ∼= (..., 0, 0, 0, a, 0, b, c, 0, d, 0, 0, 0, ...)

Now we want to categorify the set of laurent-polynomials with positive in-
teger coefficients: N[q, q−1]. Since we have seen in our previous example that
we can categorify the natural numbers by replacing them with vectorspaces,
we now get an ordered set of vectorspaces. For each of these vector spaces the
dimension is equal to one of the coefficients of the categorified polynomial.

aq−2 + b+ cq + dq3 ⇒ (..., 0, 0, 0, V a, 0, V b, V c, 0, V d, 0, 0, 0, ...)

Here V n denotes a vectorspace with dimension n. We can put these vectorspaces
all together in one so-called graded vectorspace.

aq−2 + b+ cq + dq3 ⇒ V a−2 ⊕ V b0 ⊕ V c1 ⊕ V d3

(The subscripts denote the grading.)

Definition 1 A graded vector space is a vector space which is the direct sum
of subspaces which are all labelled by an integer number. A vector which is an
element of one of these subspaces, labelled by n, is called homogenous of degree
n.

For tensor products we have by definition:

deg(v ⊗ w) = deg(v) + deg(w)

In general we define categorification of the rig of Laurent-polynomials with
natural number coefficients as:∑

i∈Z
aiq

i ⇒
⊕
i∈Z

V ai
i

So we see that under categorification the laurent-polynomials are mapped to
the category of graded vector spaces. The polynomial on the left-hand side is
called the graded dimension of the space on the right-hand side.
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This can easily be generalized to a categorification of Z[q, q−1]: replace a
polynomial P1 by a sequence 0 → V P1 → 0 such that the graded vector space
V P1 has graded dimension P1 Then the expression P1 − P2 becomes:

0 → V P1 → V P2 → 0

The map in this sequence is chosen to be grading preserving (that is: it maps
homogeneous subspaces of degree n into homogeneous subspaces of degree n) so
that it can be seen as the direct sum of graded sequences, each corresponding
to one of the monomials in P1. Moreover, we will define these maps such that
these sequences are chain complexes.
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3 Knot Theory and Categorification in Physics

3.1 Quantum Mechanics

An example of categorification that is very important for physicists is quantum
mechanics. Suppose we have a classical particle which lives in a space that we
divide in three sections. In other words: the coordinates of the particle can
take on three different values. We call these sections A, B and C. Now a
quantummechanical particle does not have to be in exactly one of these three
sections, but can be in a superposition. This means that the state of the particle
is now described as: aA+ bB+ cC, where a, b and c are three complex numbers
such that

|a|2 + |b|2 + |c|2 = 1

So the state of the particle is now described by a vector in a three dimensional
space, while the state of the classical particle was described by an element of a
set with three elements. This is clearly an example of categorification.

In reality of course a classical particle lives in a continuum of coordinates.
We could for instance say the particle lives in a one-dimensional infinite square
well, with the walls located at x = 0 and x = 1 respectively. So the particle’s
position is described by an element of the set [0, 1] a set with uncountable
many elements. Categorification of this set would lead to vector space with an
uncountable basis! A vector in such a space is simply a function from [0, 1] to
C (with value 0 on the boundary). Lucky for us the laws of quantummechanics
demand that particles are described by wavefunctions that are continuous. This
restriction severely lowers the amount of possible states. We know from fourier
analysis that the space of continuous, normalizable complex functions on a real
interval is a Hilbert space V with countable basis. So we see that categorification
of a set is here realized as going to its function space V .

Notice that in fact a classical particle is described not only by its position in
coordinate space, but also by its ’position’ in momentum space. The two spaces
taken together are called the phase space of the particle (usually the phase space
is defined as the co-tangent bundle T ∗M of coordinate space). However, the
quantummechanical Hilbert space is the categorification of only the coordinate
space. The classical positions form a basis in the quantummechanical space.
The classical momenta form a different basis, so a momentum eigenvector is a
superposition of position eigenvectors. Time evolution in classical mechanics is
described by a map from T ∗M to T ∗M . This becomes a linear operator from
V to V .

With every momentum eigenvector is associated a certain momentum, which
is a real number. Since the momentum eigenvectors form a basis we see that we
can use these momentum eigenvalues to interpret the Hilbert space as a graded
vector space:

deg(v) = λ where H(v) = λv
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Here H is the hamiltonian which is defined by H = P 2

2m+U . P is the momentum
operator and U is the potiential. In the case of the infinite square well for
instance U is zero on the interval [0, 1] and infinite outside. We could also have
taken another potential as long as it gives H a countable spectrum, for instance
the harmonic oscillator potential. Or, if we also have anti-particles we could
define:

deg(v) = qλ where Q(v) = qv and H(v) = λv

With Q the charge operator. The time evolution operator is then defined by:

exp(QHt)

with t the time. This means that we can define the graded dimension of V as:

qdim(V ) = Tr(eQHt) =
∑
λ

qQλ

with q = exp(t) and the summation is over all eigenvalues λ of H. For instance
if we look at a system consisting of a particle with charge 1 and energy 1
together with its corresponding anti-particle, then qdim(V ) = q+q−1 (although
in quantum mechanics we cannot yet really speak of anti-particles).

The fact that a quantummechanical particle can indeed be in a superposition
of energy-eigenstates follows from the fact that if we try to measure its position,
it will collapse to a position-eigenfunction, which is a delta-function (we ignore
here the fact that the dirac-delta is not a well defined function). We can consider
the function ψ as a superposition of delta functions:

ψ(x) =
∫
ψ(x′)δ(x− x′)dx′

We see here that we can consider ψ(x) as a linear combination of basis vectors
δ(x− x′) labeled by x′ with coefficients ψ(x′). In the same way we can view a
delta function as a superposition of energy-eigenstates:

δ(x) =
∫
eipxdp

Notice that if we are in an infinite square well p can only take on a discrete set
of values, since ψ has to be zero at the boundary.

3.2 Topological Quantum Field Theory

A d + 1-dimensional Topological Quantum Field Theory (TQFT) is a functor
that assigns vector spaces to closed oriented d-dimensional manifolds and linear
maps to compact oriented d + 1-dimensional manifolds such that these vector
spaces and maps are topological invariants.
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So if X and Y are two d-dimensional manifolds and M is a cobordism between
X and Y (X is called the incoming boundary and Y is called the outgoing
boundary) then we have a functor F such that:

F (X) = VX , F (Y ) = VY and F (M) = f (1)

Where VX and VY are vector spaces and f is a linear map

f : VX → VY

A TQFT should satisfy ’gluing properties’. That is: suppose we have two
manifolds M1 and M2 with corresponding linear maps f1 and f2 respectively.

Furthermore the outgoing boundary of M1 is diffeomorphic to the incoming
boundary of M2 through a diffeomorphism g. If they are then glued together,
the result M1 ∪g M2 gets assigned the composition map f2 ◦ f1.

F (M1 ∪g M2) = F (M2) ◦ F (M1) (2)

The disjoint union of two manifolds goes to tensor product:

F (M1 tM2) = F (M1)⊗ F (M2) (3)

The linear map should be a topological invariant of the cobordism. So if two
cobordisms are diffeomorphic the TQFT should assign to them the same linear
map:

M1
∼= M2 ⇒ F (M1) = F (M2) (4)
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In particular this means that if M is the trivial cobordism from X to itself (that
is: M ∼= X× I with I the interval I = [0, 1]) then the map F (M) is the identity
map:

F (M) = Id : X → X

It follows from (3) that if X is the empty space X = ∅ then the functor assigns
to it the ground field k.

F (∅) = k

A closed d+ 1-dimensional manifold M then gets assigned a linear map k → k
which can be interpreted as an element of k itself.

So (if for instance d = 2) we have the following pattern:

Category of manifolds Category of vector spaces
closed 2-manifold Σ Vector space VΣ

3-manifold Linear map VΣ1 → VΣ2

closed 3-manifold Y Linear map k → k = number ZY ∈ k

In the theory of the Jones Polynomial, where we assign a number (polyno-
mial) to a closed 1-manifold (knot), we have the same kind of pattern. We can
consider it as a kind of 1-dimensional TQFT embedded in S3:

Category of manifolds Category of quantum group reps
closed 0-manifold (points) Representation of quantum group

1-manifold (lines) Morphism of representations
closed 1-manifold (link) Morphism k → k = number Z ∈ k

Suppose now we have two manifolds Y1 and Y2 where Y1 has only an outgoing
boundary and Y2 has only an incoming boundary. Then Y1 has assigned to it
a linear map f1 : k → V∂Y1 . Which can be seen as a vector v in V∂Y1 since f
is determined by its value f(1) on the unit element 1 ∈ k. In the same way Y2

gets assigned a linear map f2 : V∂Y2 → k which can be seen as a covector w in
V∂Y2

∗.
Suppose now that their respective boundaries are diffeomorphic: ∂Y1

∼= ∂Y2.
Then V∂Y2 = V∂Y1 and we can glue them together to create a closed 3-manifold
Y by identifying their boundaries. Then Y gets assigned f2 ◦ f1 which is w(v) ,
or in bracket notation: 〈w, v〉.
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3.3 Frobenius Algebras

Suppose O is a 1-dimensional closed connected manifold without boundary (a
cycle) and the functor F defines a 2-dimensional TQFT. Then in order to satisfy
(4) the vector space F (O) should be a commutative Frobenius algebra (see [15]).

Definition 2 A Frobenius algebra is a vector space over some field k which is
equipped with the following structures:

a multiplication m:
m : V ⊗ V → V

a co-multiplication ∆:
∆ : V → V ⊗ V

a unit η:
η : k → V

a co-unit ε
ε : V → k

The maps m and ∆ have to satisfy the frobenius condition:

(m⊗ Id) ◦ (Id⊗∆) = ∆ ◦m = (Id⊗m) ◦ (∆⊗ Id) (5)

and also associativity and co-associativity:

m ◦ (m⊗ Id) = m ◦ (Id⊗m) (6)

(Id⊗∆) ◦∆ = (∆⊗ Id) ◦∆ (7)

and the unit and co-unit condition:

m ◦ (Id⊗ η) = Id = m ◦ (η ⊗ Id) (8)

(ε⊗ Id) ◦∆ = Id = (Id⊗ ε) ◦∆ (9)

A commutative Frobenius algebra is a Frobenius algebra that also contains a
twist map:

τ(v ⊗ w) := w ⊗ v

such that it satisfies the following two equivalent relations:

m ◦ τ = m

τ ◦∆ = ∆

Whenever two cycles join like in the first picture of figure 1 this cobordism
gets assigned the map m. When a cycles splits into two like in the second picture
of figure 1 it gets assigned the map ∆. The cobordism of the third picture gets
η and the fourth cobordism gets assigned ε.

13



Figure 1: elementary cobordisms

Lemma 1 With these four elementary cobordisms and the cobordism that inter-
canges two cycles we can build up any 2-dimensional cobordism. The relations
(5)-(9) make sure that (4) is always satisfied.

When we have more then two incoming cycles and the map m acts on the
ith and the i+ 1th component we’ll denote it by mi. If the ith component splits
into an ith and an i+ 1th component we’ll call the corresponding map ∆i.

In other words, if we have k cycles:

m1 := m⊗ Id⊗ Id⊗ ...

m2 := Id⊗m⊗ Id⊗ ...

mk−1 := Id⊗ Id⊗ ...⊗m

And analogous for ∆. We can then rewrite the conditions (5), (6) and (7) as:

mi+1∆i = ∆imi = mi∆i+1

mi+1mi = mimi+1

∆i+1∆i = ∆i∆i+1

3.4 Path Integration

A TQFT can be described using Quantum Field Theory and path integration.
Suppose we have a closed 2-manifold Σ. We can look at the space of all gauge-
fields on Σ. If we then consider the vector space generated by all classical fields
we obtain the so-called physical Hilbert space HΣ. If we consider 2-manifolds
as space and 3-manifolds as space-time then we can use quantum field theory as
a 3-dimensional TQFT since we already know that QFT satisfies (1), (2) and
(3) if the linear map F (M) plays the role as time-evolution operator.

We know from quantum field theory that an initial state evolves in time by
acting on it with the time-evolution operator, which is given by:∫

Dφe−S(φ)
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Here φ denotes a gauge-field on the space Σ so this is an integral over the Hilbert
space of all field-configurations (a path-integral). In order to make the theory
topological (that is: it satisfies (4)) the action S(φ) in this expression is the
Chern-Simons action (see for instance [19]).

A closed manifold Y then defines a path integral from the vacuum to HΣ

and back to the vacuum. This is a map k → k so this is again a number in k.
This number is known as the partition function.

In Jones-Witten theory we include Wilson loops in our 3-manifolds and use
this technique to find invariants of knots embedded in a 3-dimensional space.

Category of manifolds with punctures Category of quantum group reps
closed 2-manifold with dots representation of quantum group

3-manifold with lines Morphism of representations
closed 3-manifold with link Morphism k → k = number J ∈ k

3.5 Categorifying TQFT

So what if we now want to extend this to 4-manifolds? Extending the pattern
of (3.2) would mean a 4-dimensional cobordism should correspond to something
like a morphism between two numbers, which makes no sense. However, we have
seen that this can be resolved using categorification. Categorification makes a
number into a vector space. Also a vector space in turn can be categorified
into a category and a linear map is then turned into a functor. So if we first
categorify this theory, then a closed 3-manifold gets assigned a vector space
(which has the partition function as its dimension) and then a 4-manifold can
be assigned a linear map between two vector spaces.

Manifolds Vector spaces
closed 2-manifold Σ Category CΣ

3-manifold Functor CΣ1 → CΣ2

closed 3-manifold Y Functor C∅ → C∅ = vector space VY
4-manifold Linear map VY1 → VY2

closed 4-manifold X Linear map k → k = number ZX ∈ k

And maybe we can even go on like this infinitely, categorifying categories etc...
to describe any d-manifold.

In the above diagram the vector space VY is the categorification of the par-
tition function ZY of the 3-dimensional TQFT. Similarly the category CΣ is
the categorification of the vector space VΣ. And the category C∅ is the cate-
gorification of the ground field k. A vector space is decategorified by taking
its dimension, that is: dim(VY ) = ZY . The decategorification of a category
is defined by taking its Grothendieck group, tensored with k. So VΣ is the
Grothendieck group (tensored with k) of CΣ.

Definition 3 Let S be a commutative semigroup (that is: it does not have
inverses or a unit element) then we define its Grothendieck group as the set
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of pairs (x, y) modulo the equivalence relation (x, y) ∼ (x + t, y + t) for any
x, y, t ∈ S. This is indeed a group since it has a unit: (x, x) ∼ (0, 0) and every
element has an inverse: (x, y) + (y, x) = (x+ y, x+ y) ∼ (0, 0).

The construction of the Grothendieck group of a semigroup can thus be inter-
preted as ’making a semigroup into a group by adding inverses to it’. Notice
that any monoidal category has the structure of a semigroup, so it makes sense
to talk about the Grothendieck group of a monoidal category.

Since Σ × I is mapped to a functor, we see that a 4-manifold Σ × I × I
should be mapped to a natural transformation between two functors F0 and F1.
Where F0 is the functor corresponding to Σ × I × {0} and F1 corresponds to
Σ× I × {1}. So we see that the diagram:

Σ → Σ× I → Σ× I × I
↓ ↓
Y → Y × I

↓
X

gets assigned the following diagram after applying the TQFT:

Category → Functor → Natural Transformation
↓ ↓

Vector space → Linear map
↓

Number

In these diagrams going one column to the right corresponds to increasing
the dimension of the manifold, while going one row down corresponds to taking
the trace. But how do we assign a category to a manifold? And how can a
functor from the category Ck to itself be interpreted as a vector space? We
know that the Grothendieck group of CΣ should be the physical Hilbert space
HΣ. We have seen that a linear map k → V is determined by its value on the
unit element 1 ∈ k. Does this mean that a functor Ck → CV for any category
CV is also determined by its value on a unit object I ∈ Ck?

To make things a little easier we’ll work with free Z-modules instead of vec-
tor spaces, so that we don’t have to worry about categorification of rational
numbers. The decategorification of such a module is then its rank. The cat-
egorification of a natural number n is a free Z-module of rank n, which we
denote by Zn. In particular the number 1 becomes Z. The elements of Zn will
be denoted by:

Zn = {a1e1 + a2e2 + ...+ anen|a1, a2, ...an ∈ Z}

here e1, e2, ...en denote the ’basis vectors’.
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The categorification of Zn is then a monoidal category of Z-modules gen-
erated by modules E1, E2... En which are all free Z-modules of rank one (in
other words they are all isomorphic to Z). We’ll call this category Cn. A j-fold
direct sum of a module Em with itself will be denoted by jEm. For instance:

3E5 := E5 ⊕ E5 ⊕ E5

Cn can then be written as:

Cn = {A1E1 ⊕A2E2 ⊕ ...AnEn | A1, A2, ...An ∈ N}

We then see that Zn is the Grothendieck group of Cn.
Notice that if we have a monoidal functor F from Cn to Cm and we look

only at its restriction to the objects of Cn, then we see that it is determined by
its values on the ’basis modules’ E1, ...En. For instance a functor from C3 to
C5:

E1 7→ E2, E2 7→ E4, E3 7→ E5

In particular this means for a functor from C1 to C1 that it can be written
as Z 7→ Zm. Then we know that any other object Zn in C1 is mapped to
Zn ⊗ Zm ∼= Znm. In other words: we can interpret a functor from C1 to C1 as
an element of C1 (in this example this element would be Zm). This is of course
completely analogous to the fact that any linear map from the field k to itself
can be seen as an element of k itself.

Now in 3-d TQFT the vacuum gets assigned the ground field k, but since
we now work only with Z-modules it gets assigned the ring Z. Then in 4-d
TQFT the vacuum gets assigned the category C1. A 4-dimensional cobordism
gets assigned a functor from Cn to Cm and a closed 4-dimensional cobordism
gets assigned a functor C1 → C1 which is, as we have seen, a free Z-module.

We can just as well interpret these monoidal categories Cn as categorifica-
tions of vector spaces kn. However to decategorify Cn we should then take the
Grothendieck group and then take its tensor product with k.

However we can also assign a module to a functor from Ck to itself in a
different way. To a 3-cycle Σ we assign the category CΣ This means that to a
3-dimensional manifold Y1 which has Σ as its (outgoing) boundary, we assign a
functor C∅ ⇒ CΣ which can be interpreted as an object A of CΣ. In the same
way we assign a functor CΣ ⇒ C∅ to a manifold Y2 which has Σ as its incoming
boundary. This functor assigns a module Zm to any module A in CΣ. This
functor can for instance be defined as: Hom(B, ·) for a given B in CΣ. Notice
that this is a monoidal functor since

Hom(B ⊕B, A) ∼= Hom(B,A)⊕Hom(B,A).

Notice also that Hom(B,A) ∼= Zm for some m.
In Jones-Witten theory we have that Σ is represented by the space HΣ

generated by functions on Σ. Then Y1 with ∂Y1 = Σ is an element of HΣ.
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This is element is altered if we include Wilson-lines. Suppose we have a knot K
embedded in Y . This knot then determines the partition function (this partition
function is an invariant of the knot, for instance the Jones polynomial). Since Y
is obtained by gluing together Y1 and Y2 we have two tangles K1 = K ∩ Y1 and
K2 = K ∩ Y2. So the element of HΣ that represents Y1 depends on the tangle
K1 that is embedded in Y1. And a similar statement holds for Y2 and K2.

This means we can choose a particular element of HΣ by choosing a partic-
ular tangle in Y1 or Y2. In other words: any tangle in Y1 (or Y2) represents a
vector in HΣ.

A similar thing happens in Gukov-theory. This time Σ is represented by a
category CΣ. Then Y1 with ∂Y1 = Σ is represented by an object of CΣ. When
embedding a knot in Y we should get a different vector space (this vector space
is the categorification of the knot-invariant). This means that we can choose a
particular object of CΣ by choosing a particular tangle in Y1.

3.6 Topological String Theory

If we replace our classical particle of section 3.1 by a string, then we must
specify the string’s boundary conditions. For instance something like: the first
boundary point of the string must lie on a submanifold B1 ⊂ X where X is the
space the string lives in. And the second boundary point lies on a submanifold
B2 ⊂ X. These submanifolds are also known as branes. After quantization the
state of the string is an element of the Hilbert space HB1,B2 . Suppose now we
also have a third brane B3 and a pair of strings s12 and s23. s12 runs from B1 to
B2 and s23 runs from B2 to B3. Then these two strings can also be considered
as one string s23 that runs from B1 to B3. Moreover we see that in this way the
Hilbert spaces HB1,B2 and HB1,B2 together give rise to the Hilbert space HB1,B3

by joining strings. This can be rephrased by saying that the branes are objects
in a category and strings are the morphisms in this category. The Hilbert space
HBi,Bj

is then equal to Hom(Bj , Bi)

It turns out that the category assigned to Σ by the TQFT in the previous
sections can be interpreted in some sense as the category of branes in topological
string theory. A 3-manifold Y1 which has Σ as its boundary then corresponds
to an object of this category, a brane B1. And the closed 3-manifold Y which
is constructed by gluing Y1 and Y2 along their common boundary is then the
vector space Hom(B2, B1), which is the space of all strings running from B1 to
B2. If we incorporate knots and tangles in the theory we see that every tangle
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embedded in Y1 determines a different brane B1. And every choice of knot a K
embedded in Y determines a different space of string states.

We have the following pattern:

Manifolds Strings
closed 2-manifold category collection of all branes

3-manifold (with tangle) object brane
closed 3-manifold (with knot) vectorspace Hom(B2, B1) space of all strings between B1 and B2

So a tangle represents a brane. Notice that this means there is an action of
the braid group on the category of branes.
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4 Knot Theory

4.1 Knots, Braids and Tangles

Knot theory is a mathematical theory that tries to distinguish different knots.
Mathematically a knot is a compact one-dimensional manifold without bound-
ary embedded in a three-dimensional background space. Two knots are equiv-
alent whenever we can deform the first knot into the second one continuously
such that it remains a properly embedded one-manifold all the time.

Definition 4 A Tangle L of type (k, l) (with k+ l even) is a proper embedding
of the disjoint union of of a finite number of arcs into the space R2× [0, 1] such
that ∂L ∈ R2 × {0, 1}, ∂L ∩ R2 × {0} is a set of k points and ∂L ∩ R2 × {0} is
a set of l points.

Definition 5 A braid L is a tangle of type (k, k) such that for any x ∈ [0, 1]
L ∩ R2 × {x} consist of exactly k points.

Definition 6 A link is a tangle of type (0, 0).

Definition 7 A knot is a link consisting of exactly one component. That is: it
is a proper embedding of S1 into R3.

Definition 8 An isotopy of a space X is map h from [0, 1]×X to X such that
for any t ∈ [0, 1] the mapping h(t, ·) is a homeomorphism of X and h(0, ·) is the
identity.

Let L and L′ be two links embedded in X ⊂ R3. We say L and L′ are isotopic
if there exists an isotopy h of X such that h(1, L) = L′. We then write L ∼ L′.

Isotopy defines an equivalence relation for links. In the future whenever we
say ’knot’ or ’link’ we actually mean ’isotopy class of knots’ or ’isotopy class of
links’.

Definition 9 A closure of a braid is a link that is obtained by connecting the
boundary points of a braid with each other.
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Lemma 2 Every link is equivalent to the closure of some braid.

Definition 10 an oriented tangle is a tangle in which every arc is equipped with
an orientation. The boundary of a tangle is a finite set of points in R2 × {0, 1}
which are marked by either a + or a − sign. A point in R2 × {0} is marked
+ if it is the endpoint and it is marked − if it is the starting point of an arc.
For R2 × {1} we define it the other way around: a point gets a − if it is the
endpoint for an arc.

That is: arrows going up are going from a point marked + to another point
marked + and arrows going down go from − to −.

Oriented links and knots are defined in a similar way. From now on we will
assume that all links and knots are oriented, so we will not explicitly call them
oriented anymore.

Definition 11 A regular link projection is a projection of a link to a two-
dimensional plane such that there are nowhere more then two points of the link
projected to the same point in the plane. If x is a point in the plane and there
are exactly two points of the link projected to x then x is called a crossing point.

Lemma 3 For every link L there is always an isotopic link L’ such that the
projection of L’ is a regular link projection.

If we equip a link with an orientation then in a regular link projection every
crossing point has a neighborhood that looks like:
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it consists of two diagonal lines (’edges’ ) which are respectively denoted by e1
and e2. For every crossing point x we denote by Ex the set {e1, e2} consisting
of these two edges.

Definition 12 A link diagram is a regular link projection for which every set
Ex is ordered. The first edge of Ex with respect to this ordering is called the
overcrossing edge and the other edge is called the undercrossing edge.

Let π be the projection of R3 onto R2: (x, y, z) 7→ (x, y). Suppose we have a
link L such that it is projected by π to a regular link projection. Let p = (x, y)
be a crossing point of this projection and the two edges it lies on are called e1
and e2. The pre-image of p under the projection π is a set {q1, q2} of two points
of the link L. Then q1 = (x, y, z1) lies on the pre-image of e1 and q2 = (x, y, z2)
lies on the pre-image of e2. We define e1 to be the overcrossing edge if z1 > z2.
We define e2 to be the overcrossing edge if z2 > z1.

If e1 is the overcrossing edge we say x is a negative crossing point and if e2
is the overcrossing edge we say x is a positive crossing point. A link diagram
can be drawn by replacing every crossing point of the projection by one of the
following two pictures:

The left picture is a negative crossing point and the right one is a positive
crossing point. Every link diagram represents a unique isotopy class of links.
The other way around however is not true: a link can have many different link
diagrams.

Definition 13 Two link diagrams Π and Π′ are isotopic if there is an isotopy
h of R2 such that h(1,Π) = Π′. We say there is a diagram isotopy between Π
and Π′.

Two isotopic link diagrams always represent isotopic links in R3.

4.2 Reidemeister Moves

It is not hard to see that two link diagrams Π and Π′ also represent the same
link if we can change Π into Π′ by applying any of the following so called
Reidemeister moves a finite number of times:
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Theorem 1 Two link diagrams represent the same link if and only if they are
related to eachother by diagram isotopies and applying Reidemeister moves a
finite number of times.

The ultimate goal of knot theory is to assign some algebraic quantity to every
isotopy class of knots. One method to do this for instance, is to consider the
pieces of string as linear maps so that we can replace the topological relations
by algebraic relations. For instance Reidemeister II becomes:

R ◦R′ = R′ ◦R = Id

And Reidemeister III becomes:

(R⊗ Id) ◦ (Id⊗R) ◦ (R⊗ Id) = (Id⊗R) ◦ (R⊗ Id) ◦ (Id⊗R)

where R and R′ denote the two types of crossing. This last equation is called
the ’Yang-Baxter’ equation. A map R : V ⊗ V → V ⊗ V that satisfies the
Yang-Baxter equation is called an R-Matrix. It is clear now that knot theory
is intimately related to finding solutions of the Yang-Baxter equation. This
brings us to the theory of Hopf-Algebras and Quantum-groups. In order to
describe knots we have to choose our maps and spaces such that they satisfy
exactly the same relations as topological knots. In other words: we have to find
solutions to the Yang-Baxter equation. In general we can find such a solution
in so-called quasi-triangular Hopf-algebras. Or more precisely: these solutions
are morphisms of representations of these algebras.

4.3 Invariants

So we can use quantum groups to define knot-invariants. The essential ingredi-
ent for a knot invariant is an R-matrix. In Appendix B we show that we can
find an R-matrix as a map from V1 ⊗ V1 to itself that is linear over Uq(sl(2))
(it is an automorphism of a representation of a quantum group). It turns out
that we can find an R-matrix in the same way for any representation and any
quantum group Uq(sl(n)). The invariants constructed from quantum groups are
called quantum invariants.

So we have an invariant for any choice of quantum group and any choice of
representation.

4.3.1 The Jones Polynomial

Probably the most famous quantum invariant is the Jones polynomial J(q). It
is determined by the quantum group Uq(sl(2)) and its two-dimensional repre-
sentation V1. So this is exactly the case of the example above. Equation (71)
determines its skein relations:

q2 − q−2 = (q − q−1)
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The skein relations are, together with its value on the unknot and its behavior
under disjoint union, enough to determine the Jones polynomial for any knot.
For the unknot it is defined as:

JO(q) =
q2 − q−2

q − q−1
= q + q−1

which is the trace of K in the representation V1. (To be precise: this is the
unnormalized Jones polynomial. The actual Jones polynomial is obtained after
dividing the unnormalized Jones polynomial by q + q−1.)

If a knot K has Jones Polynomial JK and K ′ is the mirror image of K, then

JK′(q) = JK(q−1)

This follows directly from the skein relations. Replacing a knot by its mirror
image is in fact the same as replacing all positive crossings by negative ones,
and vice versa. In the skein relations we see that this is in turn the same as
replacing q by q−1. In the same way we see that the Jones polynomial of a knot
remains unchanged after a change of orientation.

For a link L which is the disjoint, unknotted union of two knots K1 and K2

we have for its unnormalized Jones polynomial:

JK1tK2 = JK1 · JK2

4.3.2 The Colored Jones Polynomial

However we can choose any representation Vn of Uq(sl(2)) to label the endpoints
of a braid. This representation can differ even per endpoint. The resulting
invariant is then what we call the colored Jones polynomial.

4.3.3 The Homfly Polynomial

The Homfly polynomial PK(a, b) is defined by the following skein relations:

If we use the special case a = qn, b = q− q−1 then this is the quantum invariant
Pn,K(q) of the quantum group Uq(sl(n)) and its fundamental n-dimensional
representation. Its value on the unknot is:

Pn,O =
qn − q−n

q − q−1

For the mirror image K ′ of K we have again:

Pn,K′(q) = Pn,K(q−1)
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It is also invariant under orientation change, and is multiplicative with respect
to disjoint unknotted union:

Pn,K1tK2 = Pn,K1 · Pn,K2

Notice that the n = 2 specialization of the homfly-polynomial is the Jones
polynomial.

4.3.4 The Kauffman Bracket

A polynomial related to the Jones polynomial is the Kauffman bracket. The
Kauffman bracket itself is not knot invariant, since it changes under Reide-
meister moves. However, after a certain normalization depending only on the
number of positive and negative crossing points it can be changed into the Jones
polynomial. It uses the following skein relations:

These skein relations lead to a summation over 2n terms where n is the
number of crossing points in the diagram. It is related to the unnormalized
Jones polynomial in the following way:

JK = (−1)n−qn+−2n−〈K〉

where n+ is the number of positive crossings and n− the number of negative
crossings. Since the Kauffman bracket plays an essential role in Khovanov ho-
mology we’ll come back to it later.
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5 Categorification

5.1 Product and Co-product

In their article Baez and Dolan [1] describe how one can categorify positive
integers and positive rationals using finite sets and groupoids. Here follows a
quick overview.

Categorification comes down to replacing elements of a set by objects and re-
placing relations between elements by (iso)morphisms in some kind of category.
In reverse one can decategorify a category, which means replacing morphisms
by relations such that isomorphisms are replaced by equalities. In other words:
after decategorification one treats an isomorphism class of objects as one single
object. As a consequence information is lost after decategorification. The au-
thors make the important remark that one can view the set of positive integers
as the decategorification of the category of finite sets, by definition. The natural
numbers were invented as a means to compare finite sets (checking wether they
are isomorphic or not), without actually establishing an isomorphism between
them directly. Then later on one used the operations on natural numbers to
invent negative, rational, and complex numbers. These can not be directly de-
fined as the decategorification of objects in the category of finite sets. However,
one can try to find categories which do behave like the categorifications of these
non-natural numbers.

Definition 14 The category of finite sets FinSet is the category consisting of
finite sets as objects and maps between them as morphisms. In particular this
means that two finite sets are isomorphic if and only if they have the same
number of elements.

Whenever we have a finite set A, we denote the cardinality of A by |A|.
Of course the natural numbers do not just form a set, there are operations

defined on it. With these operations (addition and multiplication) N forms a so
called commutative rig. It is not a ring because it does not allow for subtraction.

Definition 15 A rig is a set that allows addition and multiplication, but does
not necessarily allow for subtraction. In other words, it is a ring without additive
inverses (negative numbers).

Now these operations descend directly from operations that are already defined
at the level of the category of finite sets. Namely taking the disjoint union of
two sets and taking the cartesian product. If A and B are two finite sets then
we denote the disjoint union by A + B. If we consider the natural numbers as
the decategorification of the category of finite sets then we can define addition
of natural numbers as the decategorification of disjoint union. In other words:

|A|+ |B| := |A+B|

Multiplication can be defined in a similar way:

|A| · |B| := |A×B|
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Where × denotes the cartesian product. The notion of disjoint union and carte-
sian product can be generalized to arbitrary categories.

Definition 16 Let A and B be two objects of an arbitrary category. The co-
product of A and B is an object A + B equipped with inclusion morphisms
i : A → A + B and j : B → A + B such that for any morphisms f : A → X,
g : B → X there exists a unique morphism h : A + B → X making the the
following diagram commute:

What does this mean? It means that a pair of objects (A,B) can be viewed as
an object itself (which we denote by A+ B) and any pair of morphisms (f, g),
from A and B respectively, to X can be viewed as one morphism from A + B
to X.

We can define a similar concept for pairs of morphisms to a pair of objects:

Definition 17 If S and T are two objects of an arbitrary category then their
product is an object S × T together with projection morphisms p : S × T → S,
q : S × T → T such that for any morphisms f : X → S and g : X → T there is
a unique morphism h : X → S × T making the following diagram commute:

So a pair of objects (S, T ) can be viewed as one object S×T such that any pair
of morphisms (f, g) to S and T respectively can be viewed as one morphism to
S × T .
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One can check that the co-product in the category of finite sets is disjoint
union and that the product is given by the cartesian product. For vector spaces
we have the peculiar fact that the product and the co-product have the same
underlying object. They are both the direct sum:

A+B = A×B = A⊕B

The embedding morphisms are i : x 7→ (x, 0) and j : x 7→ (0, x). And the
projection morphisms are: p : (x, y) 7→ x and q : (x, y) 7→ y.

This is very important to us, because it means that if we have a pair of maps
(f, g) to A and B and a pair of maps (h, k) from A and B we can compose them.
The square

X
f→ A

g ↓ ↓ h

B
k→ Y

can be viewed as the composition

X
f⊕g−→ A⊕B

h+k−→ Y

(When f and g have different target spaces we will write their sum as f ⊕ g,
while we will write f + g when they have the same target space.)

5.2 Groupoids

Baez and Dolan also show us a way to categorify the rational numbers. So how
do they do this? Well, think about what division actually means. The equation
6/2 = 3 means that if we have a set of six objects and we divide it in equal
subsets of two elements then we are left with three such subsets. Stated more
mathematically:

If we let the group Z/2 act freely on a set of six elements then this set
consists of three orbits.

So we might be able to categorify the rational numbers using finite sets and
groups acting freely on them. We can consider such a set with group action as
a category in which the elements serve as objects and the morphisms are the
group actions. Since group elements are always invertible these morphisms are
actually isomorphisms, making the category a groupoid.

Definition 18 A groupoid is a category in which all morphisms are isomor-
phisms.

However there is not always a free action possible. For instance when we let
the group of two elements act on a set of five elements. In that case at least
one element will be mapped to itself under the nontrivial group element. So we
need a way to count this element as ’half’ an element. Therefore Baez & Dolan
define the ”weak quotient” :
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Definition 19 the weak quotient S//G of a set S and a group G is the groupoid
whose objects are the elements of S and with morphisms g : s → s′ whenever
there is a group element g ∈ G such that g(s) = s′

And they define the cardinality of the weak quotient (or any groupoid) as follows:
for every isomorphism class we pick a representative object x and compute the
reciprocal of the number of automorphisms of x. This is then summated over
all isomorphism classes.

Definition 20 Let A be a groupoid. The cardinality |A| of A is defined as:

|A| =
∑

iso classes

1
|aut(x)|

A groupoid is called tame whenever this sum converges. The cardinality then
satisfies the following nice relations:

|S//G| = |S| / |G|
|A+B| = |A|+ |B|
|A×B| = |A| · |B|

Notice here that every positive rational number is now the decategorification
of a finite groupoid and for every finite groupoid the cardinality is a positive
rational number. So the set of positive rationals is categorified by the category
of finite groupoids. This might cause a little confusion since a groupoid is itself
already a category. Notice that isomorphic groupoids are mapped to the same
rational number under decategorification. However, this map is not injective.
A rational number can be categorified by multiple non-isomorphic groupoids.
More generally the set of positive reals can be categorified in the same way by
the category of tame (not necessarily finite) groupoids.

5.3 Vector Spaces Instead Of Sets

In the case of Khovanov Homology however, we are not working with finite sets
but with vector spaces (or modules). A natural number n can be categorified
by a vector space of dimension n over some ground field. Equality of two
numbers is replaced by linear isomorphism of two vector spaces. Addition of
numbers is categorified by direct summation, which is indeed the co-product in
the category of vector spaces. Multiplication however is categorified by taking
a tensor product which is not the category-theoretical product. This is not
really a problem since after close examination it appears that the category of
finite dimensional vector spaces contains all information (and more) that is also
present at the category of finite groupoids. To clarify this we first define the
’restricted category of vector spaces’ rV ect(k).
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Definition 21 The objects of rV ect(k). are finite dimensional vector spaces
that are equipped with a given basis. The morphisms in this category are the
linear maps that map the basis of one vector space to the basis of another vector
space. This means that an automorphism in rV ect(k) simply permutes the basis
vectors.

We can now define a functor from the restricted category of vector spaces to
the category of finite sets. This functor maps a vector space to its basis. A
morphism in rV ect(k) can be completely described as a map of one basis to
another basis so under this functor such a morphism is a naturally mapped to
its restriction on the basis. Moreover, the direct sum of two vector spaces is
mapped to the disjoint union of its two bases and the tensor product of two
vector spaces is mapped to the cartesian product of the two bases.

The category of finite vector spaces V ect(k) is of course the same as the
restricted category of vector spaces, only with more morphisms. And rV ect(k)
is in fact equivalent to the category of finite sets. We see that V ect(k) is just
FinSet, with extra morphisms. These extra morphisms give us a more powerful
category, however they are also responsible for the fact that the tensor product
is no longer the category-theoretical product.

5.4 Negative Integers

The following consists of informal language. This will be rewritten however in
a more formal way in the next section.

Inspired by Baez & Dolan’s article I wondered how we could possibly cate-
gorify negative numbers. The problem lies in the interpretation of a ’set with
negative cardinality’ or a ’vector space of negative dimension’. To resolve this
problem let’s ask ourselves how we in daily life deal with negative numbers.
What does it mean for instance when you say you have a negative bank ac-
count? You certainly do not literally have a negative amount of money. In fact
it means that you have borrowed an amount of money from the bank which
you’ll have to pay back. You need to put money on your account to get it back
to zero. The bank acts here as a ’bulk’ from which money can be borrowed.
This may inspire us to describe it in a mathematical way.

Instead of working directly with an n-dimensional vector space we will work
with the direct sum of this space and a multidimensional ’bulk space’ from
which we can ’borrow’ dimensions. Let’s say for instance that this bulk space
is 100-dimensional.

V 3,eff := B100 ⊕ V 3

Here V 3 denotes a 3-dimensional vector space. B100 denotes our bulk space.
Then V 3,eff is 103-dimensional, but we say it is effectively 3-dimensional. This
means that in the definition of the effective dimension we do not count the
dimensions of the bulk space (this will be formalized in the next section). In
other words: the effective dimension is the co-dimension of the bulk space.

Now we want to calculate the effective dimension of the direct sum of two
vector spaces:
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V 3,eff ⊕ V 2,eff = (B100 ⊕ V 3)⊕ (B100 ⊕ V 2) ∼= B200 ⊕ V 5

When we take the direct sum of V 3,eff and V 2,eff we get a 205-dimensional vec-
tor space of which the bulk space is 200-dimensional, so the effective dimension
is 5:

V 3,eff ⊕ V 2,eff ∼= V 5,eff

The advantage of this is that we can now define vector spaces of negative effective
dimension.

V −3,eff := B97

Here B97 is a 97-dimensional bulk space. And since by our own definition the
bulk space is supposed to be 100-dimensional we say B97 has effective dimension
−3. Now when we take the direct sum of a positive and a negative effective
dimension vector space we get:

V −3,eff ⊕ V 4,eff = B97 ⊕B100 ⊕ V 4 ∼= B197 ⊕ V 4

a vector space consisting of 197 bulk dimensions plus 4 ordinary dimensions.
However, like in a bank account, we have to ’pay back’ our borrowed dimensions.
Remembering that we have taken the direct sum of two vector spaces we know
that our bulk space is supposed to be a 200-dimensional space, so we make use
of the following isomorphism:

B197 ⊕ V 4 ∼= B200 ⊕ V 1 = V 1,eff

So we end up with a vector space of effective dimension 1:

V −3,eff ⊕ V 4,eff ∼= V 1,eff

5.5 More Formal

Now this obviously works, however it is not very elegantly formulated. How
for instance do we know which subspaces are ’bulk spaces’ and which are the
effective ones? In the previous section we only knew this from the notation.
Moreover, how do we know how much dimensions have to be ’paid back’ to the
bulk? In the previous we knew this only from ’remembering’ that we originally
had two vector spaces so the direct sum should contain a 200-dimensional bulk.

We will resolve these problems right now. We will discriminate between
the bulk dimensions and the effective dimensions by equipping V 3,eff with an
inclusion map that embeds the bulk space into the entire vector space:

V ′3,eff := B100 ↪→ B100 ⊕ V 3
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So V ′3,eff is now not just a vector space, but a vector space equipped with the
inclusion of a subspace. We now don’t even really have to make a distinction
anymore between the bulk space and the rest. The bulk space is just a vector
space embedded in a larger vector space. The orthoplement of this subspace
determines the effective dimension. We could say the inclusion map ’points out’
which subspace forms the bulk space. This then automatically works out for
direct sums just as we would want it to:

V ′3,eff ⊕ V ′2,eff = B100 ⊕B100 ↪→ B100 ⊕ V 3 ⊕B100 ⊕ V 2

The inclusion map here is just the direct sum of the two inclusion maps of
V ′3,eff and V ′2,eff . This map then automatically embeds a 200-dimensional
space into a 205-dimensional vector space so the orthoplement is 5-dimensional.

Moreover, we can do a similar thing for negative effective dimensions:

V ′−3,eff := B100 → B97

Here we have a projection map that projects a 100-dimensional space onto a
97-dimensional subspace, hence the kernel is 3-dimensional.

We can rewrite these maps more suggestively as chain complexes:

C3,eff := 0 → B100 → B100 ⊕ V 3 → 0

C−3,eff := 0 → B100 → B97 → 0

Then we see that the ’effective dimension’ is now nothing more then the Euler
characteristic of the complex!

This becomes even clearer when we take the direct sum between a complex
with positive effective dimension and one with a negative effective dimension:

C4,eff ⊕ C−3,eff = 0 → B100 ⊕B100 → B100 ⊕ V 4 ⊕B97 → 0

then the Euler characteristic of this complex is the alternating sum of the di-
mensions of the chain spaces: 201− 200 = 1. So the effective dimension of this
sum is indeed 1.

Notice that this construction is very similar to the construction of the Grothendieck
group in section 3.5. However, the difference here is that we do not only have
two vector spaces, but we also have a map between them which makes it possible
to store more information.

We define the height of the first non-trivial chain space here as i = 1 and the
height of the second non-trivial chain space as i = 2. Without such a definition
the Euler characteristic would only be defined up to a minus sign.

Right now we can just as well forget about terms like ’bulk spaces’ and
’effective dimensions’. Also, the dimension of the bulk space (which we took
here to be 100 purely as an example) has become completely irrelevant. The
only thing we need to remember is that any integer number n can be categorified
by a chain complex such that the Euler characteristic equals n. Taking sums can

32



then be categorified by taking the direct sum between the complexes (although
later on we will see that this does not necessarily have to be so).

We started these notes with the intention of categorifying the integers in a
more natural, intuitive way then we did in the introduction. However, to my
own surprise, we have ended up with exactly the same thing. Apparently the
use of chain complexes and Euler characteristic to categorify integer numbers is
a lot more natural then I originally expected.

5.6 The Category Of Chain Complexes.

In this section we will use the convention that a chain map between chain spaces
Ci and Ci+1 is denoted by ci and similarly the chain map between spaces Di

and Di+1 is denoted by di.
The objects of the category of chain complexes are, obviously, chain com-

plexes.

Definition 22 A morphism between two chain complexes C and D is a set of
linear maps f j between the respective chain spaces Cj and Dj such that they
commute with the chain maps.

In other words, the following diagram commutes:

... Ci → Ci+1 → Ci+2 ...
↓ ↓ ↓

... Di → Di+1 → Di+2 ...

Here the downward pointing arrows denote the respective maps f j .

Lemma 4 The fact that the diagram commutes makes sure that the kernel of
any chain map cj is mapped by f j into the kernel of dj and the image of any cj

is mapped into the image of dj. A morphism of chain complexes then induces a
homomorphism between the respective homology groups.

Definition 23 We say that two morphisms f and g are homotopic if there are
morphisms hi : Ci → Di−1 such that:

f i − gi = hi+1 ◦ di + di+1 ◦ hi

for every i.

Lemma 5 If f and g are homotopic, then they induce the same homomorphism
on homology.

This means particularly that if a morphism f is homotopic to the identity,
it induces an isomorphism on the homology groups.

Definition 24 When a morphism is homotopic to the zero morphism it is called
null-homotopic.
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In this category we can distinguish between several ’degrees of equality’:

Isomorphism. Like in any other category we say two objects x and y (in this
case chain complexes) are isomorphic whenever there are two morphisms
f : x→ y and g : y → x such that fg = gf = Id.

Quasi-Isomorphism. Two chain complexes are quasi-isomorphic whenever
there exists a morphism between them such that it induces an isomor-
phism of their homology groups.

Equal Euler characteristic. Two chain complexes might have the same Eu-
ler characteristic although they have completely different homologies.

Notice that isomorphism implies quasi-isomorphism, and quasi-isomorphism im-
plies equal Euler characteristic. In Khovanov’s theory to every knot-diagram
there is assigned a unique (up to isomorphism) chain complex. Whenever two
different diagrams represent the same knot, their respective complexes are quasi-
isomorphic. In other words: the homology of the Khovanov complex is a knot-
invariant. Whenever two diagrams belong to different knots that have the same
Jones polynomial their complexes have equal Euler characteristic (to be more
precise: equal graded Euler characteristic, since Khovanov works with graded
vector spaces). In other words: Khovanov homology is a categorification of the
Jones polynomial, where taking the Euler characteristic serves as the decate-
gorification.

So in Khovanov homology we are not really interested in isomorphism, but
rather in quasi-isomorphism. Moreover, the whole point of this categorification
is that some chain-complexes are not quasi-isomorphic although they do have
the same Euler characteristic.

5.6.1 Summation

One can easily check that the co-product in this category is given by direct
summation. That is: the co-product of two complexes C and D consists of
chain spaces (C ⊕D)j which are the direct sums of the respective chain spaces
of C and D of height j:

(C ⊕D)j = Cj ⊕Dj

The differentials are also just the direct summations of the respective chain
maps:

(c⊕ d)j(x, y) = (cj(x), dj(y))

Diagrammatically:

... Ci → Ci+1 → Ci+2 ...
⊕ ⊕ ⊕

... Di → Di+1 → Di+2 ...
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The inclusion morphism f that embeds C into C⊕D is simply the set of inclusion
maps that embed Cj into Cj ⊕Dj :

f j : Cj ↪→ Cj ⊕Dj

And in the same way we have the inclusion morphism g : D ↪→ C⊕D consisting
of the inclusion maps

gj : Dj ↪→ Cj ⊕Dj

Lemma 6 If we denote the Euler characteristic of a chain complex C by |C|,
then we have:

|C ⊕D| = |C|+ |D|

5.6.2 Subtraction

In the category of chain complexes we can define the height shift operator. It
maps any chain complex C to another chain complex denoted C[s].

Definition 25 the height shift operator [s] shifts the height of the chain spaces
by s, where s is an integer. That is: C[s]j = Cj−s.

For the Euler characteristic we then have: |C[s]| = (−1)s|C|. This can be
used to categorify subtraction, because we have:

|C ⊕D[1]| = |C| − |D|

The direct sum of of chain complexes C and D[1] can be generalized by allowing
cross maps aj from Cj to Dj , that anti-commute with the chain maps, for every
j.

... Ci → Ci+1 → Ci+2 ...
⊕ ↘ ⊕ ↘ ⊕

... Di−1 → Di → Di+1 ...

The fact that the cross maps anti-commute with the chain maps makes sure
that the resulting sequence of maps is again a chain complex. This complex is
also denoted by C → D, or by:

... Ci → Ci+1 → Ci+2 ...
↓ ↓ ↓

... Di → Di+1 → Di+2 ...

It is indeed a generalization, since if we take the cross maps to be zero we
retrieve direct summation. This operation is called flattening.

Definition 26 The flattening (or also the cone) of C and D with respect to a
morphism f is a chain complex with chain spaces Ci ⊕ Di−1 and chain maps
ci ⊕ (di−1 + (−1)if i). The height of a chain space Ci ⊕Di−1 is defined to be i.
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It is important to notice that the Euler characteristic of C → D is totally
independent of the cross maps because it can be calculated from the dimensions
of the chain spaces. So we have:

|C → D| =
∑
i

(−1)i dim(Ci ⊕Di−1) = |C| − |D|

By choosing the cross maps carefully Khovanov managed to make sure that
not only the Euler characteristic, but also even the homology becomes a knot in-
variant. If we used ordinary direct summation we would get a theory equivalent
to the Kauffman bracket.

Definition 27 If all homology groups of a chain complex C are trivial (Hi =
{0}) we say the chain complex is contractible

Lemma 7 If f is an isomorphism between chain complexes C and D then the
flattening of C and D with respect to f is contractible.

Proof: Suppose x ∈ Ci and y ∈ Di−1 then (x, y) is mapped to (ci(x), di−1(y)+
(−1)if i(x)). Since f is and isomorphism we know there is a z ∈ Ci−1 such that
(−1)i−1f i−1(z) = y. Because f anti-commutes with c and d we have:

di−1(y) = di−1((−1)i−1f i−1(z)) = −(−1)if i(ci−1(z))

If we now assume that (x, y) is in the kernel of the flattening we have:

( ci(x), di−1(y) + (−1)if i(x) ) = (0, 0)

specifically this means: di−1(y) = −(−1)if i(x), so we have now:

−(−1)if i(x) = −(−1)if i(ci−1(z))

Once again using the fact that f is an isomorphism, we have:

x = ci−1(z)

which means that (z, 0) is mapped to ( ci−1(z), (−1)i−1f i−1(z) + di−2(0) ) =
(x, y). This means that (x, y) is in the image, which is exactly what we wanted
to prove. �

Since C → D is itself again a chain complex, we can again take its flattening
with another chain complex A→ B:

(C → D) → (A→ B)

which is a ’square’ of chain complexes:

C → D
↓ ↓
A → B
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By repeatedly doing this we can even create ’cubes’ and ’hyper-cubes’ (of arbi-
trary dimension) of chain complexes.

Notice that a vector space can be seen as a chain complex with only one
non-trivial chain space and that the the Euler characteristic of this complex is
then the dimension of the vector space.

So we can categorify a natural number n by a vector space V n of dimension
n, or equally by a complex C with |C| = n:

C = 0 → V n → 0

Then an expression like n−m can be categorified by: C⊕D[1] or, more generally,
by C → D for some morphism. We see that chain complexes can be used not
only to categorify integer numbers, but even entire expressions like (m − n) −
(k − l) which becomes (C → D) → (A → B), with |C| = m, |D| = n, |A| = k
and |B| = l.

Definition 28 A cube is a collection of 2n objects (known as the vertices of the
cube) in some category, labelled by binary numbers α consisting of n bits. The
integer n is called the dimension of the cube.

Definition 29 Two vertices labelled by α and β are called neighbors whenever
α and β differ at precisely 1 bit. If this bit has value 0 in α and value 1 in β
we write α ∼ β.

Definition 30 The height |α| of a vertex labelled by α is the sum of all bits of
α.

For example: if a vertex is labelled by α = 10110 then its height is: |α| =
1 + 0 + 1 + 1 + 0 = 3. If another vertex is labelled by β = 10111 then α and β
are neighbors.

Definition 31 An anti-commutative cube C is a cube of vector spaces Cα with
for every pair of neighbors α ∼ β a linear map cαβ : Cα → Cβ (known as an
edge of the cube), such that all edges anti-commute.

Lemma 8 An anti-commutative cube C can be considered as as a chain complex
with chain spaces:

Cr =
⊕
|α|=r

Cα

and chain maps cr : Cr → Cr+1

cr :=
⊕

|α|=r,α∼β

cαβ

Proof: the proof goes by induction on n. For n = 0 and n = 1 this statement is
obviously true. If C and D are anti-commutative cubes of dimension n− 1 and
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we have maps fα : Cα → Dα such that they anti-commute with the edges of C
and D then together they form an n-dimensional anti-commutative cube.

So we have for every pair of neighbors α ∼ β an anti-commuting diagram:

Cα
cαβ−→ Cβ

fα ↓ ↓ fβ

Dα
dαβ−→ Dβ

fβ ◦ cαβ = −dαβ ◦ fα (10)

These maps fα then form maps fr between the chain spaces: fr : Cr → Dr

fr :=
⊕
|α|=r

fα

So we have:
...Ci−1 ci−1

−→ Ci
ci

−→ Ci+1...
f i−1 ↓ ↓ f i ↓ f i+1

...Di−1 di−1

−→ Di di

−→ Di+1...

Since we know by induction that the cubes C and D are chain complexes we
are only left to prove that the maps fr anti-commute with the chain maps cr

and dr:

fr+1 ◦ cr = −dr ◦ fr

because if we can prove this, the n-dimensional cube is the flattening C → D
so it is a chain complex. Notice that the chain maps of the flattening are then
exactly the chain maps as defined in the lemma.

fr+1 ◦ cr = (
⊕

|γ|=r+1

fγ) ◦ (
⊕
α∼β

cαβ) =
⊕
α∼β

fβ ◦ cαβ

This last equation follows from the fact that the composition of fγ with cαβ is
only nonzero if γ = β.

dr ◦ fr = (
⊕
α∼β

dαβ) ◦ (
⊕
α

fα) =
⊕
α∼β

dαβfα

We now only have to prove:⊕
α∼β

fβ ◦ cαβ = −
⊕
α∼β

dαβfα

The summations on both sides of the equation are however over exactly the
same set of pairs (α, β) so this follows directly from (10). �

Notice that the two definitions of ’height’ are in this case equivalent: the
height r of a chain space Cr is exactly the height |α| of the vertices α that the
chain space consists of.
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5.6.3 Multiplication

We have seen that in the category of vector spaces we have the tensor product
as a categorification of multiplication. In the same way we can ’multiply’ chain
complexes. First we define the multiplication of a chain complex C with a vector
space V , which is simply:

C ⊗ V := ...C1 ⊗ V → C2 ⊗ V → C3 ⊗ V...

where the chain maps are given by cj ⊗ IdV . If we have a map d : D1 → D2 we
can define the tensor product of the complex C with this map as the flattening of
the two complexes C⊗D1 and C⊗D2 with respect to the morphism consisting
of the chain maps IdCj ⊗ d.

... C1 ⊗D1 c1⊗Id−→ C2 ⊗D1 c2⊗Id−→ C3 ⊗D1 ...
↓ ↓ ↓

... C1 ⊗D2 c1⊗Id−→ C2 ⊗D2 c2⊗Id−→ C3 ⊗D2 ...

If we generalize this to chain complexes D which have more than two chain
spaces we get a chain complex C ⊗D with chain spaces:

(C ⊗D)s :=
⊕
i

Cs−i ⊗Di

and chain maps fs : (C ⊗D)s → (C ⊗D)s+1 defined by:

fs :=
⊕
i

cs−i ⊗ Id + (−1)i Id⊗ di

Lemma 9 |C ⊗D| = |C| · |D|

Proof:

|C ⊗D| =
∑
s

(−1)s dim( (C ⊗D)s )

=
∑
s

(−1)s
∑
i

dim( Cs−i ⊗Di )

=
∑
s

(−1)s
∑
i

dim( Cs−i ) dim( Di )

=
∑
i

dim( Di )
∑
s

(−1)s dim( Cs−i )

=
∑
i

dim( Di )(−1)i
∑
s

(−1)s−i dim( Cs−i )

=
∑
i

dim( Di )(−1)i · |C|

= |C| · |D| �
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5.7 How homology transforms under flattening

We will assume all vector spaces in this section to be finite dimensional. Suppose
we have a linear map f : A→ C and a linear map g : B → C.

A f
↘

C
↗

B g

We have seen in section 5.1 that there is then a unique map:

f + g : A⊕B → C

We would like to know the kernel and the image of this map now.

5.7.1 ker(f + g)

Notice that if we choose a vector x ∈ ker(f) and a vector y ∈ ker(g) then we
certainly have

(f + g)(x, y) = f(x) + g(y) = 0 + 0 = 0

So ker(f) ⊕ ker(g) ⊂ ker(f + g), but it is also possible that we have vectors x
and y for which: f(x) = −g(y) 6= 0. So we have:

ker(f + g) = ker(f)⊕ ker(g)⊕ V (11)

with:

V = { (x, y) | f(x) = −g(y) 6= 0 } (12)

If we choose a vector x ∈ A then we can find a pair (x, y) ∈ V if f(x) ∈ Im(g).
We then have y = −g−1(f(x)). Notice however that y is then not unique. After
all we could replace y by y + y0 with y0 ∈ ker(g). Therefore we have:

V ∼= g−1(Im(f) ∩ Im(g)) / ker(g)

And from symmetry we see also:

V ∼= f−1(Im(f) ∩ Im(g)) / ker(f)

it follows that:
dim(V ) = dim(Im(f) ∩ Im(g)) (13)

Therefore we have:

dim(ker(f + g)) = dim(ker(f)) + dim(ker(g)) + dim(Im(f) ∩ Im(g)) (14)
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5.7.2 Im(f + g)

For the image of f + g we have:

Im(f + g) = {v + w | v ∈ Im(f), w ∈ Im(g)} (15)
∼= (Im(f)⊕ Im(g)) / (Im(f) ∩ Im(g)) (16)

So:

dim(Im(f + g)) = dim(Im(f)) + dim(Im(g)) − dim( Im(f) ∩ Im(g) ) (17)

5.7.3 ker(u⊕ l)

Suppose now we have two maps u : X → S and l : X → T .

u S
↗

X
↘
l T

Then there is a unique linear map

u⊕ l : X → S ⊕ T

The kernel of this map is simply:

ker(u⊕ l) = ker(u) ∩ ker(l) (18)

5.7.4 Im(u⊕ l)

From basic linear algebra it then follows that

Im(u⊕ l) ∼= X / ( ker(u) ∩ ker(l) )

This can also be seen from the fact that two vectors x and x′ in X are mapped
to the same vector if and only if x− x′ ∈ ker(u) ∩ ker(l). So:

dim(Im(u⊕ l) = dim(X)− dim( ker(u) ∩ ker(l) ) (19)

5.7.5 Calculating Betti-numbers after flattening

Suppose we are given two chain complexes:

0 → C1 c→ C2 → 0

0 → D1 d→ D2 → 0

And we want to calculate the Betti-numbers of the flattening C → D with
respect to any morphism f . We denote the homology groups of C and D by Hi

c

and Hi
d respectively.
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C1 c→ C2

f1 ↓ ↓ f2

D1 d→ D2

0 → C1 c⊕f
1

−→ D1 ⊕ C2 d+f
2

−→ D2 → 0

Then

H1 = ker(c⊕ f1) = ker(c) ∩ ker(f1) = H1
c ∩ ker(f1)

dim(H1) = dim(H1
c ∩ ker(f1)) (20)

The third homology group is:

H3 = D2 / Im(d+ f2)

dim(H3) = dim(D2)− dim(Im(d+ f2))
= dim(D2)− dim(Im(d))− dim(Im(f2)) + dim(Im(d) ∩ Im(f2))
= dim(H2

d)− dim(Im(f2)) + dim(Im(d) ∩ Im(f2))
= dim(H2

d)− dim( Im(f2) / Im(d) )

So we see that, in order to calculate the Betti-numbers, we need the following
two variables:

dim( ker(c) ∩ ker(f1) )

dim( Im(f2) / Im(d) )

The second homology group is:

H2 = ker(d+ f2) / Im(c⊕ f1)

However, we know that the alternating sum of the dimensions of the chain spaces
is equal to the alternating sum of the dimensions of the homology groups, so we
can calculate dim(H2) as follows:

dim(H2) = −dim(C1)+dim(C2)+dim(D1)−dim(D2)−dim(H1)−dim(H3)
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6 The Kauffman Bracket

In this section we will try to derive the Kauffman bracket ourselves. In their
articles ([2], [9]) Khovanov and Bar-Natan take the usual top-down approach:
first they present the ’cube construction’ then they use this to define a knot-
invariant (which appears to be just falling from the sky). And finally they prove
that this invariant indeed (miraculously) turns out to be invariant under Rei-
demeister moves. To better understand this we will however take a bottom-up
approach. We will do this is the following way: first we will assume that our
invariant depends only on the resolutions of the knot. To every resolution we
will assign a polynomial. We then have a set of 2n polynomials that correspond
to a knot with n crossing points. Next, we will examine how this set transforms
under Reidemeister moves. We will introduce some new notation to write these
transformations in an algebraic way. In the end we want to combine these poly-
nomials into one polynomial that remains invariant under Reidemeister moves.
But first we will look for a combination that transforms in a certain way that
is independent of the chosen link (we will call this a universal transformation).
This combination is called ’The Bracket’. Then after a normalization depending
on the number of crossing points this will become an invariant, known as the
Jones polynomial. It is striking to see that in this way the Jones polynomial
turns out to be in some sense the most obvious possible invariant. In the next
chapter we will then try to extend this discussion to Khovanov-homology.

6.1 The Cube Construction

Whenever we remove a crossing point from a link diagram in one of the two
following ways:

0− smoothing 1− smoothing

we say it is ’smoothed out’. The first way is called a 0-smoothing and the second
way is called a 1-smoothing.

Definition 32 A link diagram in which every crossing point is smoothed out is
called a resolution. A resolution consists of a finite number of unknots.

A link diagram with n crossing points then has 2n possible resolutions.

Assumption 1 We will try to obtain a knot-diagram invariant (let’s call it
’The Bracket’) that is only obtained from the resolutions that result from all the
possible choices of smoothing out the crossing points.

Assumption 2 The bracket will assign to every diagram an element of a (poly-
nomial) ring R with 1. For the diagram of the trivial knot without crossing points
we will denote this element by O.
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Assumption 3 The bracket of an unknotted disjoint union of several links will
be the product of the brackets of the individual links.

Assumption 4 The bracket of a link will be a linear combination of the brackets
of its resolutions. This means that it can be written as aOk1 + bOk2 + cOk3 ...
In other words: the bracket will have a state-sum presentation.

For now we will not specify the ring we use because we want our discussion to
be as general as possible. But we do assume it is a polynomial ring. This is not
a severe restriction since any commutative ring is isomorphic to a polynomial
ring modulo some relations. Maybe it would be better if we also allowed non-
commutative rings, but let’s keep things simple for now. Since every resolution
is a disjoint unknotted union of trivial knots we already have an expression for
every resolution, namely Ok (where k is the number of unknots in that specific
resolution). For a diagram with n crossing points this gives us a set of 2n

polynomials. Notice that this set is already a link-diagram invariant since the
resolutions do not change under diagram isotopies. So all we need to do is find
an algorithm to take linear combinations of these resolutions that are invariant
under Reidemeister moves.

First let’s start with some notation. Whenever we have an indexed set of 2n

polynomials (a cube) we will denote it by:

{pα...}

Here α denotes an n-tuple of binary digits: α ∈ {0, 1}n. For instance: α =
(0, 0, 1, 0, 1). Which we will simply denote as: α = 00101 (just like in section
5.6.2). So for n = 2 we have:

{pα...} = {p00, p10, p01, p11}

Where p00, p10, p01 and p11 are polynomials. Furthermore, with {pα...}0 we
denote the same set, only with a 0 added at the end of the indices:

{pα...}0 = {p000, p100, p010, p110}

In the same way we define {pα...}1. This way we can define the disjoint union
between two cubes. Suppose we have:

{pα...} = {p0, p1} and {pβ} = {p′0, p′1}

then:

{pγ ...} := {pα...}0 t {pβ ...}1 = {p00, p10, p
′
01, p

′
11}

which we can just as well write as:

{pγ ...} = {p00, p10, p01, p11}
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When all elements of the cube are multiplied by the same polynomial p′ we ’take
the p′ outside of the brackets’, so we write this as:

p′ · {pα...} := {p′ · p00, p′ · p10, p′ · p01, p′ · p11}

Now to every knot-diagram we will assign such a cube of polynomials. First
number the crossing points of the diagram from 1 to n in any random way.
We can replace every crossing point by either a 0-smoothing or a 1-smoothing
so that it becomes a disjoint union of unknots (a resolution). This gives us
2n possible resolutions of the diagram. To each resolution we will assign the
polynomial Okα where kα is the number of unknots in that resolution. So we
have assigned an n-dimensional cube of polynomials to the diagram. We give
them indices corresponding to the chosen smoothings. For instance: say we
have three crossing points and we choose a 0-smoothing for the first crossing
point and a 1-smoothing for the other two crossings. Then we denote the poly-
nomial corresponding to this resolution by: p011. If this resolution contains
k unknots we then have: p011 = Ok. Notice that what we have done up to
now is exactly the same as the ’cube construction’ that Khovanov and Bar-
Natan use. We have only written it down in a different notation which will
turn out to be convenient later. Let’s now look for example at the Hopf-link:

Example: the Hopf Link

Figure 2: Hopf Link

As we can see from the picture we have: p00 = O2, p10 = p01 = O, p11 = O2.
We write this as:

{ } = {O2, O,O,O2}

Definition 33 We define the ’height’ rα of a resolution to be the sum of the
binary digits of the index α (just like in section 5.6.2).
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We will sometimes denote the cube assigned to a diagram D by {D} , or by
some diagrammatic symbol like above. This gives us an easy way of denoting
the two Reidemeister I moves. Say we have a link-diagram K. If we perform
an RI move on K we obtain the diagram K ′. For K we will denote its cube

by: { | } and for K ′ it will be denoted by { } or { } (The first one we will
call the RIa move and the second one the RIb move). If K ′′ is the disjoint,
unknotted union of K with an unknot we denote the cube of K ′′ by: { |O }.
Then we see we have the following relations:

{ } = { | }0 t { |O }1 = { | }0 tO · { | }1 (21)

{ } = { |O }0 t { | }1 = O · { | }0 t { | }1 (22)

We see that under a Reidemeister I move the number of polynomials is doubled.
This is obvious since RI adds another crossing point to the diagram so the 2n

cube becomes a 2n+1 cube. We also see that the newly added polynomials are
just copies of the original polynomials multiplied by O. It is not hard to verify
that this equation also works the other way around:

Lemma 10 whenever the cube can be written like the right-hand side of (21)
or (22) the diagram contains an RI twist.

For Reidemeister II however things are a little more complicated. A Reidemeis-
ter II move adds two crossing points to the diagram. This means that if we had
2n resolutions for the original diagram then the new diagram has 2n+2 resolu-
tions. Every resolution is replaced by four new ones. The problem is that the
number of unknots that are added or removed depend on the specific link and
the specific resolution. So we cannot write down a general equation like (21) or
(22) for the whole cube.

However, if we smooth out all crossing points that are not involved in the
RII move and we ignore all unknots in the resolution that are not involved we
see that luckily there are only two possibilities, which we call case 1 and case
2. See figures 3 and 4.

For case 1 we have:

pα ⇒ {p′α00, p′α10, p′α01, p′α11} = {O · pα, O2 · pα, pα, O · pα} (23)

While for case 2 we have:

pα ⇒ {p′α00, p′α10, p′α01, p′α11} = {O−1 · pα, pα, pα, O−1 · pα} (24)

Lemma 11 Under an RII move for every resolution α the polynomial pα is
replaced by either the four polynomials of (23) or the four polynomials of (24)
�
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Figure 3: Reidemeister II, case 1

Figure 4: Reidemeister II, case 2

6.2 The Bracket

We now want to assign a unique polynomial to every knot-diagram. This means
in particular that we want an algorithm to obtain a polynomial from the cube
{pα...}. This polynomial will be denoted by 〈{pα...}〉 or 〈pα〉 and will be called
’The Bracket’.

Definition 34 We say that an operation that transforms a link-diagram K into
another link-diagram K ′ induces a transformation of 〈K〉 into 〈K ′〉.

Definition 35 A universal transformation is a transformation of link-diagrams
such that the induced transformation on the bracket is the same for every link.

Example: any diagram-isotopy is a universal transformation. The bracket is
invariant under diagram-isotopy, so in this special case the induced transforma-
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tion is ’multiplication by 1’. Since this holds for any link, diagram-isotopy is
indeed universal.

Example: If we use crossing number as a diagram invariant then the Rei-
demeister moves are universal transformations for this invariant. This is true
since the crossing number decreases by 1 for RIa, it increases by 1 for RIb and
it stays the same for RII and RIII. This holds for any link.

Some more examples will follow.

Assumption 5 We want the bracket to be invariant under the Reidemeister
moves RIa, RIb, RII and RIII up to a multiplicative factor. This multiplica-
tive factor depends only on the performed Reidemeister moves and not on the
particular link. In other words: we want the Reidemeister moves to be universal
transformations.

The reason for us to make this last assumption is that it makes it possible
for us to change the link-diagram invariant into a link invariant by a simple
normalization.

Example:One could for instance try to define the bracket like this:

〈{pα...}〉 :=
∑
α

pα (25)

We can derive a few calculation rules from this definition:

〈{pα...}0 t {pβ ...}1〉 = 〈{pα...}〉+ 〈{pβ ...}〉

〈p′ · {pα...}〉 = p′ · 〈{pα...}〉

From this and formulas (21) and (22) we then conclude:

〈 〉 = 〈|〉+ 〈|O〉 = 〈|〉+ O · 〈|〉

〈 〉 = 〈|O〉+ 〈|〉 = O · 〈|〉+ 〈|〉

in other words:
〈 〉 = 〈 〉 = (1 +O) · 〈|〉

We see that this bracket gives a polynomial that is invariant up to a multiplica-
tive factor of (1 +O) for both RIa and RIb. Since we did not specify { | } this
holds for any link so we see that RIa and RIb are indeed universal transforma-
tions for this bracket. In the following we will see however that we will need to
use a different bracket.

Since we assumed that the bracket is a linear combination of the resolutions
pα = Okα the general expression for the bracket is:

〈{pα...}〉 =
∑
α

QαO
kα (26)
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For some not yet defined set of elements Qα in some ring R. So every choice of
2n elements Qα defines a different bracket. However, according to assumption
1, the bracket should only be dependent of the resolutions so it should certainly
be independent of the numbering of the crossing points. So not every choice is
possible. Therefore we now specialize to a specific choice:

Extra Assumption 1 Let’s try: Qα = Qrα for some element Q ∈ R. So we
have:

〈{pα...}〉 =
∑
α

QrαOkα (27)

The above choice is manifestly invariant under renumbering, since the height
rα (which was defined as the sum of the binary digits of α) is invariant under
renumbering.

(We will stick with this choice, however we could ask ourselves what other
choices are possible that leave the bracket invariant under renumbering. )

So now we have left only the freedom to choose Q. If we would take for
instance Q = 1 then we’d have (25) again as the definition of our bracket. The
next step is to determine what other values for Q we can or should use. For
general Q we have:

〈{pα...}1〉 = Q · 〈{pα...}〉
〈{pα...}0〉 = 〈{pα...}〉

〈{pα...}0 t {pβ ...}1〉 = 〈{pα...}〉+ Q〈{pβ ...}〉

From which follows:

〈 〉 = 〈|〉+ Q〈|O〉 = 〈|〉+ QO〈|〉 = (1 +QO) 〈|〉 (28)

〈 〉 = 〈|O〉+ Q〈|〉 = O〈|〉+ Q〈|〉 = (O +Q) 〈|〉 (29)

Since these relations hold for any link we see that RIa and RIb are universal
transformations for every bracket of the form (27).

In order to satisfy assumption 5 we want RII to be universal as well. This
can only hold if transformations (23) and (24) lead to the same multiplicative
factor in the bracket.

Transformation (23) induces a transformation of the bracket (27) as follows:

〈{pα...}〉 ⇒ O〈{pα...}00〉+ O2〈{pα...}10〉+ 〈{pα...}01〉+ O〈{pα...}11〉
= O〈{pα...}〉+ QO2〈{pα...}〉+ Q〈{pα...}〉+ Q2O〈{pα...}〉
= (O +QO2 +Q+Q2O)〈{pα...}〉
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And (24) leads to:

〈{pα...}〉 ⇒ O−1〈{pα...}00〉+ 〈{pα...}10〉+ 〈{pα...}01〉+ O−1〈{pα...}11〉
= O−1〈{pα...}〉+ Q〈{pα...}〉+ Q〈{pα...}〉+ Q2O−1〈{pα...}〉
= (O−1 + 2Q+Q2O−1)〈{pα...}〉

Now we want RII to be universal, so we have to solve:

O +QO2 +Q+Q2O = O−1 + 2Q+Q2O−1 (30)

We will refer to this equation as ”The RII-equation” One can easily verify that
it has the following three solutions (it’s a polynomial equation of degree 3):
O = 1, O = −1 and O = −(Q+Q−1).

Notice that the first two solutions are not very suitable because for instance
they wouldn’t even make a distinction between the link consisting of k unknots
and the link consisting of k + 2 unknots. So the third solution seems to be the
only reasonable one. Moreover, if we define q := −Q we get a very familiar
equation: O = q + q−1. (Remember that O was defined as the polynomial that
is assigned to the trivial knot). The bracket now automatically takes its values
in the ring Z[q, q−1]. Also the bracket is now written as:

〈{pα...}〉 =
∑
α

(−q)rα(q + q−1)kα (31)

Which defines exactly the Kauffman Bracket! Notice how the bracket (26)
followed from only a few very general assumptions and how this specialized to
the Kauffman bracket by one simple extra assumption (27).

Now we still need to check if RIII is universal. However we can prove
that, because we are working with a state-sum presentation, this automatically
follows from the fact that it RI and RII are universal.

Lemma 12 For the bracket RIII is also universal.

Proof: this can be seen in the following equations:

The second equality follows from the universality of RII. �

We will now try to derive a link-invariant from the bracket. We first use the
fact that RIa adds a left-handed crossing to de diagram and that it is universal.
We see from (28) that it multiplies the bracket by 1 +QO. If we combine these
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facts we see that (1 + QO)−n−〈{pα...}〉 is invariant under RIa (n− denotes
the number of left-handed crossings in the diagram). Since RIb multiplies the
bracket with (O + Q) and adds a right-handed crossing to the diagram we see
that

(O +Q)−n+(1 +QO)−n−〈{pα...}〉 (32)

is invariant under both RI moves (n+ is the number of right-handed crossings).
What about RII? Well, if we look at the case of figure 3, we see that

this move is in fact equal to performing an RIa move and an RIb move on
the respective crossing points. So invariance of (32) under this type of move
is implied by RIa and RIb invariance. And since RII is universal we get the
same multiplication factor for the case of figure 4 so (32) is automatically also
invariant under RII. In the case of the Kauffman-Bracket we have O = q+ q−1

and Q = −q If we fill in these values in (32) we get:

qn+(−q2)−n−〈{pα}〉 = (−1)n−q−2n−+n+
∑
α

(−q)rα(q + q−1)kα (33)

Which is the unnormalized Jones polynomial.
(In section 9.1 we will see that there is also a kind of state sum presentation

for the Homfly polynomial. However for this one the polynomial is not a linear
combination of its resolutions)

Conclusion: in order to find a link-invariant, we do not directly demand
Reidemeister-invariance. We demand first that we have a link-diagram invariant
that is allowed to transform under Reidemeister moves. However we do demand
that these transformations are universal. This means that they are the same for
all links. We are then able to force our invariant to be Reidemeister-invariant
by applying a normalization that cancels out the Reidemeister transformations.

Suggestions for improvement: We suggest two ways to possibly find
different link-invariants: firstly we could replace the polynomials pα by elements
of some non-commutative ring. Secondly, we could drop our ’Extra Assumption’
that Qα = Qrα . And replace it by some other choice of Qα. We will not go into
this however.
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7 Khovanov Homology

In this chapter we will try to improve the Jones Polynomial by using categorifi-
cation. We will replace the polynomials of the previous chapter by graded vector
spaces and we replace an alternating sum by a chain complex. The trick is to
choose the chain maps such that the homology transforms universally under
Reidemeister moves. We will show that if we directly categorify the calculations
of the previous chapters this then leads to Khovanov homology.

We will follow the following procedure: first we categorify the Kauffman
bracket of a diagram with only one crossing point, that is: a trivial knot on
which we have performed an RI move. Then we generalize this to any knot on
which we have performed an RI move and then to any knot with multiple RI
twists. Subsection 7.5.1 then summarizes the main ideas of this chapter and in
fact this whole thesis. Next we investigate how to define the chain maps of a
chain-complex of a diagram on which an RII move was performed.

7.1 Categorifying the Kauffman Bracket

We have seen that the Kauffman bracket is defined by:

〈{pα...}〉 =
∑
α

OkαQrα =
∑
α

(q + q−1)kα(−q)rα

where the summation is over all resolutions α, where kα is the number of unknots
in the resolution and rα is the height of the resolution. Now the problem of the
Kauffman bracket (and the Jones polynomial) is that it does not make enough
distinction between different knots, because it has too many symmetries. We
can show this in the following way:

Notice that the Kauffman bracket can be written as an alternating sum over
the index r:

〈{pα...}〉 =
∑
r

(−1)rPr

where we have defined:

Pr :=
∑

{α|rα=r}

(q + q−1)kαqr (34)

So whenever we have a diagram of a knot this diagram determines a set of poly-
nomials {P0, P1, ...Pn} for which the alternating sum is the Kauffman bracket.
We can arrange these polynomials in one big polynomial in two variables t and
q:

Definition 36 We define the t-polynomial of a link diagram D as follows:

PD(t) =
∑
r

Prt
r
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Then we obtain the Kauffman bracket by filling in t = −1 in the t-polynomial:

〈{pα...}〉 =
∑
r

Pr · (−1)r = PD(−1)

If we would perform a Reidemeister move on our diagram, we would get a
different t-polynomial but the alternating sum would remain (up to normaliza-
tion) invariant. However if we would have two different knots K1 and K2 with
respective diagrams D1 and D2 such that D1 has t-polynomial:

PD1 = P0 + P1t+ P2t
2 + P3t

3...

and to D2 has t-polynomial:

PD1 = P0 + (P1 + P ′)t+ (P2 + P ′)t2 + P3t
3...

then we see that after filling in t = −1 the two expressions become equal so
D1 and D2 have the same Kauffman bracket. Therefore it is possible that
two completely different knots can have the same Jones polynomial. What we
actually want is an invariant that remains the same only under Reidemeister
moves. In other words: the Jones polynomial has too many symmetries.

So the t-polynomial changes under Reidemeister moves, while after filling in
t = −1 the t-polynomial is invariant (up to normalisation) under a much larger
class of ’transformations’. (With a transformation here we mean a change of one
diagram to another one, possibly corresponding to an entirely different knot.)
In other words: The t-polynomial contains too much information, the Kauffman
bracket contains too little information.

Khovanov had the following idea to solve this problem: if we use categorifica-
tion then the t-polynomial becomes a chain complex and the Kauffman bracket
becomes its Euler characteristic. Now the convenient thing about this is that
(as we have seen in section 5.6) there is an extra ’level of information’ between
these quantities, namely the homology of the chain complex.

before categorification: after categorification:
P0 + P1t+ P2t

2 + ... 0 → V P0 → V P1 → ...
{H0,H1,H2, ...}

P0 − P1 + P2 − ... P0 − P1 + P2 − ...

So if we have a link-diagram D with t-polynomial

P0 + P1t+ P2t
2 + ...

then after categorification it becomes some complex C(D):

0 → V P0 → V P1 → V P2 → ...→ 0

(here V Pi denotes a vector space with graded dimension Pi) and maybe we
can define its chain maps such that not just its Euler characteristic but even
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its homology groups transform universally under Reidemeister moves. Then it
might be possible that some chain complexes corresponding to different diagrams
have the same Euler characteristic, but have different homologies. The homology
would then be a strictly stronger invariant then the Jones polynomial.

Assumption 6 For any knot-diagram D we define a chain complex C(D) with
vector spaces V Pi . Where the polynomials Pi are defined as in (34)

Assumption 7 We want to define the chain maps of these complexes such that
the Homology groups transform universally under Reidemeister moves.

Suppose we have a link-diagram D and after performing an RIb move it
becomes the diagram D′. We have seen that under an RIb move the Kauffman
bracket is multiplied by q−1. What does this mean for the homology?

The Reidemeister move replaces the chain complex C(D) by the complex
C(D′). Since the Kauffman bracket of D is the Euler chararacteristic of C(D)
we see that the Euler characteristic of C(D′) is q−1 times the Euler characteristic
of C(D).

χ(C(D′)) = q−1 · χ(C(D))

This also means that the homology H(D) of C(D) is replaced by a the ho-
mology H(D′) of C(D′) with different homology-groups, with different graded
dimensions such that the alternating sum of the graded dimensions of the groups
Hi(D′) is a factor of q−1 times the alternating sum of the graded dimensions of
the original homology groups Hi(D):∑

i

(−1)iqdim(Hi(D′)) = q−1 ·
∑
i

(−1)iqdim(Hi(D))

There might be a lot of ways in which the homology could transform in such a
way. One way is when the graded dimension of every homology-group itself is
multiplied by q−1:

qdim(Hi(D′)) = q−1 · qdim(Hi(D))

The nice thing about this is that every single homology group then transforms in
exactly the same way as the Kauffman bracket. Then we can use a normalization
similar to that of the bracket to make it a knot-invariant.

Assumption 8 We want the graded dimensions of the homology groups to
transform exactly like the Kauffman bracket.

Let’s make this explicit.
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7.2 Example: RIb on the Unknot

Say we have two diagrams of the trivial knot. The first one (D) is the trivial
diagram. The second diagram (D′) contains a left-twisted curl, so it can be
obtained from the trivial diagram by applying an RIb move. We will now try
to assign chain complexes to these diagrams. The chain maps should be chosen
in such a way that assumptions 6-8 are satisfied. This means that the graded
dimension of the homology H(D′) should by q−1 times the graded dimension of
the homology of H(D).

For the trivial diagram we have the cube: {pα...} = {O} so the t-polynomial is
PD(t) = P0 = O = q+q−1. It follows from assumption 6 that the corresponding
chain complex is:

C(D) = 0 → V O → 0

The homology of this complex is obviously: H0 = V O and Hi = {0} if i 6= 0
The cube for the second diagram is: {p0, p1} = {O2, O}. So the t-polynomial
is:

PD′(t) = P0 + P1t = O2 + qOt (35)

and the corresponding chain complex is:

C(D′) = 0 → V O
2 m→ V qO → 0 (36)

Where V O
2

and V qO are two vector spaces with respective graded dimensions
O2 and qO. The chain map m between them will be defined later. Notice the
similarity between the t-polynomial (35) and the chain complex (7.2).

So how does this factor of q−1 in the Kauffman bracket arise exactly? Re-
member that we had O = q+ q−1 so the first coefficient of the t-polynomial can
be re-written in two terms: O2 = qO + q−1O. So (35) becomes:

PD′(t) = qO + q−1O + qOt

If we fill in t = −1 then the first term and the third term cancel each other, and
the term that is left is q−1 times the polynomial of the trivial diagram:

PD′(−1) = qO + q−1O + qO · (−1) = q−1O

Now we want the behavior of the complex and the homology to mimic this
relation. So we want a same kind of re-writing and a same kind of cancellation.
In other words: we want to categorify the above formulas. This is possible.
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Say we have a graded vector space V O with graded dimension O = q+ q−1.
This means we can write it as: span{v+, v−} with deg(v+) = 1 and
deg(v−) = −1. Then V O ⊗ V O has graded dimension O2, so we define:

V O
2

:= V O ⊗ V O = span{v+ ⊗ v+, v+ ⊗ v−, v− ⊗ v+, v− ⊗ v−}

Just like we can write O2 as qO+ q−1O we can also split up V O
2

as a direct
sum of the following two subspaces:

W qO = span{v+ ⊗ v+, v+ ⊗ v− + v− ⊗ v+}

W q−1O = span{v+ ⊗ v− − v− ⊗ v+, v− ⊗ v−}

such that:
qdim(W qO) = q2 + 1 = qO

and
qdim(W q−1O) = 1 + q−2 = q−1O

So we have:
V O ⊗ V O = W qO ⊕W q−1O

Since V qO and W qO have the same graded dimension they are isomorphic. The
chain complex (7.2) is then isomorphic to some chain complex:

C = 0 →W qO ⊕W q−1O →W qO → 0

So we have a direct sum of two vector spaces on the left-hand side of the chain
map now (just like we had a sum of two terms in the first coefficient of the
t-polynomial in (35)). Moreover, one of the vector spaces on the left-hand side
of the chain map equals the vector space on the right-hand side. Now we want
these to cancel each other just like the two terms of the t-polynomial cancelled
each other. So how can we make sure that the equal vector spaces ’cancel out’
each other after taking the homology? This is very easy. If we define the chain
map m′ of this complex:

m′ : W qO ⊕W q−1O →W qO

the homology group H ′0 is defined as the kernel of m′ and H ′1 is the target
space of m′ modulo the image. So if we define m′ such that its kernel is exactly
W q−1O. Then m′ acts as a linear isomorphism on W qO and so the image of
m′ is W qO, which is the entire target space. (We could for instance define m′

to be the projection map onto W qO. In that case m′ acts as the identity on
W qO. However any automorphism of W qO would do, so we could for instance
just as well take m′ to be minus the projection onto W qO.) We have split up
the complex into a direct sum of two complexes:

C ′ = 0 →W q−1O → 0 → 0
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C ′′ = 0 →W qO →W qO → 0

Since C ′′ contains an isomorphism, its homology is trivial. This means that
the homology of C equals the homology of C ′ which is obviously equal to:
H ′0 = W q−1O, H ′i = {0} if i 6= 0.

Definition 37 Let V Pr be a graded vector space with graded dimension Pr.
Then V Pr{n} is as a vector space identified with V Pr . Only the grading of
all vectors is increased by n. This means that qdim(V Pr{n}) = qn · Pr. The
operator ·{n} is called the grading shift operator.

Notice that for any graded vector space A we then have:

V O ⊗A ∼= A{1} ⊕A{−1} (37)

which is just the categorification of the equation:

(q + q−1) · p = q · p+ q−1 · p

Now we can define the vector space V qO of (7.2) as:

V qO := V O{1}

Also we define a grading preserving isomorphism φ from W qO to V O{1}:

φ : v+ ⊗ v+ 7→ v+

φ : v+ ⊗ v− + v− ⊗ v+ 7→ v−

(notice that φ is indeed grading preserving, because the grades on the right-
hand side are increased by 1 by the grading shift operator). Finally, we can
then define the chain map m of () as: m = φ ◦m′.

m : W qO ⊕W q−1O → V O{1}

which can also be written as:

m : V O ⊗ V O → V O{1}

From this we see that:

H0 = ker(m) ∼= ker(m′) = H ′0 = W q−1O

So we see that qdim(H0) = q−1 ·O. Exactly what we wanted.

Notice that we have taken here an approach slightly different from Kho-
vanov’s. He starts out by defining a multiplication m from V O⊗V O to V O and
then makes it into a grading preserving map by composing it with the canoni-
cal isomorphism V O → V O{1} (which is an isomorphism of vector spaces, but
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not of graded vector spaces, since it has degree 1). And then proves that the
resulting homology miraculously turns out to be invariant for RIb.

We however began by looking for a map that creates an invariant homology.
The most obvious one turned out to be the projection map m′, which is already
grading preserving by construction. Then in order to make calculations easier
and to make sure that the result is the same as Khovanov’s, we composed it with
the canonical grading preserving isomorphism W qO → V O{1}. This results in
the same map m.

7.3 Next example: RIa on the Unknot

We will now do exactly the same thing for a diagram with an RIa twist. We
have seen before that the Kauffman bracket of this diagram is −q2 times the
Kauffman bracket of the trivial diagram.

We can define a map ∆ in a way analogous to the way we defined m in the
previous section. The cube for the trivial knot after an RIa move is: {O,O2}
So the t-polynomial is: O +O2qt. We can take for instance:

0 → V O → V O ⊗ V O{1} → 0

as its chain-complex. Once again we split-up V O ⊗ V O into two subspaces:

Y qO := span{v+ ⊗ v+, v+ ⊗ v− − v− ⊗ v+}

Y q
−1O := span{v+ ⊗ v− + v− ⊗ v+, v− ⊗ v−}

We can define:

V O ⊗ V O{1} = Y qO{1} ⊕ Y q
−1O{1}

which can be re-written as:

V O ⊗ V O{1} = Y q
2O ⊕ Y O

where Y q
2O := Y qO{1} and Y O := Y q

−1O{1}. We can also define a map:

∆′ : Y O → Y q
2O ⊕ Y O

Which we split-up as a direct sum of:

Y O → Y O and 0 → Y q
2O
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where the first map is a linear isomorphism. The map ∆′ can be interpreted
as the inclusion of Y O into Y q

2O ⊕ Y O. From this we see: H ′1 ∼= Y q
2O and

H ′i = {0} if i 6= 1. Then we see that the graded dimension of the homology
of the trivial diagram is multiplied by q2. Also, the only nonzero homology
group is now H1 instead of H0 so the alternating sum of graded dimensions
is multiplied by −q2. This time we need not only a grading shift to obtain an
invariant, but also a shift in the homological degree.

The definition of Y q
−1O and Y qO was chosen such that m and ∆ satisfy

the Frobenius condition. This is necessary so that we can combine them into a
chain complex later.

7.3.1 Conclusions

From assumption 6 it follows that the trivial diagram has homology:

H0 ∼= V O

the diagram of the trivial knot with one left-twisted curl has homology:

H0 ∼= V q
−1O = V O{−1}

and the diagram of the trivial knot with one right-twisted curl has homology:

H1 ∼= V q
2O = V O{2}

All other homology groups are trivial. We now know how the homology of the
trivial diagram transforms under an RIa or an RIb move. Since we ultimately
want a knot-invariant we want these moves to be universal so we want these
transformations to hold for all link diagrams. That is: suppose we have a link
with diagram D. After adding a left-twisted curl to this diagram we obtain a
diagram D′ and after adding a right-twisted curl to D we obtain diagram D′′.
Then we want the homology to satisfy the following relations:

Hi(D′) = Hi(D){−1}
Hi(D′′) = Hi−1(D){2}

7.4 Transformations of Chain-Complexes

Now we have only shown yet that we can define homologies for diagrams of the
trivial knot with one crossing point that behave in the desired way. But how
can we extend this to general diagrams of general links? We will now show that
everything works out in the same way just as well if we do not assume that the
original diagram D is the trivial knot. As long as we assume that the chain
maps of the complex C(D) commute with m and ∆.

Suppose we have two chain complexes:

V = 0 → V 0 → V 1 → V 2 → 0
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A = 0 → A0 → A1 → A2 → 0

and maps f i : V i → Ai that commute with the chain maps (so the collection of
maps f i forms a morphism f of chain-complexes). Then we can use these maps
to make the two complexes into one:

0 → V 0 → V 1 → V 2 → 0
↓ ↓ ↓

0 → A0 → A1 → A2 → 0

as we have seen in section 5.6 (the downward pointing arrows denote the maps
(−1)if i). We take here direct sums between every pair V i and Ai−1. We call
this the ’flattening’ or the ’cone’ of the complexes V and A with respect to f
and is denoted by: V → A.

Suppose now we can write every V i as the direct sum of vector spaces Ai

and Bi: V i = Ai ⊕ Bi and that every chain map di : V i → V i+1 can be
written as the direct sum of two maps:

di = ai ⊕ bi

ai : Ai → Ai+1 and bi : Bi → Bi+1

0 → A0 ⊕B0 → A1 ⊕B1 → A2 ⊕B2 → 0
↓ ↓ ↓

0 → A0 → A1 → A2 → 0
(38)

In shorter notation:
V → A = A⊕B → A

Furthermore suppose that f i is the projection map from V i onto Ai. Then we
can write this complex as the direct sum of two complexes:

0 → A0 → A1 → A2 → 0
↓ ↓ ↓

0 → A0 → A1 → A2 → 0
(39)

and
0 → B0 → B1 → B2 → 0 (40)

The homology of (38) is then the direct sum of the homologies of (39) and (40).
But since f i restricted to Ai is an isomorphism we see that (39) is contractible
(see lemma 7). So the homology of (38) equals the homology of (40).

Suppose we have a knot diagram with chain complex

V = ...→ V 0 → V 1 → V 2 → ... (41)

and we assume that after an RIb move this becomes: V O ⊗ V → V {1}

...→ V O ⊗ V 0 → V O ⊗ V 1 → V O ⊗ V 2 → ...
↓ ↓ ↓

...→ V 0{1} → V 1{1} → V 2{1} → ...
(42)
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We can write V O ⊗ V i as V i{1} ⊕ V i{−1} so this flattening equals:

...→ V 0{1} ⊕ V 0{−1} → V 1{1} ⊕ V 1{−1} → V 2{1} ⊕ V 2{−1} → ...
↓ ↓ ↓

...→ V 0{1} → V 1{1} → V 2{1} → ...

= V {1} ⊕ V {−1} → V {1}

Notice that the chain maps of V O ⊗ V are defined as Id ⊗ d and therefore the
map

Id⊗ di : V i{1} ⊕ V i{−1} −→ V i+1{1} ⊕ V i+1{1}

splits up as a direct sum of two maps:

ai : V i{1} → V i+1{1} and bi : V i{−1} → V i+1{−1}

If we furthermore assume the downward pointing arrows denote (−1)i times the
projection maps onto V i{1} then we see the homology of this flattening equals
the homology of:

V {−1} = ...→ V 0{−1} → V 1{−1} → V 2{−1} → ...

That means that the homology transforms under RIb as:

Hi ⇒ Hi{−1}.

Notice that our example of an RIb move performed on the trivial diagram is just
a special case of this. Only we have replaced the chain complex 0 → V O → 0
of the trivial diagram by a general chain complex V .

In the same way we can assume that under an RIa move the complex (41)
becomes:

...→ V 0 → V 1 → V 2 → ...
↓ ↓ ↓

...→ V O ⊗ V 0{1} → V O ⊗ V 1{1} → V O ⊗ V 2{1} → ...
(43)

From which we conclude that under RIa the homology transforms as:

Hi ⇒ Hi+1{2}.

Which can also be denoted as:

Hi ⇒ Hi[1]{2}.

If we could find a way to assign a complex to any link diagram such that it
transforms like (42) under RIb and like (43) under RIa, then the homology
of such a complex would transform universally under RI moves. And after a
proper grading shift it would be an RI invariant.
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Assumption 9 Every link diagram D gets assigned a chain complex C(D) with
chain maps that commute with m and ∆. If the diagram D′ is obtained from D
by an RIb move then we have:

C(D′) = V O ⊗ C(D) m−→ C(D){1}

And if D′′ is obtained form D by an RIa move we have:

C(D′′) = C(D) ∆−→ V O ⊗ C(D){1}

7.5 Multiple RI moves

We have seen that when we add an RI-twist to a diagram, then the resulting
complex will be the flattening of two complexes. Thus subsequently adding
RI-twists to the unknot results in the flattening of the flattening of... etc. of
complexes. This can be seen as a cube of vector spaces where the edges are anti-
commuting maps and the rth chain space is then the direct sum of all vertices
of height r.

V Pr :=
⊕

{α|rα=r}

V pα{r}

This means that we have a linear map ±fαβ from V pα{rα} to V pβ{rβ} whenever
the binary numbers α and β are differ at only one digit (in other words: α and
β are neighbors) and this particular digit has value 0 in α and value 1 in β.

This map fαβ is then:

mij if kβ = kα − 1
∆ij if kβ = kα + 1

Here kα is the number of unknots in resolution α. mij acts as multiplication on
the ith and jth tensor factor and as the identity on all other tensor factors. For
instance:

m24(v1 ⊗ v2 ⊗ v3 ⊗ v4) = v1 ⊗m(v2 ⊗ v4)⊗ v3

And a similar definition for ∆ij , for instance:

∆24(v1 ⊗ v2 ⊗ v3 ⊗ v5) = (v1 ⊗ va ⊗ v3 ⊗ vb ⊗ v5)

where ∆(v2) = va ⊗ vb (this will be made more clear in section 7.7). Then the
complex transforms exactly like (42) under an RIb move and like (43) under
RIa. Just the way we want it.

It is important here to notice that since m and ∆ satisfy the Frobenius con-
dition we are sure that the chain maps of such a chain complex (anti-)commute
with m and ∆. Therefore it is indeed possible to define a chain complex as
subsequent flattenings with respect to m and ∆.

Notice furthermore that the vertices of such a cube are V O
⊗kα {rα} which

is exactly the categorification of the Kauffman bracket where the vertices are
polynomials Okαqrα . Therefore we will from now on assume that this holds for
any link-diagram (not just for the unknot).
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Assumption 10 For any diagram D the vertices of the cube C(D) are V O⊗kα{rα}.

7.5.1 important remarks

So what has just happened? We have seen that integer numbers can be cate-
gorified by chain complexes. We can then take the Euler characteristic as the
decategorification. When two chain complexes C and D have the same Euler
characteristic we’ll denote this by: C ∼ D. We have seen that subtraction can
be categorified by flattening. If we have two integers c and d then an expression
like c+ d− c = d becomes:

C ⊕D
f→ C ∼ D

This is completely independent of the map f . Now we can make our theory
strictly stronger by not using the Euler characteristic, but the dimensions of the
homology groups as decategorification. Whenever two chain complexes have the
same homology we’ll denote this by C ∼= D. In general the equation

C ⊕D
f→ C ∼= D

does not hold. However, we have not specified f yet. So it will hold if we choose
f carefully. This is exactly what we have done above. If f i is the projection
map from Ci ⊕Di onto Ci for each i then we have:

C ⊕D
f→ C = (C Id→ C)⊕ (D → 0) ∼= D

Also if f i is the inclusion map Ci → Ci ⊕Di then we have:

C
f→ C ⊕D = (C Id→ C)⊕ (0 → D) ∼= D[1]

Two special cases of this are:

V O ⊗ C
m→ C{1} = C{1} ⊕ C{−1} m→ C{1} ∼= C{−1} (44)

C
∆→ V O ⊗ C{1} = C

∆→ C{2} ⊕ C ∼= C{2}[1] (45)

(remember that V O is a graded vector space and C is a chain complex.) These
are simply the categorifications of the following two equations, which play an
important role in calculating the Kauffman bracket:

(q + q−1)x− qx = q−1x

x− (q + q−1)qx = −q2x
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7.6 Another Example: RII, case 2

Now we have seen in the previous sections how a chain complex can be trans-
formed under an RI move such that its homology transforms universally. This
means that if we have a chain complex for some knot-diagram D, then we also
know how to construct a chain complex for all diagrams which are obtained by
adding left- and right- twisted curls to D. So now its time to think of a way to
transform a chain complex after performing an RII move, in such a way that
the homology remains invariant.

Notice that if we start out with the trivial diagram, and we perform an RII
move, then this is exactly the same as performing both an RIa and an RIb
move. This means that the homology transforms as:

Hi ⇒ Hi[1]{1} (46)

But if we want the homology to transform this way for any diagram we have
to deal we with the fact that, just like in section 6.1, we cannot write down how
the cube transforms under an RII move in general. It depends on the particular
knot and it even differs per resolution. But we do demand that the homology
transforms universally. So equation (46) should always hold.

Suppose we have a knot-diagram D and after performing an RII move it
becomes the diagram D′. In section 6.1 we saw that the cube was replaced by a
four times bigger cube. Every resolution is replaced by a ’small cube’ consisting
of four new resolutions. These new resolutions look either like the four of figure
3 (case 1) or like the four of figure 4 (case 2). We have seen that the Kauffman
bracket of such a small cube equals up to normalization the polynomial of the
original resolution. This normalization factor is the same for every vertex and
therefore the entire Kauffman bracket transforms universally for RII.

We want a similar thing to happen for Khovanov homology. That is: every
vertex V α is replaced by four new vertices. These four new vertices form a small
complex Wα, so the new chain complex is a cube which has at every vertex a
small cube, consisting of four spaces, itself. These small cubes look either like
the complex for case 1 or like the complex for case 2.

Definition 38 A ’small cube’ or ’small complex’ is a cube consisting of four
vertices. In other words: it is the flattening of two chain complexes which both
have two chain spaces.

Notice that we already know what the complex for case 1 should look like since
it is equivalent to performing both an RIa and an RIb move on the unknot
and we have seen that in the previous section. What we now want is that the
homology of the small complex for case 2 also transforms like (46). This means
the vertex V α of C(D) is replaced by a small cube Wα of four spaces which
has homology H ′1 ∼= V α{1}. And then we must still show that this also leads
to a homology for the entire cube that transforms universally. This is however
much harder because the relation between the homology of the entire complex
and the homology of the small complexes is not so obvious.
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So how can we construct a cube such that its homology is invariant under
RII moves? We have a diagram D with cube C(D) and after an RII move it
becomes the diagram D′ with cube C(D′).

Let’s first consider the case where C(D) has only one vertex. So D is a
diagram with no crossing points. Since in an RII move only one or two unknots
are involved we can assume without loss of too much generality that D consists
of only one or two unknots. The RII move is either of the type of case 1 or of
the type of case 2. So we’ll now take a look at what happens if we have two
unknots and we perform a case 2 RII move. Then:

C(D) = 0 → V O ⊗ V O → 0

H0 = V O ⊗ V O, Hi = {0}

According to assumption 10 we have: C(D′) =

V O
φ1→ V O ⊗ V O{1}

φ2 ↓ ↓ φ3

V O ⊗ V O{1} φ4→ V O{2}

Where the maps φi are yet to be defined. (This follows from figure 4.) And
according to (46) we must have:

H ′1 = V O ⊗ V O{1} and H ′i = {0} if i 6= 1

This means that φ1 ⊕ φ2 should be injective and φ3 + φ4 should be surjective.
Also it means that we can write C(D′) as:

C(D′) = 0 → V O
φ1⊕φ2−→ A⊕B

φ3+φ4−→ V O{2} → 0 (47)

where
A ∼= B ∼= V O ⊗ V O{1}.

and C(D′) splits up as a direct sum of a contractible complex:

0 → V O → A→ V O{2} → 0

and
0 → B → 0

Now we want this to generalize to diagrams D which have more then one
resolution (that is: diagrams that have one or more crossing points). We have
seen that every vertex V α of the cube C(D) is replaced by a small complex
consisting of four spaces. Let’s first take a look at two neighboring vertices
of C(D) and the edge between them. The two vertices are labelled by binary
numbers α and β. The vector spaces on the vertices are called V α and V β and
we have a linear map dαβ : V α → V β . After an RII move we have a cube
consisting of eight vector spaces:
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V α00 φα
1→ V α01 V β00 φβ

1→ V β01

φα2 ↓ ↓ φα3
ψ−→ φβ2 ↓ ↓ φβ3

V α10
→
φα4 V α11 V β10

→
φβ4 V β11

The left four spaces form a complex we will denote by Wα and the right four
form a complex W β . The arrow in the middle, labelled by ψ, represents four
maps:

ψ00 : V α00 → V β00 ψ01 : V α01 → V β01

ψ10 : V α10 → V β10 ψ11 : V α11 → V β11

ψ = ψ00 ⊕ ψ01 ⊕ ψ10 ⊕ ψ11

So the spaces V α and V β are replaced by two small cubes Wα and W β and the

linear map V α
dαβ

→ V β is replaced by the flattening Wα ψ→ W β . This can also
be written as:

V α00 ψ00

−→ V β00

gα1 ↓ ↓ gβ1

V α01 ⊕ V α10 ψ01⊕ψ10

−→ V β01 ⊕ V β10

gα2 ↓ ↓ gβ2

V α11 ψ11

−→ V β11

with:
gα1 = φα1 ⊕ φα2

gα2 = φα3 + φα4

and the same for β instead of α. We see from figures 3 and 4 in section 6.1 that
V α01 ∼= V α and V β01 ∼= V β . Notice that both Wα and W β can only be either
of the form of case 1 or of the form of case 2.

We are now left with defining the maps ψ and φ such that we indeed obtain
a chain complex that has transformed like (46) under RII. This means that we
want C(D) to be quasi-isomorphic to C(D′)[−1]{−1}.

Lemma 13 If the following three points hold, then C(D) is quasi-isomorphic
to C(D′)[−1]{−1}

1) For every vertex α of C(D) we want the sequence Wα to split up as the
direct sum of Mα = V α00 → Aα → V α11 and Nα = 0 → Bα → 0 where Mα

is contractible and Bα ∼= V α{1}. (This means that gα1 should be injective and
gα2 should be surjective for every α.)

2) For every pair of neighbors α ∼ β we want that ψ01 ⊕ ψ10 = a⊕ b where
a is a map Aα → Aβ and b a map Bα → Bβ .)
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3) For every pair of neighbors α ∼ β we want isomorphisms γα and γβ such
that the following diagram commutes:

V α{1} dαβ

→ V β{1}
γα ↓ ↓ γβ

Bα
b→ Bβ

Proof: points 1) and 2) say that we can split up C(D′) as a direct sum of a
contractible complex Y (which is the flattening of contractible complexes Mα)
and a cube X with vertices Bα. Point 1) says that the nth chain space of X
is isomorphic to the (n − 1)th chain space of C(D){1} and point 3) says that
the edges of X are isomorphic to the edges of C(D){1}. Therefore the entire
chain complex X is isomorphic to C(D)[1]{1}. And since C(D′) was split up
as the direct sum of X and a contractible complex this means that C(D′) is
quasi-isomorphic to X and therefore also to C(D)[1]{1}. This is equivalent to
saying that C(D′)[−1]{−1} is quasi-isomorphic to C(D) �

The definitions of the maps φ and ψ should be consistent with the previous
sections. That is: sometimes an RII move is equivalent to an RIa plus an RIb
move and for RI moves we already know how the cube transforms. Notice for
instance that if we perform the RII move on the unknot, then the maps φ and
ψ are of the form ±mij or ±∆ij . This inspires us to look what happens if we
assume that φ and ψ are always of this form.

Assumption 11 We will assume that the chain complex C(D) of a diagram
D is a cube for which all edges are ±mij or ±∆ij, depending on the number of
unknots in resolutions α and β.

Notice that the fact that point 1) is then satisfied can easily be proven since
there are only two cases. certainly for case 1 this must be true since in sections
7.2 and 7.3 m and ∆ were defined to satisfy this. For case 2 this can be seen
since ∆ is injective and m is surjective. Therefore gα1 = −∆ ⊕ ∆ is injective
and gα2 = m+m is surjective.

Suppose that all four resolutions of Wα have exactly one more unknot than
their corresponding resolutions in W β . Then all maps ψij are multiplications:

ψij : V αij → V βij =
ψij : V O ⊗ V

m→ V {1}

This happens for instance in figure 5. Wα corresponds to a 0-smoothing of the
crossing point on the left and W β corresponds to a 1-smoothing of this crossing
point. We see then that Wα ∼= V O ⊗W β{−1} and therefore:

Wα →W β ∼= V O ⊗W β{−1} m→ W β

∼= W β ⊕W β{−2} m′

→ W β

= Mβ ⊕Nβ ⊕Mβ{−2} ⊕Nβ{−2} m′

→ Mβ ⊕Nβ

67



Figure 5: RI and RII commute

It can be split up as a direct sum of :

Mβ ⊕Mβ{−2} → Mβ (48)

And
Nβ ⊕Nβ{−2} → Nβ (49)

The first of these is contractible, since Mβ is contractible. We know that we
can split it up like this because we know that m′ acts as the identity on W β

and as the zero-map on W β{−2}. Since Aβ is the second chain space of Mβ

and Bβ is the second chain space of Nβ we see that (48) and (49) define maps:

a : Aα → Aβ = Aβ ⊕Aβ{−2} → Aβ

b : Bα → Bβ = Bβ ⊕Bβ{−2} → Bβ

Therefore point 2) is also satisfied. Notice that it doesn’t matter what choice
we make for Bα, for any other choice it would still hold. Because b acts as the
identity on Bβ and is zero on Bβ{−2} and also we have Bβ ∼= V β{1} we see
that b is isomorphic to the map:

m′ : V β{1} ⊕ V β{−1} → V β{1} = V α{1} → V β{1}

proving that also point 3) is satisfied. The case in which all maps ψij are
co-multiplications is completely analogous. The essence of this is that the res-
olutions of two neighboring vertices are always related to each other by an RI
move. So we can consider the edge V α → V β as corresponding to a diagram
with one crossing point. After performing an RII move this map becomes
Wα →W β .

Now we see clearly that in figure 5 the operation of performing the RI move
commutes with the operation of performing the RII move. This means that
we can also first do RII which changes V α into Wα and then we make it into
the complex Wα →W β by performing an RI move. We have seen that an RIb
move can be seen as a projection map, so just as in section 7.5.1 this makes sure
that ψ maps M into M and N into N :

M ′ ⊕N ′ ⊕M ′′ ⊕N ′′ m→ M ′ ⊕N ′ = (M ′ ⊕M ′′ m→M ′)⊕ (N ′ ⊕N ′′ m→ N ′)

However, RI and RII do not always commute. See figure 6.
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Figure 6: RI and RII do not commute

For this case Wα →W β would look like:

V O⊗2 m−→ V O

∆1 ⊕m ↓ ↓ ∆⊕∆
V O⊗3 ⊕ V O

−m2⊕−∆−→ V O⊗2 ⊕ V O⊗2

m2 ⊕−∆ ↓ ↓ m⊕−m
V O⊗2 m−→ V O

Notice that both Wα and W β in this figure satisfy point 1) because ∆1 ⊕ m
and ∆⊕∆ are both injective and m2 ⊕−∆ and m⊕−m are both surjective.

Unfortunately, it turns out that for this diagram point 2) and 3) are not
satisfied. The entire kernel of gα2 is mapped into the image of gβ1 so there
is no map b : Bα → Bβ . However, Khovanov shows in [9] that the entire
complex Wα →W β can still be split up in a contractible complex and one that
is isomorphic to C(D). Although it is clear (after tedious computation) that his
approach works, it is not so obvious to see why it works.

Also it turns out that Khovanov homology is also invariant under RIII (of
course), but we will not go into this.

7.7 How to Calculate the Khovanov Homology

Now that we have seen how to build up a homology theory that categorifies the
Kauffman bracket, and hence the Jones polynomial, let’s summarize all this.
We forget about all conceptual stuff now, and just give a recipe to explicitly
calculate the Khovanov homology.

Step 1) First we choose a diagram that represents the knot. We assign a
positive integer to every arc.

Step 2) Every crossing point can be removed in one of the two following
ways:
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0− smoothing 1− smoothing

We then say the crossing point is ’smoothed out’. We call the first one a 0-
smoothing and the second one a 1-smoothing. If all crossing points are smoothed
out then we have a diagram consisting of a finite number of unknotted cycles.
Such a diagram is called a resolution. So for a diagram with n crossing points
there are 2n resolutions. These resolutions can then be labelled by binary num-
bers α consisting of n bits. Also we can label the unknots with a number. Every
unknot is made up out of one or more arcs of the original diagram, so we have
a finite amount of numbers assigned to every unknot, which are the numbers
we assigned to the arcs the unknot was made up of. We choose the smallest of
these numbers to label the particular unknot.

Definition 39 The height of a resolution is the number of 1-smoothings per-
formed on the diagram to obtain the resolution.

Step 3) To every unknot in every resolution we assign a graded vector
space (or module) Vl of graded dimension q + q−1 (here l is the label of the
particular unknot). If a resolution consists of k cycles the entire resolution then
corresponds to the vector space V ⊗k, the tensor factors are placed in increasing
order of their labels l.

So if for instance we have a resolution consisting of three unknots labelled
by 1, 2 and 5 respectively, then the resolution gets assigned the vector space
V1 ⊗ V2 ⊗ V5.

The graded vector space Vl has two basis vectors: v+ and v− with deg(v+) =
1 and deg(v−) = −1. This space comes equipped with a multiplication m and
a linear map ∆ for which we have:

m(v+ ⊗ v+) = v+ (50)
m(v+ ⊗ v−) = v− (51)
m(v− ⊗ v+) = v− (52)
m(v− ⊗ v−) = 0 (53)

and:

∆(v+) = v+ ⊗ v− + v− ⊗ v+ (54)
∆(v−) = v− ⊗ v− (55)

These maps satisfy the Frobenius condition.
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Definition 40 A map of degree n is a linear map that maps homogeneous sub-
spaces into homogeneous subspaces, such that for any integer m the subspace of
degree m is mapped into the subspace of degree m+n. A map of degree 0 is also
called a grading preserving map.

Notice that the maps ∆ and m above are both of degree −1.
Step 4) For every resolution α we shift the grading of its corresponding

vector space Vα by rα, where rα is the height of the resolution α. So every
resolution now has a corresponding graded vector space V ⊗k{rα}.

Step 5) We now have 2n vector spaces and we want to apply linear maps
between them. This goes as follows. Suppose we have two resolutions labelled
by binary numbers α and β with corresponding vectors spaces A and B. If β
is obtained from α by changing one 0-smoothing into a 1-smoothing (in other
words: if the binary number β can be obtained from the binary number α by
changing one bit from 0 to 1 so α and β are neighbors) then there will be a
linear map from A to B. Such a change from α to β is always either a splitting
of one unknot into two, or a joining of two unknots into one. If two unknots are
joined we will apply the multiplication m to their corresponding spaces and if
an unknot splits into two we apply the map ∆ to its corresponding space. To
the unknots that do not participate we apply the identity map. So we have a
map from A to B of the form:

mij or ∆ij

Because of the degree shift in step 4 these maps are grading preserving maps.
Step 6) Some of these maps will be multiplied by −1. Say we have a map

f from Vα to Vβ and the binary numbers α and β are equal except in the jth

bit. Then we add up the last n− j bits of α and call the result x. Then f will
be multiplied by (−1)x.

Step 7) We take the direct sum between all vector spaces of the same height.
We also take the sum of the maps between these vector spaces. This means that
we are now left with a sequence of n maps between n + 1 vector spaces. We
have chosen minus signs in step 6 such that this sequence is a chain complex.

Step 8)The chain complex C that we have now obtained still needs some
degree shifting. That is: C is replaced by C[−n−]{n+ − 2n−}. Here n+ de-
notes the number of positive crossing points in the diagram and n− denotes the
number of negative crossing points.

Step 9)Finally we take the homology of this chain complex. This is now
Khovanov’s knot invariant. The Khovanov polynomial of a link L is defined by:

Kh(L) :=
∑
r

trqdim(Hr(L))

where Hr is the rth homology group. This polynomial contains however slightly
less information than the homology, because the actual homology groups form
the invariants and not just their isomorphism classes. (in other words: if we had
chosen a different diagram we would have obtained the same homology groups,
not just isomorphic ones.)
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7.8 Functoriality

Besides the fact that Khovanov Homology makes it possible to make a better
distinction between knots, it has another big advantage. Khovanov homology
can be extended to a functor. That is: it can be used to describe ’morphisms’
between knots. With this we mean two-dimensional cobordisms embedded in
R4.

We want Khovanov homology to be a functor from the category of links
and link-cobordisms to the category of abelian groups. So if a link is described
by homology groups, we can describe a 2-manifold S embedded in R4 as a
collection of homomorphisms between these homology groups. The morphisms
in the category of link-cobordisms are diffeomorphism classes of 2-manifolds so
if two such surfaces are diffeomorphic the corresponding homomorphisms should
be equal. It turns out however, that these homomorphisms are only well-defined
up to a minus sign.

To a trivial cobordism (that is: S = K× [0, 1] for some link K) we naturally
assign the identity. This means that if a surface is diffeomorphic to a trivial
cobordism then its corresponding homomorphisms should be plus or minus the
identity.

Definition 41 A link cobordism S is an oriented compact surface properly em-
bedded in R3 × [0, 1]. The boundary of S is then a disjoint union:

∂S = ∂0S t −∂1S

of the intersection of S with the two boundary components of R3 × [0, 1]:

∂0S = S ∩ R3 × {0}

−∂1S = S ∩ R3 × {1}

Such a surface is always equivalent to a link cobordism for which every ’time-
slice’ S ∩ R3 × {i} is a link. So we can represent the entire surface by a series
of link diagrams, with every diagram corresponding to a slice.

Such a series of diagrams Ji is called a representation. If we make enough
of these slices two consecutive diagrams in a representation will differ only by
either a Reidemeister move, a ’birth-’ or ’death-’move or a so called ’fusion’
move.
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We can assign a Khovanov-complex Ci to every such diagram Ji, so to a repre-
sentation corresponds a series of chain complexes. We want to assign a morphism
fi to every pair of consecutive diagrams (Ji , Ji+1). We can then compose these
morphisms to assign a morphism to the entire representation:

(J0 , ... Jn−1 , Jn) ⇒ fn ◦ fn−1 ◦ ... ◦ f0

Morphisms fi of chain complexes induce homomorphisms F ji : Hj(Ci) → Hj(Ci+1)
on the homology groups.

Notice that if two surfaces embedded in R4 are isotopic, then they are cer-
tainly diffeomorphic as manifolds without any embedding. This means that
if we can assign Frobenius maps to these surfaces they lead to topological in-
variants. But we already know that m and ∆ satisfy the Frobenius condition.
Moreover, they commute with the chain maps of C(D). For a fusion move we
see that at every vertex of the cube either a circle is added or removed, so we
can just use these maps. And if for the birth move we use the map i : 1 7→ v+
and for the death move we use the map ε : v− 7→ 1, v+ 7→ 0. We see that the
chain spaces are indeed Frobenius algebras.
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8 Example: The Trefoil Knot

8.1 Ker(d0)

As an example let’s calculate the Khovanov polynomial of the trefoil-knot, which
has three crossing points. We will use the following diagram:

To simplify notation we will in this section write V instead of V O. The first
chain space consists of two unknots as we can see in the picture on the previous
page, so its corresponding space is V ⊗V . There are three resolutions of height
one. They all consist of one unknot so they all have the same vector space:
V {1}.

The first chain map is then a map:

V ⊗ V
d0→ V {1} ⊕ V {1} ⊕ V {1} (56)

v ⊗ w 7→ (vw, vw, vw) (57)

The first homology group H0 is the kernel of this map, which equals the kernel
of m. The kernel is:

H0 = ker(m) = span{v− ⊗ v− , v− ⊗ v+ − v+ ⊗ v−}

The fact that this space is in the kernel is checked easily. We also see that both
v+ and v− are in the image of m and since V ⊗ V is 4-dimensional we know
that the kernel must be 2-dimensional so these vectors indeed span the kernel.
We have deg(v− ⊗ v−) = −1 + −1 = −2 and deg(v− ⊗ v+) = deg(v+ ⊗ v−) =
−1 + 1 = 0. The kernel is thus spanned by a homogenous element of degree -2
and a homogenous element of degree 0, so the graded dimension of H0 is:

qdim(H0) = q−2 + q0 = q−2 + 1

8.2 Im(d0)

To calculate H1 we first need to know the image of d0. The image of m is the
entire space V and from (57) it follows that the image of d0 is isomorphic to
the image of m. It is the space that consists of all elements of the form (x, x, x)
with x any element in V .
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8.3 Ker(d1)

The kernel of d1 is a little harder to calculate. We label the three resolutions
of height 1 by a, b and c and their corresponding vectorspaces by: Va, Vb and
Vc. The resolutions of height 2 are labelled d, e and f respectively. Their
corresponding vector spaces are labelled in a similar way. The resolutions of
height 2 all consist of two unknots so we have

Wd
∼= We

∼= Wf
∼= V ⊗ V {2}

As we can see in the picture there are six maps involved:

−∆ad : Va → Wd

−∆ae : Va → We

∆bd : Vb → Wd

−∆bf : Vb → Wf

∆ce : Vc → We

∆cf : Vc → Wf

These make up d1:

d1 = −∆ad ⊕−∆ae ⊕ 0 + ∆bd ⊕ 0⊕−∆bf + 0⊕∆ce ⊕∆cf

= (∆bd −∆ad)⊕ (∆ce −∆ae)⊕ (∆cf −∆bf )

In the following we will denote all these six maps simply by ∆ without causing
confusion.

Suppose d1(x, y, z) = (0, 0, 0), that is:

( ∆(y)−∆(x), ∆(z)−∆(x), ∆(z)−∆(y) ) = (0, 0, 0)

Form this we have: ∆(x) = ∆(y) = ∆(z) and because ∆ is injective we have
x = y = z. Notice that x, y and z actually live in different spaces, but there is a
canonical isomorphism between them so we can identify them with each other.
This means the kernel consists of all elements of the form (x, x, x) and we have
already seen that this is exactly the image of d0. Therefore we conclude:

H1 = {0}

8.4 Im(d1)

For the second chain space Va ⊕ Vb ⊕ Vc ∼= V {1} ⊕ V {1} ⊕ V {1} We have the
following basis:

{ (v+, 0, 0) , (v−, 0, 0) , (0, v+, 0) , (0, v−, 0) , (0, 0, v+) , (0, 0, v−) }
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Let’s see how d1 acts on it.

d1(v+, 0, 0) = ( ∆(0)−∆(v+) , ∆(0)−∆(v+) , ∆(0)−∆(0) )
= ( −∆(v+) , −∆(v+) , 0 )
= ( −v+ ⊗ v− − v− ⊗ v+ , −v+ ⊗ v− − v− ⊗ v+ , 0 )

We see that the span of this basis vector is mapped to a homogenous subspace
of degree 2. In the same way we calculate:

d1(v−, 0, 0) = ( −∆(v−) , −∆(v−) , 0 )
= ( −v− ⊗ v− , −v− ⊗ v− , 0 )

d1(0, v+, 0) = ( v+ ⊗ v− + v− ⊗ v+ , 0 , −v+ ⊗ v− − v− ⊗ v+ )
d1(0, v−, 0) = ( v− ⊗ v− , 0 , −v− ⊗ v− )
d1(0, 0, v+) = ( 0 , v+ ⊗ v− + v− ⊗ v+ , v+ ⊗ v− + v− ⊗ v+ )
d1(0, 0, v−) = ( 0 , v− ⊗ v− , v− ⊗ v− )

These six vectors in the image are not linearly independent, they span a 4-
dimensional space. One can verify that d1(v−, 0, 0), d1(0, v−, 0) and d1(0, 0, v−)
span a 2-dimensional space of degree 0 and that d1(v+, 0, 0), d1(0, v+, 0) and
d1(0, 0, v+) span a 2-dimensional space of degree 2. So we can write the image
of d1 as a direct sum of its homogenous subspaces:

Im(d1) = Im(d1)0 ⊕ Im(d1)2

The subscripts on the right-hand side denote the grading. We have:

dim(Im(d1)0) = 2 and dim(Im(d1)2) = 2

8.5 Im(d2)

We will not yet calculate ker(d2) right now, because it turns out to be easier if
we calculate Im(d2) first.

The third chain space W = Wd⊕We⊕Wf is 12-dimensional, where Wd, We

and Wf are three copies of V ⊗ V {2}. It has the following basis:

{v±d ⊗ v±d , v±e ⊗ v±e , v±f ⊗ v±f}

Here, for instance v+e ⊗ v−e, means (0 , v+ ⊗ v− , 0). The fourth chain
space corresponds to a resolution with three unknots, so it is a tensor product
of three copies of V . We label these three tensor factors by V1, V2 and V3. So
the fourth chain space is denoted by:

V1 ⊗ V2 ⊗ V3{3}

Furthermore we have maps:

∆d : Wd → V1 ⊗ V2 ⊗ V3{3}

∆e : We → V1 ⊗ V2 ⊗ V3{3}
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∆f : Wf → V1 ⊗ V2 ⊗ V3{3}

defined by:
∆d = ∆⊗ Id

∆e = τ23 ◦ (∆⊗ Id)

∆f = Id⊗∆

where τ23 denotes the ’flip operator on the second and third tensor factor’, that
is: τ23(x⊗ y ⊗ z) = x⊗ z ⊗ y.

We have:
d2 = ∆d + ∆e + ∆f

∆d : v+d ⊗ v±d 7→ v+ ⊗ v− ⊗ v± + v− ⊗ v+ ⊗ v±

∆d : v−d ⊗ v±d 7→ v− ⊗ v− ⊗ v±

∆e : v+e ⊗ v±e 7→ v+ ⊗ v± ⊗ v− + v− ⊗ v± ⊗ v+

∆e : v−e ⊗ v±e 7→ v− ⊗ v± ⊗ v−

∆f : v±f ⊗ v+f 7→ v± ⊗ v+ ⊗ v− + v± ⊗ v− ⊗ v+

∆f : v±f ⊗ v−f 7→ v± ⊗ v− ⊗ v−

We would now like to know the dimension of the image of d2 (the space spanned
by the above vectors). It is convenient to use a different notation now. We will
omit the tensor symbol ⊗, and the symbols v+ and v− will be replaced by p
and m respectively. So for example v+ ⊗ v− ⊗ v+ becomes pmp.

Once again because we are dealing with grading preserving maps we can
split-up the image in homogenous subspaces:

Im(d2) = Im(d2)0 ⊕ Im(d2)2 ⊕ Im(d2)4

If we search above for all vectors of degree 2 in the image of d2 we find:

Im(d2)2 = span{pmm+mpm , mmp , pmm+mmp , mpm , mpm+mmp , pmm}

But we can easily see that these six vectors are not linearly independent so the
subspace of degree 2 is actually a 3-dimensional space. We have:

Im(d2)0 = span{ mmm }
Im(d2)2 = span{ mmp , mpm , pmm }
Im(d2)4 = span{ pmp+mpp , ppm+mpp , ppm+ pmp }

(58)
Conclusion:

dim(Im(d2)0) = 1
dim(Im(d2)2) = 3
dim(Im(d2)4) = 3
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8.6 Ker(d2)

We would now like to calculate the kernel of d2, which is quite difficult. However
we can calculate its graded dimension right away. We know that for the third
chain space W we have subspaces of degree 4, 2 and 0, which have respective
dimensions 3, 6 and 3. Furthermore, using the fact that d2 is a graded map, we
know:

d2 : W4 → Im(d2)4

is a map from a 3-dimensional space (W4 denotes the degree 4 subspace of W)
onto a 3-dimensional space, so

dim(ker(d2)4) = 0

In the same way we have:

d2 : W2 → Im(d2)2

is a map from a 6-dimensional space onto a 3-dimensional space so

dim(ker(d2)2) = 3

And
d2 : W0 → Im(d2)0

is a map from a 3-dimensional space onto a 1-dimensional space so

dim(ker(d2)0) = 2

Conclusion:

dim(H2
0 ) = dim(ker(d2)0)− dim(Im(d1)0) = 2− 2 = 0 (59)

dim(H2
2 ) = dim(ker(d2)2)− dim(Im(d1)2) = 3− 2 = 1 (60)

dim(H2
4 ) = dim(ker(d2)4)− dim(Im(d1)4) = 0− 0 = 0 (61)

Therefore:
qdim(H2) = 0q0 + 1q2 + 0q4 = q2 (62)

We have now only calculated the graded dimension of H2. It would be nicer
if we knew the actual space itself, since this carries more information. We know
however that Im(d1) ⊂ ker(d2) so we see from (59), (60) and (61) that the
space for us to determine, which is in the kernel but not in the image, is only
1-dimensional. Moreover, we see that it must be a subspace of degree 2. After
some puzzling around one sees that

v+d ⊗ v−d + v−e ⊗ v+e + v+f ⊗ v−f
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(or in shorter notation: (pm,mp, pm)) is in the kernel of d2 and it is linearly
independent of Im(d1)2 so we can say:

ker(d2) = Im(d1)⊕ k · (pm,mp, pm)

where k is the ground field. So we have:

H2 ∼= k · (pm,mp, pm)

8.7 Ker(d3)

Since V1 ⊗ V2 ⊗ V3{3} is the last non-trivial chain space, the kernel of d3 is the
entire space itself. It is spanned by all vectors of the form v± ⊗ v± ⊗ v±. The
fourth homology group is:

H3 = ker(d3) / Im(d2)
= ker(d3) / Im(d2)0 ⊕ Im(d2)2 ⊕ Im(d2)4

Dividing out Im(d2)0 and Im(d2)2 is easy. We see from (58):

H3 = span{mpp, pmp, ppm, ppp} / Im(d2)4
= span{mpp, pmp, ppm, ppp} / span{pmp+mpp, ppm+mpp, ppm+ pmp}

It is clear that Im(d2)4 is equal to span{mpp, pmp, ppm}. Therefore we have:

H3 ∼= span{ppp}

Conclusion:
qdim(H3) = q6

because ppp is an element of degree 6. We have now calculated all homology
groups, but we still need an extra degree shift by an amount:

[−n−]{n+ − 2n−} = [0]{3}

This amounts to multiplying all graded dimensions of the groups by q3 We can
now put together the Khovanov polynomial:

q3 · ( qdim(H0)t0 + qdim(H1)t1 + qdim(H2)t2 + qdim(H3)t3 ) =

q1 + q3 + q5t2 + q9t3

80



9 Khovanov-Rozansky Theory

Now that we have categorified the Jones polynomial the question is if we can
also categorify other knot invariants. Especially the Homfly polynomial would
be interesting since this is the sl(n) generalization of the Jones polynomial. The
problem however is that the Homfly polynomial doesn’t have such a simple state
sum presentation like the Kauffman bracket. A state-sum presentation for the
Homfly polynomial does exist however and it is known how to categorify this.
We will not attempt to derive or prove this categorification, we will just simply
present it.

9.1 State Sum Presentation Of Homfly

For the Homfly polynomial we use the following skein relations:

Figure 7: Skein relations

This means that a resolution is now no longer a set of disjoint unknots, but a
graph with oriented edges and so-called ’wide’ edges. To these graphs we assign
polynomials that satisfy the following rules:

These rules determine polynomials pα for every resolution α. (Although at
this point it is not really clear that the above skein relations indeed lead to
unique polynomials) Then these polynomials pα can be used to construct the
Homfly-polynomial.

The following ’elementary’ graphs will be called Γ0 and Γ1 respectively:

Γ0 = Γ1 =

In the catergorified version of Homfly, we will assign a chain complex wit two
chain spaces to every resolution instead of just a vector space, and the specific
link will hence get assigned a cube of chain complexes.
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Figure 8: Skein relations

9.2 Matrix Factorizations

Let R be the commutative ring Q[x] for some set of variables x = {x1, x2, ...xk}
and w an element of R. We define R to be a graded ring by giving each variable
xi degree 2.

Definition 42 A matrix factorization Mw is a pair of R-modules (M0,M1)
together with maps d0 : M0 → M1 and d1 : M1 → M0 such that d0d1 =
d1d0 = w. That is: for any x ∈ M0 (or x ∈ M1) we have d1d0(x) = w · x (or
d0d1(x) = w · x)

The matrix factorization Mw will often be denoted as:

M0
d0→M1

d1→M0

Also, a matrix factorization Mw will sometimes be called a w-factorization.
Notice that a matrix factorizations with w = 0 is just a chain complex with two
chain spaces.

Definition 43 For matrix factorizations Mw1 and Nw2 we can define the tensor
product Mw1 ⊗Nw2 as :

M0 ⊗N0 ⊕M1 ⊗N1
D0→ M0 ⊗N1 ⊕M1 ⊗N0

D1→ M0 ⊗N0 ⊕M1 ⊗N1
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with chain maps:
d⊗ Id + (−1)iId⊗ d

where i = 0 for M0 and i = 1 for M1.

If w1 and w2 are both in R, then the tensor product is with respect to R.
This is called the internal tensor product. If w1 and w2 are not in the same
ring, for instance w1 ∈ Q[x] and w2 ∈ Q[y] then the tensor product is only with
respect to Q. This is then called the external tensor product.

Lemma 14 Mw1 ⊗Nw2 is a w1 + w2-factorization.

Proof: suppose we have e0 ∈M0 then we can define d(e0) = ame1 with e1 ∈M1

and d(e1) = bme0 for am, bm ∈ R and ambm = w1. In the same way we can
define: d(f0) = anf1 with f1 ∈ N1 and d(f1) = bnf0 Then from the above
definition of the tensor product we see:

e0 ⊗ f0 7→ ame1 ⊗ f0 + ane0 ⊗ f1

e0 ⊗ f1 7→ ame1 ⊗ f1 + bne0 ⊗ f0

e1 ⊗ f0 7→ bme0 ⊗ f0 − ane1 ⊗ f1

e1 ⊗ f1 7→ bme0 ⊗ f1 − bne1 ⊗ f0

Then we can write the tensor product in matrix form:

D0 =
(

an bm
am −bn

)
, D1 =

(
bn bm
am −an

)
it follows that:

D0D1 = D1D0 =
(
anbn + ambm 0

0 anbn + ambm

)
=

(
w1 + w2 0

0 w1 + w2

)
from which we see that Mw1 ⊗Nw2 is indeed a w1 + w2-factorization. �

Let m denote the maximal ideal of R, that is: the ideal generated by the
variables xi. In the following we will always assume that w ∈ m so that the
following definition makes sense:

Definition 44 the homology Hi(M) of a factorization is the homology of the
chain complex:

M0/mM0
d0→ M1/mM1

d1→ M0/mM0
d0→ M1/mM1

Because w ∈ m this is indeed a chain complex.
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9.3 Categorification of Homfly

We now want to assign matrix factorizations to graphs. Suppose we have an
arc with endpoints labelled by the two variables xi and xj respectively. Let
R be the polynomial ring Q[xi, xj ]. Then to this arc we assign the following
w-factorization Lij :

R
πij−→ R

xi−xj−→ R

where

πij =
xn+1
i − xn+1

j

xi − xj

so we see that
w = xn+1

i − xn+1
j

To a tangle of the form Γ0 with boundary points labelled by xi, xj , xk and xl
we then assign the external tensor product C(Γ0) := Lij ⊗Lkl . Notice that Lij is
a factorization over the ring Q[xi, xj ], while Lkl is a factorization over Q[xk, xl]
so the tensor product is with respect to the field Q.

To a graph of the form Γ1 we assign the tensor-product C(Γ1) = M⊗N{−1}
of the following two factorizations:

M = R
u1→ R{1− n} x1+x2−x3−x4−→ R

and
N = R

u2→ R{3− n} x1x2−x3x4−→ R

With:

u1 =
xn+1

1 + xn+1
2

x1 + x2 − x3 − x4

and

u2 =
−xn+1

3 − xn+1
4

x1x2 − x3x4

So this is a xn+1
1 + xn+1

2 − xn+1
3 − xn+1

4 -factorization.
Suppose we have two graphs T1 and T2 with common boundary points xi and

xj . Their corresponding factorizations are denoted C1 and C2. When we glue
them together at their common boundary points, we get the graph T1

⋃
xi,xj

T2,
which gets assigned the factorization C1⊗C2. The tensor product is with respect
to Q[xi, xj ].

We see that this way any graph that is built up from Γ0, Γ1 and loose arcs
gets assigned a w-factorization with

w =
∑
i

(−1)sixn+1
i

where the summation is over all boundary points xi and si is 0 or 1 depending
on the orientation of xi. Such a factorization will consist of tensor products of
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C(Γ0), C(Γ1) and Lij . Since a resolution is indeed built up from these elementary
graphs and does not have any boundary points it gets assigned a 0-factorization.
A 0-factorization is in fact a chain-complex, but to prevent confusion, we will
still refer to it as a 0-factorization. Such a 0-factorization has only two homology
groups H0 and H1 since it only has two chain spaces.

There are several ways to construct the same resolution from elementary
graphs, however the resulting factorizations will all be isomorphic up to homo-
topy. So every resolution gets assigned a unique homology.

Lemma 15 0-factorizations constructed in this way corresponding to the same
resolution are quasi-isomorphic.

We will not prove this.

Notice that this homology is doubly graded. It has its degree in (Z,Z2).
The first degree comes from the grading of R and the second degree is the
homological degree of the 0-factorization.

Lemma 16 If a resolution has k components and m := k + 1(mod 2) then
Hm = {0}. (m denotes the Z2 grading)

We will not prove this.

This means that, although the resolution gets assigned a doubly graded 0-
factorization, we can ignore the Z2 gradation.

Definition 45 A morphism f : M → N of matrix factorizations is a pair of
maps (f0, f1) f i : M i → N i such that they commute with the chain maps di.

The morphism χ0 : C(Γ0) → C(Γ1) is given by:

χ0 = (U0, U1)

U0 =
(
x4 − x2 0
a1 1

)
, U1 =

(
x4 −x2

−1 1

)
with:

a1 = −u2 +
u1 + x1u2 − π23

x1 − x4

The morphism χ1 : C(Γ1) → C(Γ0) is given by:

χ1 = (V0, V1)

V0 =
(

1 0
−a1 x4 − x2

)
, V1 =

(
1 x2

1 x4

)
To assign a chain complex to a link we once again form a cube and define maps on
the edges of this cube. However since the resolutions can be defined as tensor
products of the elementary graphs we now only have to look at morphisms
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between these elementary graphs and the cube can be formed by taking the
tensor product of these morphisms. That is: suppose we have a diagram D,
then to every positive crossing we will assign the complex:

0 → C(Γ0){1− n} χ0→ C(Γ1){−n} → 0

to every negative crossing we assign the complex:

0 → C(Γ1){n} χ1→ C(Γ0){n− 1} → 0

And then we take the tensor product over all these complexes. It follows from
the definition of the tensor product of factorizations that this results in a chain
complex equal to the one we would have obtained if we would have used the
cube construction.

These factorizations have finite rank as R-modules. However the graded
dimension of R as a vector space over Q is an infinite series:

qdim(R) =
∞∑
i=0

kq2i

To keep things finite we define the graded dimension of a factorization M as the
following 2-variable polynomial:

gdim(M) :=
∑

j∈Z,i∈{0,1}

dim(Hi,j(M))qjsi

Lemma 17 gdim(C(Γ)) satisfies the skein relations in figure 8.

We will not entirely prove this, but we will outline how this might be proven.
We could first try to prove this statement only for graphs that look exactly like
in the above picture. However, these pictures represent all resolutions they are
part of. That is, the relations should not only hold for exactly these graphs,
but for all resolutions that contain them. So the next step is to prove:

A ∼= B ⇒ A⊗X ∼= B ⊗X

for matrix factorizations A, B and X, where A ∼= B means that they have the
same graded dimension. If this statement holds then this implies that for any
two resolutions that are related as in the skein relations, the lemma holds.

Lemma 18 Suppose we have a resolution α with 0-factorizaton C(Γ), then
gdim(C(Γ)) = pα. (Where pα stands for the polynomial that is constructed
from the skein relations in section 9.1.)

Proof: this follows from the previous lemma if the skein relations indeed deter-
mine a unique polynomial pα. �
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Now we want that the graded Euler-characteristic of the entire chain-complex
is the homfly-polynomial, which is an alternating sum of the polynomials pα,
which is an alternating sum of the graded dimensions corresponding to the res-
olutions. If our vectorspaces were finite dimensional this would indeed be equal
to the euler characteristic. However, we are working with infinite dimensional
vector spaces. So the question is:

How do we know that the alternating sum of the graded dimensions of the
chain spaces in equal to the Euler-characteristic? Finally we need to show that
the resulting homology is invariant under Reidemeister moves.

At this point it might not be entirely clear why we are using matrix factor-
izations. However, we can see there is some advantage in it. For instance for
matrix factorizations we can make a distinction between internal tensor product
and external product. In Khovanov homology every resolution consists simply
of a finite amount of unknots. So every resolution is described by a positive
integer k. This makes it easy to assign a vector space. We simply used V ⊗k.
For Khovanov-Rozanski homology things are a lot more complicated since, as
we can see from figure 7, the resolutions are much more complex (although they
can be simplified using the relations of figure 8). Therefore we first assign ma-
trix factorizations to the elementary graphs Γ0 and Γ1. We can build up any
resolution from these graphs. To do this we sometimes need to glue boundary
points together and sometimes we just need disjoint union. This respectively
corresponds to internal and external tensor product of the corresponding matrix
factorizations.
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10 Appendix A: Homology and Euler Charac-
teristic

Chain complexes and homology arise in many branches of mathematics. In
this thesis for example we use them as a means of categorification. But they
originated from algebraic topology. Here we will give a quick overview to better
understand these concepts.

10.1 Euler’s Formula

A very easy explanation of what Euler Characteristic actually is, is given by
John Baez. He explains this as follows: Suppose we have two islands. If we
would build a bridge between them this bridge would make these two islands
effectively into one.

So a bridge mathematically behaves like a ’negative island’. But what if we
would build another bridge between these two islands?

If we still consider a bridge as a negative island this would mean that we had
zero islands now. This seems strange at first. However, suppose we would then
build a giant deck between the two bridges joining them together sort of like
bridge between the two bridges.

This should then behave like a negative bridge, which is the negative of the
negative of an island. This indeed works out, because building a bridge between
the two bridges can be imagined as if we were making our land into one big
island again. This is consistent with the rule that we count every island as
1, every bridge as -1 and every bridge between bridges as 1 again. Then two
islands with two bridges and a bridge between the bridges counts as 1. While
we could interpret this whole configuration just as well as one big island, which
would also count as 1.

We could also look at this as if the two bridges between the two islands
create a sort of lake in between them. A lake counts as a negative island. Two
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islands with two bridges can be seen as one island with a lake in the middle, so
this counts as 0. And building a bridge between the two bridges is like filling
up the lake with land, effectively removing the lake. This lead Euler to define
the Euler characteristic:

Definition 46 The Euler characteristic is defined as:

χ = V − E + F

Where V stands for the number of vertices (islands) of a space, E the number
of edges (bridges) and F the number of faces (bridges between bridges).

It can be used as a topological invariant for two-dimensional surfaces. Euler
states for instance that for any simple polyhedron this number is 2. If we attach
g handles to a sphere then the Euler characteristic is:

χ = 2− 2g

If we remove a point from a surface then the Euler characteristic decreases by
one, since this is the same as removing a face while the number of vertices and
edges remains the same. So for any 2-dimensional orientable manifold with k
punctures we have:

χ = 2− 2g − k

Notice that the Euler characteristic can be easily generalized to higher dimen-
sions.

10.2 Singular Homology

Definition 47 Let {e0, e1, e2, ...} be the standard basis of a real vector space.
Then the standard p-simplex is ∆p = {x =

∑p
i=0 λiei|

∑
λi = 1, 0 ≤ λi ≤ 1}

So ∆0 is a point, ∆1 is a line, ∆2 is a filled triangle and ∆3 is a filled tetrahedron.

Definition 48 The ith face map F pi is the linear map ∆p−1 → ∆p which maps
the first i basis vectors to themselves and maps the last p− i basis vectors en to
en+1. In other words: it maps the standard p− 1-simplex to one of the faces of
the standard p-simplex.

Definition 49 If X is a topological space then a map σp : ∆p → X is called a
singular p-simplex. The singular p-chain group ∆p(X) is the free abelian group
based on the singular p-simplices.

This means a p-chain is a formal sum of p-simplices. Notice that a singular
1-simplex is simply a path.

Definition 50 If σ is a singular p-simplex then the ith face of σ is σ(i) = σ◦F pi .
The boundary of σ is ∂pσ =

∑p
i=0(−1)iσ(i). If c =

∑
σ nσσ is a p-chain then

we define ∂pc =
∑
σ nσ∂pσ.
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This means ∂p is a homomorphism ∆p(X) → ∆p−1(X) such that ∂p∂p+1 = 0.
We put ∆p(X) = {0} for p < 0 and ∂p = 0 for p ≤ 0. The sequence of groups
∆i(X) and homomorphisms ∂i : ∆i(X) → ∆i−1(X) is called the singular chain
complex of X.

Chains in the kernel of ∂p are called cycles and chains in the image of ∂p+1

are called boundaries. So we have:

im ∂p+1 ⊂ ker ∂p ⊂ ∆p(X).

Here im ∂p+1 is a subgroup of ker ∂p which is in turn a subgroup of ∆p(X) so
that the following definition makes sense:

Definition 51 The pth singular homology group of a space X is:

Hp(x) = ker ∂p/im ∂p+1

Two chains c1 and c2 are said to be homologous if c1 − c2 = ∂d for some p+ 1
chain d in other words: c1 and c2 are in the same homology class. Homology
groups are invariant under homeomorphism so they form topological invariants.

If f and g are paths in X such that f(1) = g(0) then we denote by f ∗ g the
concatenation of the two paths.

Lemma 19 The 1-chain f ∗ g − f − g is a boundary.

Proof: this can be seen if we define a map from the standard 2-simplex to X
such that it is f , g and f ∗ g on its respective faces so that the boundary of the
standard simplex is is mapped to f ∗ g − f − g. This means that the 1-chain
f + g is homologous to the 1-simplex f ∗ g. �

10.2.1 Example 1

Say we have two arcwise connected spaces X and Y . The singular 0-chain group
consists of formal sums of points in X and Y . Any 0-chain is by definition a
cycle. A 0-chain x1 − x2 is a boundary if and only if x1 and x2 are in the same
arc-component because then there is a path from x1 to x2 and then x1 − x2

is the boundary of the 1-simplex corresponding to this path. So if we have a
0-chain σ =

∑
nixi with integers ni and points xi ∈ X then its homology class

is determined by the number: ε =
∑
ni. That is:

H0(X) ∼= Z

and similarly:

H0(X t Y ) ∼= Z2

This means that H0 ’measures’ the number of arc-components. The number of
arc-components is the rank of the group H0.

90



10.2.2 Example 2

Say we have the real two dimensional plane with the origin left out: R2\{0}.
c1 and c2 are two 1-chains, such that their images are (homologous to) paths
in the plane. If both paths are closed and wind around the origin exactly once
then c1 − c2 is a boundary. Notice that the fact that they are closed paths
means they are cycles, since ∂c1 is f(1)− f(0) = 0 because f(0) = f(1) where
f denotes the path corresponding to c1. Also, if c1 and c2 both do not enclose
the origin, they are homologous.

So ∆1(X) is the group of formal sums of paths in X, ker ∂1 is the group of
closed paths in X and im ∂2 is the group of closed paths that form boundaries
of 2-dimensional area’s. H1(X) is the group of homology-equivalence classes of
closed paths.

A contractible path is homologous to the constant path in any point. Also,
if c is any 1-chain and x is the constant path through the point x then we see
that x+ c is homologous to c because x is a boundary (notice that we can view
x as a 1-chain which is the boundary of the constant 2-simplex in the point x).
This means that any constant path, or any closed path that does not enclose the
origin is a representative for the identity-element of H1. H1 is then generated
by one element: namely the equivalence class of paths that wind around the
origin once, so H1

∼= Z.

10.2.3 Example 3

Say we have now the 2-dimensional plane with two punctures: R2\{x1, x2}. Now
H1 is generated by two equivalence classes: paths that enclose x1, and paths
that enclose x2. So we have: H1

∼= Z2. We could say that the first homology
group measures the number of punctures in the plane.

10.2.4 Example 4

Let’s extend this to R3. We embed R2\{0} into R3\{0}. We see that our
paths encircling the origin are now no longer nontrivial. However, if we do not
only take away the origin, but the entire z-axis (a ’one-dimensional puncture’)
everything is equivalent to our second example. So in a 3-dimensional space
we can say that H1 measures the number of ’1-dimensional’ punctures and in
general it measures in an n-dimensional space the number of n− 2-dimensional
punctures.

10.2.5 Example 5

Again let’s take a look at X = R3\{0}. A 2-cycle is a sphere embedded in
X. Such a sphere is a boundary if and only if it does not enclose the origin.
Hence H2 measures the number of points removed from R3. And in general H2

measures the number of n−3-dimensional punctures of Rn. Even more general:
Hi measures the number of n− i− 1-dimensional punctures.
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10.3 CW-Complexes

Definition 52 Let K(0) be a discrete set of points. We call these points the
0-cells. If K(n−1) has been defined then we define K(n) as follows: let {f∂σ}
be a collection of maps f∂σ : Sn−1 → K(n−1) where σ is an index ranging over
some set. Let Y be the disjoint union of copies Dn

σ of Dn and let B be the
corresponding union of the boundaries Sn−1

σ then these maps f∂σ form together
a map f : B → K(n−1). Then we define:

K(n) = K(n−1) ∪f Y

Which means the union of K(n−1) with Y but with x and f(x) identified for all
x ∈ B. The map f∂σ is called the attaching map for the cell σ.

If K(n) has been defined for all positive integers then we define K = ∪K(n).

We call K a CW-complex. K has the weak topology. This means that a set
is open if and only if its intersection with every K(n) is open in K(n). K(n) is
called the n-skeleton of K.

So a CW-complex is in fact something like a ’step by step recipe’ for building
a topological space form elementary bricks.

10.3.1 Example: figure Eight

The easiest way to define a CW-structure on the ’figure eight’ is to start with
a single point K(0) = {x} and then attach two 1-cells, which are two copies of
I = [0, 1]. We refer to them as I1 and I2. Then the two attaching maps f∂I1
and f∂I1 are maps from {0, 1} to {x} so there is only one way of attaching these
1-cells.

But we could also define a more complicated CW-structure on the figure
eight. For instance we could start with three points: K(0) = {x, y, z} and with
four 1-cells. This means we would have four copies of I = [0, 1] which we refer to
as I1, I2, I3 and I4. Then for instance f∂I1 maps 0 to x and 1 to y. f∂I2(0) = y,
f∂I2(1) = z, f∂I3(0) = z, f∂I3(1) = y, f∂I4(0) = y and f∂I3(1) = x.
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10.4 Homology of a CW-Complex

Notice that the image of a singular p-cycle in the n-skeleton of K is always
homologically trivial if p > n.

Lemma 20 any n-simplex in K is homologically equivalent to an n-simplex
whose image is in K(n).

Proof: see for instance [4] �.

This means that, in order to calculate Hn of K, we can restrict ourselves
to K(n). In fact one can prove that Hn is determined by the degrees of the
attaching maps.

Definition 53 Suppose f is a map from Sn to Sn and f∗ is the induced ho-
momorphism on the singular homology groups Hn(Sn) ∼= Z. Then the degree
deg(f) of f is defined by: f∗(a) = deg(f)a for all a ∈ Hn(Sn)

If we for instance consider S1 as the unit circle in the complex plane and f(z) =
zk then deg(f) = k.

Lemma 21 The singular homology groups H∗(K) of a CW-complex K are iso-
morphic to the homology of the chain complex C∗(K) where the chain groups
are the n-cells and the boundary operator ∂n : Cn → Cn−1 is given by:

∂nσ =
∑
τ

[τ : σ]τ

where τ runs over all n − 1 cells and [τ : σ] is the degree of the attaching map
f∂σ.

This means in particular that the Euler characteristic of the singular chain
complex of K is equal to the Euler characteristic of C∗(K). However we can
see that this can also be calculated as the alternating sum of the ranks of the
chain groups: χ =

∑
(−1)iCi but this simply the number of 0-cells minus the

number of 1-cells plus the number of 2-cells minus... etc. In other words, this
is the number of vertices minus the number of edges plus the number of faces
minus... etc. So this is in fact the same as the Euler characteristic we defined
in section 10.1!

Since singular homology is defined in terms of maps from ∆p to X a contin-
uous map f : X → Y induces a homomorphism ∆p(X) → ∆p(Y ).

X
f→ Y

σp ↑
∆p
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The simplex τp : f ◦ σp is a simplex in ∆p(Y ). So composition with f in-
deed induces a homomorphism from ∆p(X) to ∆p(Y ). Moreover, it induces a
homomorphism f∗ : Hp(X) → Hp(Y ). This makes H∗ into a functor.

The reason for us to talk about singular homology is that it makes very
well clear how abstract notions such as homology and Euler characteristic can
be used to ’throw away’ redundant information. They leave us with purely
topological information. Also it shows how homology is a huge refinement of
the Euler characteristic. This is essential in Khovanov’s theory.

10.5 Homology in general

In general we call any sequence of maps between abelian groups ∂i : Ci → Ci−1

such that ∂i−1 ◦ ∂i = 0 a chain complex. The homology groups Hi are defined
as ker ∂i/im ∂i+1 The Euler characteristic of the complex is then defined as the
alternating sum of the ranks of the homology groups:

χ :=
∑

(−1)irank(Hi)

The rank of Hi is called the ith betti number. Notice however that if the chain
spaces are finite dimensional vector spaces this sum is exactly the same as the
alternating sum of the dimensions of the chain spaces Ci themselves:

χ =
∑

(−1)i dim(Ci)

Definition 54 The number i is called the height of the chain space Ci.

If the groups Hi do not define a functor, but rather a contravariant functor,
we call them co-homology groups. An example is for instance deRahm coho-
mology. deRahm cohomology is a contravariant fuctor because it is defined in
terms of maps from X to a tensor-bundle (p-forms).

∧pY
↑ α

X
f→ Y

(To be precise: α is a section of a tensor-bundle) So composition with f makes
a p-form α on Y into a p-form β = α ◦ f on X. For us the distinction between
homology and cohomology is not really important so we’ll stick with the term
homology, although Khovanov himself uses the term cohomology.
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11 Appendix B: Hopf Algebras and Quantum
Groups

11.1 Hopf-Algebras

Definition 55 An algebra (A,m, η) is a vector space A over a field k together
with a linear map m : A ⊗ A → A called the multiplication and a linear map
η : k → A called the unit.

Definition 56 The algebra is called commutative when m(a ⊗ b) = m(b ⊗ a)
for every a, b ∈ A.

If A has an algebra structure then it naturally induces an algebra structure on
A⊗A. The multiplication m̃ : (A⊗A)⊗ (A⊗A) → A⊗A is given by:

m̃((a⊗ b)⊗ (c⊗ d)) = m(a⊗ c)⊗m(b⊗ d)

and the unit is given by:

η̃(1) = 1⊗ 1

Definition 57 A co-algebra (C,∆, ε) is a vector space C over a field k together
with a co-associative linear map ∆ : V → V ⊗V called the co-multiplication and
a linear map ε : V → k called the co-unit.

Definition 58 A co-algebra (C,∆, ε) is called co-commutative if τ ◦ ∆ = ∆,
where τ denotes the flip map: τ(a⊗ b) = (b⊗ a), for all a and b in C.

Definition 59 A bi-algebra (B,m, η,∆, ε) is a vector space B over a field k
together with a linear maps m, η,∆, ε such that (B,m, η) is an algebra, (B,∆, ε)
is a co-algebra and ∆ and ε are algebra morphisms.

Definition 60 A bi-algebra morphism is a linear map between bi-algebras that
preserves the bi-algebra structure.

Suppose A and B are two algebras and φ and ψ are two algebra morphisms
from A to B. then we define the convolution product φ ∗ ψ, with x ∈ A, as
follows:

Definition 61 φ ∗ ψ(x) = m((φ⊗ ψ)(∆(x)))

Definition 62 An antipode is a bi-algebra endomorphism S such that S ∗ Id =
Id ∗ S = η ◦ ε.

Definition 63 A Hopf-algebra is a bialgebra with an antipode.
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The Hopf-algebra structure is designed after the structure that arises in the
space of polynomials on a Lie-group. Suppose we have a matrix Lie-group G.
Then we can interpret the entries of the matrices that make up G as coordinates
on G. Take for instance the group GL2(k) consisting of all 2×2 matrices with k-
valued entries and non-zero determinant. We denote the entries of these matrices
by a, b, c, d: (

a b
c d

)
Then we define the coordinate ring O(GL2(k)) as the ring of all polynomials in
the variables a, b, c and d.

Lemma 22 The coordinate ring O(G) of a group G has a hopf-algebra struc-
ture.

The multiplication m of O(G) is simply defined by pointwise multiplication:
(f · g)(x) = f(x) · g(x). The unit is given by: η(1) = 1 with 1 ∈ k and 1 is the
function in O(G) defined by 1(x) = 1 for all x ∈ G.

Now we use the fact that there is a multiplication defined on G to define a
co-multiplication on O(G). The group multiplication is a map from G × G to
G. This means that if we have a function f on G then we can define a function
f̃ on G × G as follows: f̃(x, y) = f(xy). So the multiplication on G naturally
induces a map ∆ from O(G) to O(G×G) sending f to f̃ .

Lemma 23 O(G×G) is isomorphic to O(G)⊗O(G) (if G is an affine algebraic
Lie Group, but we will not go into this).

Proof: this follows from the fact that we can write an element of O(G×G) as a
polynomial in the coordinates of G×G which can then be written as a product
of two polynomials in two distinct sets of variables which are both coordinates
of G. �

This map ∆ is a co-multiplication. The co-unit ε is simply defined by eval-
uating the function f in the unit element of G:

ε(f) := f(e)

We still have to check if the co-multiplication and the co-unit are indeed algebra
morphisms.

Lemma 24 The maps ∆ and ε as defined here are algebra morphisms.

Proof:
ε(f · g) = (f · g)(e) = f(e) · g(e) = ε(f) · ε(g)

∆(f ·g)(x, y) = f ·g(x·y) = f(x·y)·g(x·y) = ∆(f)(x, y)·∆(g)(x, y) = ∆(f)·∆(g)(x, y) �
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The antipode S is defined by:

S(f)(x) := f(x−1)

We see that we can always obtain a Hopf-algebra from a Lie-group. Such a
Hopf-algebra is always commutative, but in general it is not co-commutative.
Let’s see what this all means for SL2(k) for instance. SL2(k) consists of all
matrices of the form (

a b
c d

)
With ad − bc = 1. This means that O(SL2(k)) is defined as the ring of all
polynomials in the variables a, b, c and d. Divided out by the ideal generated
by ad− bc− 1.

O(SL2(k)) := k[a, b, c, d]/(ad− bc− 1)

The algebra structure of this ring automatically corresponds to the algebra
structure defined above for general coordinate rings. For a polynomial f we
find the co-unit ε(f) by evaluating f at the identity element e of SL2(k). This
means evaluating f at a = d = 1 and b = c = 0.

For the co-multiplication we have:

∆(a) = a⊗ a+ b⊗ c

∆(b) = a⊗ b+ c⊗ d

∆(c) = c⊗ a+ d⊗ c

∆(d) = c⊗ b+ d⊗ d

Since ∆ is an algebra morphisms it suffices to know how it acts on these four
generators of the algebra. These relations follow directly from the above defined
co-multiplication for general groups.

11.2 From Hopf-algebras to Knots

Definition 64 The category of tangles is a category in which the objects are
finite ordered sets and the morphisms are tangles. For instance: a (4,2)-tangle
is a morphism from a set of 4 elements to a set of 2 elements.

Definition 65 The category of oriented tangles consists of objects that are finite
sequences of + and − signs. If a is sequence of k signs and b a sequence of l
signs then a morphism from a to b is an oriented tangle of type (k, l) for which
the bottom k points are marked according to the source object and the top l points
are marked according to the target object.

In order to describe knots we apply a functor from this category to the
category of representations of a certain Hopf-algebra. This category is a strict
tensor category since if V is a representation, then the co-multiplication induces
an action on V ⊗V or on any n-fold tensor product. Also, if V is a representation
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then the antipode induces an action on the dual space V ∗. The co-unit makes
the ground field k into a representation. The morphisms in this category are
linear maps that preserve the hopf-algebra representation structure.

For instance the object (+) is mapped under this functor to a representation
V and the object (−) is mapped to its dual representation V ∗. A sequence of m
signs is mapped to an m-fold tensorproduct of representations V and V ∗ such
that every + is mapped to V and every − is mapped to V ∗. For instance:

(+,+,−,−,+) ⇒ V ⊗ V ⊗ V ∗ ⊗ V ∗ ⊗ V

The empty sequence is then mapped to the ground field k.
An (m,n)-tangle is then mapped to a morphism from an m-fold tensor prod-

uct of representations to an n-fold tensor product of reps. Since a knot is a
(0, 0)-tangle it is mapped to a k-linear morphism from k to k, which is itself an
element of k.

We want these maps to satisfy the same relations as the tangles do, which
means specifically that they should satisfy the three Reidemeister moves. So we
need an R-matrix.

11.3 Quantisation

It turns out that, if we want such an R-matrix, the Hopf-Algebra should be both
non-commutative and non-cocommutative. We have allready seen an example of
a Hopf-algebra that is commutative but non-cocommutative. Namely, the space
of functions on a Lie-group. The solution to this is to redefine the multiplication
such that it is no longer commutative. This must be done in such a way that
it keeps its Hopf-algebra structure. This new object is then called a Quantum
Group.

Lemma 25 The dual space of a Hopf Algebra is also a Hopf Algebra

Suppose we have the Hopf algebra (A,m, η,∆, ε, S) then we have the dual Hopf
algebra (A∗,∆∗, ε∗,m∗, η∗, S∗).

Here the dual ∆∗ of the co-multiplication defines a multiplication:

(∆∗(f ⊗ g))(x)) = f ⊗ g(∆(x))

The dual ε∗ of the co-unit defines a unit:

(ε∗(1))(x) = ε(x)

m∗ defines a co-multiplication:

(m∗(f))(x⊗ y) = f(m(x⊗ y))

η∗ defines a co-unit:

η∗(f) = f(1)
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and the dual S∗ of the antipode defines another antipode:

(S∗(f))(x) = f(S(x))

Lemma 26 Let L be the Lie-Algebra of G. Then the universal enveloping al-
gebra U(L) can be considered as the dual Hopf-algebra of O(G).

Although the coordinate ring O(G) of G is a hopf algebra that is easier to define,
one usually prefers to work with its dual U(L). That is because we know from
semi-simple theory how to construct representations of U(L). When we have
quantised O(G) we define Uq(L) to be the dual of O(G)q.

11.4 Uq(sl(2))

The standard example of a quantum group is the quantisation of the Lie-algebra
sl(2) consisting of all 2× 2 matrices with zero trace. sl(2) is 3-dimensional and
its generators are usually denoted by H, E and F . They satisfy the following
relations:

[H,E] = 2E

[H,F ] = −2F

[E,F ] = H

However we are interested in its quantised enveloping algebra, which satisfies
’quantised’ versions of these relations:

Definition 66 The quantized universal evneloping algebra Uq(sl(2)) is defined
as the algebra generated by the four variables E,F ,K,K−1 with the relations:

KK−1 = K−1K = 1 (63)

KEK−1 = q2E, KFK−1 = q−2F (64)

and

[E,F ] =
K −K−1

q − q−1
(65)

With the following relations Uq(sl(2)) becomes a Hopf-algebra:

∆(E) = 1⊗ E + E ⊗K, ∆(F ) = K−1 ⊗ F + F ⊗ 1,

∆(K) = K ⊗K, ∆(K−1) = K−1 ⊗K−1,

ε(E) = ε(F ) = 0, ε(K) = ε(K−1) = 1,

and

S(E) = −EK−1, S(F ) = −KF, S(K) = K−1, S(K−1) = K.
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From equations (63), (64) and (65) we can determine its ’highest weight
representations’. We will do this explicitly for a complex 2-dimensional repre-
sentation. This representation is usually denoted by V1 (in general an n + 1-
dimensional representation of Uq(sl(2)) is denoted by Vn). It is spanned by two
vectors which we’ll call v0 and v1. We define v0 to be an eigenvector of K (since
C is algebraically closed K must have at least one eigenvector), so without any
loss of generality we can define:

Kv0 = λv0, Ev0 = 0, Fv0 = v1

From this and (64) we deduce:

Kv1 = KFv0 = q−2FKv0 = q−2λFv0 = q−2λv1

Also we have:

Ev1 = EFv0 = [E,F ]v0 + FEv0 = [E,F ]v0 =
K −K−1

q − q−1
v0 =

λ− λ−1

q − q−1
v0

We know that Fv1 should be zero, otherwise we’d have a third eigenvalue for
K which is impossible in a 2-dimensional space. So:

Fv1 = 0 (66)

= EFv1 = [E,F ]v1 + FEv1 =
K −K−1

q − q−1
v1 + F

λ− λ−1

q − q−1
v0 (67)

=
q−2λ− q2λ−1

q − q−1
v1 +

λ− λ−1

q − q−1
v1 (68)

⇒ q−2λ− q2λ−1 + λ− λ−1 = 0 (69)
⇒ λ = q (70)

All put together we see that V1 is determined by:

Kv0 = qv0, Ev0 = 0, Fv0 = v1

Kv1 = q−1v1, Ev1 = v0, Fv1 = 0

The fact that Uq(sl(2)) is a Hopf-algebra induces automatically a represen-
tation on the tensor product V1 ⊗ V1. The action of an element x of Uq(sl(2))
on an element v ⊗ w of the tensor product is defined through the co-product:

x · v ⊗ w = ∆(x) · v ⊗ w

So we have for instance:

K · v0 ⊗ v0 = K ⊗K · v0 ⊗ v0 = Kv0 ⊗Kv0 = q2v0 ⊗ v0

F · v0 ⊗ v0 = (K−1 ⊗ F + F ⊗ 1) · v0 ⊗ v0 = q−1v0 ⊗ v1 + v1 ⊗ v0

E · v0 ⊗ v0 = (1⊗ E + E ⊗K) · v0 ⊗ v0 = 0
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In the same way we calculate:

K · v0 ⊗ v1 = v0 ⊗ v1

F · v0 ⊗ v1 = v1 ⊗ v1

E · v0 ⊗ v1 = v0 ⊗ v0

K · v1 ⊗ v0 = v1 ⊗ v0

F · v1 ⊗ v0 = qv1 ⊗ v1

E · v1 ⊗ v0 = qv0 ⊗ v0

K · v1 ⊗ v1 = q−2v1 ⊗ v1

F · v1 ⊗ v1 = 0

E · v1 ⊗ v1 = v1 ⊗ v0 + q−1v0 ⊗ v1

If we define: w0 := v0⊗ v0, w1 := q−1v0⊗ v1 + v1⊗ v0, w2 := v1⊗ v1 and
t := v0 ⊗ v1 − q−1v1 ⊗ v0 then we can summarize this as:

Kw0 = q2w0, Fw0 = w1, Ew0 = 0

Kw1 = w1, Fw1 = (q + q−1)w2, Ew1 = (q + q−1)w0

Kw2 = q−2w2, Fw2 = 0, Ew2 = w1

and:
Kt = 1− q−1t, F t = 0, Et = 0

Now since we want to describe knots by morphisms between representations
of Hopf-algebras (in this case Uq(sl(2))) we need an isomorphism of V1⊗V1 that
is linear over Uq(sl(2)) and that satisfies the Yang-Baxter equation. Let φ be
such an isomorphism. We have:

φ(Kw0) = Kφ(w0)

but we also have:
φ(Kw0) = φ(q2w0) = q2φ(w0)

from which follows:
Kφ(w0) = q2φ(w0)

We see that φ(w0) is an eigenvalue of K with eigenvalue q2, which means it
must be a multiple of w0. Therefore we conclude:

φ(w0) = αw0
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for some complex number α. In the same way we can derive φ(w1) = α′w1 for
some complex number α′. Furthermore we have:

φ(w1) = φ(Fw0) = Fφ(w0)

so we have:
α′w1 = Fαw0 = αFw0 = αw1 ⇒ α′ = α

This means:
φ(wi) = αwi for i = 0, 1, 2

Also we can derive:
φ(t) = βt

for some complex number β.
We now want to write φ as a matrix with respect to the basis

{v0 ⊗ v0, v0 ⊗ v1, v1 ⊗ v0, v1 ⊗ v1}:

φ(v0 ⊗ v0) = φ(w0) = αv0 ⊗ v0

φ(v0 ⊗ v1) = φ(
w1 + qt

q + q−1
) =

φ(w1) + qφ(t)
q + q−1

=
αw1 + qβt

q + q−1

=
α(q−1v0 ⊗ v1 + v1 ⊗ v0) + β(qv0 ⊗ v1 − v1 ⊗ v0)

q + q−1

=
αq−1 + βq

q + q−1
v0 ⊗ v1 +

α− β

q + q−1
v1 ⊗ v0

φ(v1 ⊗ v0) =
α− β

q + q−1
v0 ⊗ v1 +

αq + βq−1

q + q−1
v1 ⊗ v0

φ(v1 ⊗ v1) = φ(w2) = αv1 ⊗ v1

We can now write φ in matrix form:

φ =


α 0 0 0
0 x y 0
0 y z 0
0 0 0 α


With x = αq−1+βq

q+q−1 , y = α−β
q+q−1 and z = αq+βq−1

q+q−1 . After tedious computations
(see [8]) one can show that this is an R-matrix if x = 0, or y = 0 or z = 0. Let’s
suppose that x = 0. Then we have y = αq−1 and z = (1 + q−2)α. From which
follows:

φ = αq−1


q 0 0 0
0 0 1 0
0 1 q − q−1 0
0 0 0 q
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Notice that if α = q−1 then we have:

q2φ− q−2φ−1 = (q − q−1)Id (71)

The fact that φ is an R-matrix means that it satisfies the Reidemeister moves
RII and RIII. However, we want a quantity that also satisfies RI. Therefore
we need a so called ’enhanced R-matrix’ which is a pair (φ, µ) with φ an R-
matrix and µ an automorphism of V1 satisfying certain equations. According to
Kassel [8] we have such an enhanced R-matrix if indeed α = q−1 holds.
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