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66. Swarm Intelligence in Optimization and Robotics

Christian Blum, Roderich Groß

Swarm intelligence is an arti	cial intelligence dis-
cipline, which was created on the basis of the laws
that govern the behavior of, for example, social
insects, 	sh schools, and �ocks of birds. The or-
ganization of these animal societies has always
mesmerized humans. Therefore, it is surprising
that it has only been in the second half of the last
century that some of the most important prin-
ciples of swarm intelligent behavior have been
unraveled. A prime example is stigmergy, which
refers to a self-organization of the animal society
via changes applied to the environment.

In this chapter, we provide a concise introduc-
tion to swarm intelligence, with two main research
lines in mind: optimization and robotics. Popular
examples of optimization algorithms based on
swarm intelligence principles are ant colony opti-
mization and particle swarm optimization. On the
other side, the 	eld of robotics has adopted var-
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ious swarm intelligent behaviors for problem solv-
ing and organizing groups of robots. This has
resulted in a separate research 	eld nowadays
known as swarm robotics.

66.1 Overview

Swarm intelligence (SI) [66.1–3] is a subfield of the

more general field of artificial intelligence [66.4]. The

term swarm intelligence was introduced and used for

the first time by Beni et al. [66.5–7] in the context

of cellular robotic systems. Nowadays, SI research is

generally concerned with the design of intelligent mul-

tiagent systems whose inspiration is taken from the

collective behavior of social – or even eusocial – in-

sects and other animal populations. Examples include

ant colonies, bee hives, wasp colonies, frog popula-

tions, flocks of birds, and fish schools. Among these,

social insects have always played a prominent role in

the inspiration of SI techniques. Even though their in-

trinsic ways of functioning have fascinated researchers

for many years, the mechanisms that govern their be-

havior remained unknown for a long time. In colonies of

social insects, for example, single colony members are

unsophisticated individuals, yet they are able to achieve

complex tasks in cooperation. Essential colony behav-

iors emerge from relatively simple interactions between

the colony’s individual members.

An important aspect of any SI system is self-orga-

nization [66.8]. Originally, the term self-organization

was introduced by the German philosopher Immanuel

Kant [66.9] in an attempt to characterize what makes or-

ganisms so different from other objects. Nowadays, the

term self-organization refers to a process where some

form of global order or coordination emerges from

rather simple interactions between low-level compo-

nents of an initially unordered system. Self-organizing

processes are neither directed nor controlled by any

agent or component, neither from inside nor from out-

side the system. They are often triggered by random

fluctuations that are amplified by positive feedback and
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Fig. 66.1 Ants cooperate for retrieving a heavy prey

(photo courtesy of M. J. Blesa)

possibly counterbalanced by negative feedback, which

generally aids in stabilizing the system. The global

properties exhibited by self-organizing systems are thus

the result of this distributed interplay of their com-

ponents. As such, self-organization is typically robust

and able to survive and self-repair damage or pertur-

bations. Historically, self-organization processes have

been studied in physical, chemical, biological, social,

and cognitive systems. Well known examples are crys-

tallization, molecular self-assembly, and the way in

which neural networks learn to recognize complex pat-

terns.

During the last 50 years or so, biologists discovered

that many aspects of the collective activities of social

insects are self-organized as well, that is, they func-

tion without a central control. For example, the African

weaver ant constructs nests by pulling leaves together.

Where the gap between leaves exceeds the body length

of an individual ant, multiple ants organize into pulling

chains. Once the leaves are in contact, they are glued

together using silk from larvae, which are carried to the

site by other workers of the colony [66.10]. Other exam-

ples concern the recruitment of fellow colony members

for prey retrieval (Fig. 66.1), the capabilities of termites

and wasps to build sophisticated nests, or the ability

of bees and ants to orient themselves in their environ-

ment. For more examples, we refer the interested reader

to [66.1, 2].

In the meantime, some of the above mentioned be-

haviors have been used as inspiration for the resolution

of technical problems, especially in the context of op-

timization and in robotics. This chapter is dedicated

to reviewing some of the – in the opinion of the au-

thors – most interesting algorithms/systems from these

two fields.

66.2 SI in Optimization

The use of SI techniques for solving optimization prob-

lems has already a rather extensive history. SI tech-

niques have been used for both solving combinatorial

and continuous optimization problems in static and in

distributed settings. Two of the most well-known SI

techniques for solving optimization problems are ant

colony optimization (ACO) and particle swarm opti-

mization (PSO). More recently, other techniques such

as the artificial bee colony algorithm have been de-

veloped. Apart from solving optimization problems, SI

techniques are being used for management tasks, for ex-

ample, in distributed settings or in online optimization.

The following sections will give a brief overview of this

application field of SI.

66.2.1 Ant Colony Optimization

ACO [66.11] is one of the earliest SI techniques for op-

timization. Dorigo and colleagues developed the first

ACO algorithms in the early 1990s [66.12–14]. The

development of these algorithms was inspired by the

observation of ant colonies. Ants are social insects.

They live in colonies and their behavior is governed

by the goal of colony survival rather than being fo-

cused on the survival of individuals. The behavior that

provided the inspiration for ACO is the ants’ foraging

behavior, and in particular, how ants of many species

can find shortest paths between food sources and their

nest. In order to search for food, ants initially explore

the area around their nest by means of random walks.

While moving, ants leave tiny drops of a pheromone

substance on the ground. Ants are also able to scent

these pheromones. When choosing their way, they are

attracted by paths marked by strong pheromone con-

centrations. When having identified a food source, ants

evaluate the quantity and the quality of the food and

carry some of it back to their nest. During the re-

turn trip, the quantity of pheromone that ants leave

on the ground may depend on the quantity and qual-

ity of the food. The pheromone trails will guide other
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ants to the food source. It has been shown in [66.15]

that the indirect communication between the ants via

pheromone trails – known as stigmergy [66.16] – en-

ables them to find the shortest paths between their

nest and food sources. Initially, ACO algorithms were

developed with the aim of solving discrete optimiza-

tion problems. It should be mentioned, however, that

nowadays the class of ACO algorithms also comprise

methods for the application to problems arising in net-

works, such as routing and load balancing [66.17], and

for the application to continuous optimization prob-

lems [66.18].

ACO algorithms may be regarded from different

perspectives. First of all, as mentioned above, they are

SI techniques. However, seen from an operations re-

search perspective, ACO algorithms belong to the class

of metaheuristics [66.19–21]. The term metaheuristic,

first introduced in [66.22], has been derived from the

composition of two Greek words. Heuristic derives

from the verb heuriskein .���������/ which means to

find, while the prefix meta means beyond, in an upper

level. Before this term was widely adopted, metaheuris-

tics were often called modern heuristics [66.23]. In

addition to ACO, other algorithms such as evolutionary

computation, iterated local search, simulated annealing,

and tabu search, are often regarded as metaheuristics.

For books and surveys on metaheuristics, we refer the

reader to [66.19–21, 23].

Algorithm 66.1 Ant colony optimization (ACO)
1: while termination conditions not met do

2: ScheduleActivities

3: AntBasedSolutionConstruction()
4: PheromoneUpdate()
5: DaemonActions()foptionalg
6: end ScheduleActivities

7: end while

From a technical perspective, ACO algorithms work

as follows. Given a combinatorial optimization problem

to be solved, first a finite set C of the so-called solution

components, used for assembling solutions to the prob-

lem, must be defined. Second, a set T of pheromone

values must be defined. This set of values is commonly

called the pheromone model, which is – from a mathe-

matical point of view – a parameterized probabilistic

model. The pheromone model is one of the central

components of any ACO algorithm. The pheromone

values �i 2 T are commonly associated with solution

components. The pheromone model is used to prob-

abilistically generate solutions to the problem under

consideration by assembling them from the set of solu-

tion components. In general, ACO algorithms attempt

to solve an optimization problem by iterating the fol-

lowing two steps:

� Candidate solutions are constructed using

a pheromone model, that is, a parameterized

probability distribution over the search space.

� The candidate solutions are used to update the

pheromone values in a way that is deemed to bias

future sampling toward high-quality solutions.

The pheromone update aims to concentrate the

search in regions of the search space containing high-

quality solutions. In particular, the reinforcement of so-

lution components depending on the solution quality

is an important ingredient of ACO algorithms. It im-

plicitly assumes that good solutions consist of good

solution components. To learn which components con-

tribute to good solutions can help assemble them into

better solutions. The main steps of any ACO algorithm

are shown in Algorithm 66.1. DaemonActions (see

line 5 of Algorithm 66.1) may include, for example, the

application of local search to solutions constructed in

function AntBasedSolutionConstruction().
The class of ACO algorithms comprises several

variants. Among the most popular ones are MAX–

MIN Ant System (MMAS) [66.24] and ant colony

system (ACS) [66.25]. For more comprehensive infor-

mation, we refer the interested reader to [66.26].

66.2.2 Particle Swarm Optimization

PSO [66.2, 27] is an SI technique for optimization that

is inspired by the collective behavior of flocks of birds

and/or fish schools. The first PSO algorithm was intro-

duced in 1995 by Kennedy and Eberhart [66.28] for the

purpose of optimizing the weights of a neural network,

that is, for continuous optimization. In the meantime,

PSO has also been adapted for its application to discrete

optimization problems [66.29].

In PSO, solutions to the problem under consider-

ation are labeled particles. The algorithm works on

a whole set of particles at the same time, the so-called

swarm. Therefore, PSO can be seen as a population-

based optimization technique. During the run time of

the algorithm, particles move through the search space

on the search for an optimal, or good enough, so-

lution. Moreover, particles communicate their current

positions to neighboring particles. The position of each

particle is updated according to three terms: its so-
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called velocity, the difference between its current po-

sition and the best position it has found so far, and that

from the best position found by its neighbors. This has

the effect that, during the execution of the algorithm,

the swarm increasingly focuses on areas of the search

space containing high-quality solutions. The term parti-

cle swarm was chosen by Kennedy and Eberhart for the

following reason. Their initial intention was to model

the movements of flocks of birds and fish schools. As

their model further evolved toward an algorithm for op-

timization, the visual plots produced from the results of

the algorithm rather resembled swarms of mosquitoes.

The term particle was used due to making use of the

term velocity, and particle seemed to be the most ap-

propriate term in this context.

PSO is closely related to artificial life models. Early

works by Reynolds on the flocking model known as

boids [66.30], and Heppner and Grenander’s studies

on rules governing large numbers of birds flocking

synchronously [66.31], suggested that bird flocking is

an emergent behavior resulting from local interactions

between the birds. These studies laid the foundation

for the development of PSO for solving optimization

problems. PSO is – in some way – similar to cellular

automata (CA), which are often used for generating as-

tonishing self-replicating patterns based on simple local

rules. CAs may be characterized by the following three

main attributes:

1. Cells are updated in parallel.

2. The value of each new cell depends only on the old

values of the cell and its neighbors.

3. There is no difference in rules for updating different

cells [66.32].

These three attributes also hold for the particles in

PSO.

Henceforth, vi denotes the velocity of the ith particle

in the swarm, xi denotes its position, pi denotes the per-

sonal best position, and pg is the best position found by

particles in its neighborhood. In the original PSO algo-

rithm, vi and xi, for iD 1; : : : ; n, are updated according

to the following two equations [66.28]:

vi viC c1R1˝ .pi� xi/C c2R2˝ .pg � xi/ ;
(66.1)

xi xiC vi ; (66.2)

where R1 and R2 are independent functions return-

ing a vector of values, generated uniformly at random,

from the range Œ0; 1�. Moreover, c1 and c2 are the so-

called acceleration coefficients. The symbol˝ refers to

point-wise vector multiplication. As shown in (66.1),

the velocity term vi of a particle is composed of three

components: the momentum, the cognitive and the so-

cial terms. The momentum term vi carries the particle

toward the previous direction; the cognitive term,

c1R1˝ .pi � xi/ ;

represents a force that pulls the particle toward its per-

sonal-best position; finally, the social part,

c2R2˝ .pg � xi/ ;

represents a force that influences the new direction

toward the best position of neighboring particles. Var-

ious different neighborhood topologies may be used

for this purpose. Examples include ring, star, and von

Neumann. The use of rather small neighborhood topolo-

gies – such as the one induced by the von Neumann

neighborhood – has generally been shown to lead to

better results when rather complex problems are ad-

dressed, whereas larger neighborhoods generally lead

to a better performance for simpler problems [66.33].

Algorithm 66.2 summarizes the basic PSO algorithm.

Algorithm 66.2 Particle swarm optimization (PSO)
1: Randomly generate an initial swarm

2: while termination conditions not met do

3: for each particle i do

4: if f .xi/ < f .pi/ then pi xi

5: pg = min.pneighbors/
6: Update velocity (66.1)

7: Update position (66.2)

8: end for

9: end while

The class of PSO algorithms is characterized by

a multitude of different variants, rendering it impos-

sible to mention all of them here. However, popular

variants include the Inertia Weight PSO [66.34], fully

informed PSO [66.33], and adaptive hierarchical parti-

cle swarm optimizer [66.35]. Moreover, Frankenstein’s

PSO [66.36] is a PSO variant that was created by

analyzing the components of existing PSO variants

and combining (some of) them in a beneficial way.

For more information, the interested reader may con-

sult [66.37].

66.2.3 Arti�cial Bee Colony Algorithm

The artificial bee colony (ABC) algorithm was first

proposed by Karaboga and Basturk in 2005 [66.38,
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39]. The inspiration for the ABC algorithm is to be

found in the foraging behavior of honey bees, which

essentially consists of three components: food source

positions, amount of nectar and three types of honey

bees, that is, employed bees, onlookers, and scouts. In

short, the algorithm works as follows. Feasible solu-

tions to the problem under consideration are modeled as

food source positions. Moreover, the quality of a feasi-

ble solution is modeled as the amount of nectar present

at the corresponding food source position. Each type

of bee is responsible for one particular operation in the

context of generating new candidate food source po-

sitions, that is, new candidate solutions. Specifically,

employed bees will search in the vicinity of the food

source position that is presently in their memory; mean-

while they pass information about good food source

positions to onlooker bees. Onlooker bees tend to se-

lect good food source positions from those found by

the employed bees, and then further search for bet-

ter food source positions around the selected food

source position. In case the employed bee and the

onlookers associated with a food source position are

not able to find a better food source position, their

current food source position is abandoned and the em-

ployed bee associated with this food source becomes

a scout bee that performs a search for discovering

new food source positions. If a scout identifies a new

food source position, it turns into an employed bee

again.

Essentially, the difference between the ABC algo-

rithm and other population-based optimization tech-

niques is to be found in the specific way of managing

the resources of the algorithm, as suggested by the

foraging behavior of honey bees. Due to its simplic-

ity and ease of implementation, the ABC algorithm

has captured much attention recently. It should also

be mentioned that, although the algorithm has initially

been introduced for continuous optimization, in the

meantime it has been adapted for its application to com-

binatorial optimization problems as well [66.40, 41].

For a recent survey, we refer to [66.42].

66.2.4 Other SI Techniques
for Optimization
and Management Tasks

In the following, we briefly mention other applica-

tions of SI techniques for optimization and management

tasks, the latter especially for what concerns distributed

environments. They are grouped with respect to their

natural inspiration.

Division of Labor (Ants/Wasps)
In colonies of ants and wasps, for example, there are

various tasks to be dealt with by the colony members.

However, the urgency to engage in certain tasks may

change over time. In 1984, Wilson [66.43] showed that

the concept of division of labor in colonies of Pheidole

genus ants allows the colony to adapt to these changing

demands. Division of labor was later modeled in [66.44,

45] by means of response threshold models.

These models were later used in several techni-

cal applications. In the following, we mention a few

of them. Nouyan et al. [66.46] consider static and dy-

namic task allocation problems in which trucks have

to be painted in painting booths. Another applica-

tion concerns media streaming in peer-to-peer net-

works [66.47]. A multiagent system for the schedul-

ing of dynamic job shops with flexible routing and

sequence-dependent setups is considered in [66.48].

Merkle et al. [66.49] made use of a response threshold

model for self-organized task allocation in the context

of computing systems with reconfigurable components.

Finally, [66.50] present a system for task allocation in

distributed environments.

Cemetery Formation (Ants)
The term cemetery formation refers to a behavior which

has been observed in ant colonies of the species Phei-

dole pallidula, among others, which cluster the bodies

of dead nest mates. This self-organized behavior has

given rise to several applications, especially in the con-

text of clustering and sorting. In 1991, a model for the

clustering and sorting behavior of ants was published

in [66.51]. Note that clustering refers in this context to

the formation of piles, and sorting, on the other hand,

refers to the spatial arrangement of objects according to

their properties.

Mainly based on the model from [66.51], several

algorithms for clustering and sorting were proposed in

the literature. The first one was presented in [66.52],

extending the original model to handle numerical data.

More recent papers include [66.53] which deals with

clustering and topographic mapping. Finally, the ceme-

tery formation behavior of ants has also inspired an

algorithm for dynamic load balancing [66.54].

Flashing in Fire�ies
Fireflies are winged beetles that make use of biolumi-

nescence to attract mates or prey. Moreover, tropical

fireflies, in particular the ones from Southeast Asia,

synchronize their light flashes in large groups of indi-

viduals. This is a self-organized phenomenon which is
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mathematically described by the so-called phase-cou-

pled oscillator models [66.55]. The benefits of this self-

synchronization are not yet fully understood. Current

hypotheses consider diet, social interaction, and alti-

tude.

The literature contains, at least, two types of tech-

nical applications that are inspired by different aspects

of the flashing of fireflies. First, there are applications

that require some type of self-synchronization. Exam-

ples include, but are not limited to, a synchronization

protocol in sensor networks [66.56], the synchroniza-

tion in overlay networks [66.57], and dynamic pricing

in online markets [66.58]. Second, the literature offers

the so-called firefly algorithm (FA) [66.59], which is in-

spired by the way in which fireflies attract mates or prey.

This algorithm was initially introduced for continuous

optimization. It has, however, been adapted for the ap-

plication to combinatorial optimization as well [66.60].

Fish Schooling
A group of fish that have gathered are commonly called

an aggregation of fish. Such a fish aggregation is called

unstructured in the case in which the group consists of

various species of fish having randomly gathered, for

example, in the vicinity of a food source. If there is

some social component to this gathering, the fish are

said to be shoaling. Shoaling fish are aware of each

other’s presence, adjusting, for example, their swim-

ming behavior to each other in order to stay together.

However, their relation is rather loose. If, in contrast,

an aggregation of fish is more tightly organized, for ex-

ample, when all fish move at the same speed in the same

direction, then the aggregation is said to be school-

ing. Schooling is a self-organized behavior that results

from local interactions between the fish. This behav-

ior comes with several advantages such as providing

a means for social interactions, more successful forag-

ing, and predator avoidance.

There are basically two different algorithms for op-

timization based on fish schooling to be found in the

literature. The first algorithm is referred to as the artifi-

cial fish swarm algorithm (AFSA). It has, for example,

been applied to the training of feed-forward neural

networks [66.61], multiuser detection [66.62], image

segmentation [66.63], and generally to continuous op-

timization [66.64]. The second algorithm is known as

fish school search [66.65].

Self-Desynchronized Croaking
(Japanese Tree Frogs)

Different biological studies – for example, [66.66] –

have dealt with the croaking of Japanese tree frogs. The

male individuals make use of their croaks in order to at-

tract females. Moreover, females of this family of frogs

can recognize the source of such a croak and are able

to determine the current location of the corresponding

male. However, this is only possible if no two frogs (that

are close enough to the female) croak at the same time.

In such a case, the female is not able to detect where the

croaks came from. This is why, over time, male frogs

evolved a self-organized way of desynchronizing their

croaks. Aihara et al. [66.67] introduced a first formal

model based on a set of pulse-coupled oscillators for

capturing this behavior. So far, this model has only been

applied to distributed graph coloring [66.68, 69]. How-

ever, the algorithm proposed in [66.69] is currently the

state of the art for this problem.

Nest Building (Termites/Wasps)
Both termites and wasps build highly complex nests

in cooperation. The construction of such nests is well

beyond the capabilities of an individual insect. The

nests of both termites and wasps have a very com-

plex internal structure. Moreover, termite nests are

extremely large in comparison to individual insects.

Scientists studying the nest-building behavior came

up with probabilistic models for describing (parts of)

the behavior [66.70]. It is nowadays generally ac-

cepted that stigmergy plays a central role in nest

building.

Models for nest building based on stigmergy have

been used mainly in software tools for simulating the

automated building of certain structures. Examples can

be found in [66.71–74].

66.3 SI in Robotics: Swarm Robotics

Swarm robotics refers to the study and use of SI tech-

niques for the coordination of groups of robots. The

following sections provide a brief overview of this field,

with a focus on swarm robotic systems and the tasks

they accomplish.

66.3.1 Systems

In the late 1940s, Walter [66.75] built two autonomous

robots called Machina speculatrix, or simply tortoise,

which exhibited behaviors resembling those of simple
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animals. The robots had a driving/steering mechanism,

a head light, a photoreceptor, and a bump sensor. They

were designed to search for and approach light sources

of moderate intensity. If a robot observed such a source,

its head light was turned off, otherwise it was turned on.

In an experiment, the robots were set up in a dark envi-

ronment, where they approached each other exhibiting

complex motion patterns. Such mutual recognition al-

lowed a population of machines to form a sort of

community, which broke up once an external light

source was introduced [66.75, p. 129]. This two-robot

system may be the first self-organizing multirobot sys-

tem. Interestingly, even a single robot was reported to

exhibit complex interactions when facing its mirror im-

age – such a behavior, if observed in an animal, might

be accepted as evidence of some degree of self-aware-

ness [66.75, pp. 128–129].

In the 1950s, inspired by von Neumann’s kinematic

model of machine replication [66.76], the first physi-

cal models of self-replication were built. Penrose and

Penrose [66.77] studied a system in which passive me-

chanical parts move on a linear track when the latter is

subjected to side-to-side agitation. In their default posi-

tion, the parts do not link under the influence of shaking

alone. If a seed object composed of two complementary

parts, one hooked up to the other, is added, it repli-

cates by interacting with the other parts on the track.

Jacobson [66.78] implemented a system in which self-

propelled electromechanical parts move on a circular

track with several branches. A seed object composed

of two parts could trigger other parts to assemble into

identical objects without human intervention.

In the late 1980s, studies of Fukuda and Nak-

agawa [66.79–81], Beni [66.5], and Wang and

Beni [66.82] provided an enormous impetus for the field

that developed into swarm robotics. Fukuda and Naka-

gawa proposed a novel type of robotic system called dy-

namically reconfigurable robotic system (DRRS), which

can dynamically reorganize its shape and structure

[: : : ] for a given task and strategic purpose. DRRS

is made of several cells with built-in intelligence and

the ability to autonomously connect to and detach from

one another [66.81, pp. 55–56]. The authors also pre-

sented a first prototype of this system, the CEBOT

Mark I [66.80]. At the same time, Beni introduced

the term cellular robotic system, referring to a sys-

tem that can encode information as patterns of its

own structural units [66.5, p. 59]; the units would be

structural elements, each with built-in intelligence, able

to move in space and act asynchronously under dis-

tributed control. Beni and Wang also used the terms

swarm and swarm intelligence in this context [66.83,

84].

Other early physical implementations of distributed

robotic systems include the CEBOT Mark II [66.85],

ACTRESS [66.86], and GOFER [66.87].

Hardware Architectures
Advances in technology, for example, in computers,

manufacturing and mobile devices have made it af-

fordable to study swarms of around 20�1000 physi-

cal robots [66.88] and up to around 1 000 000 robots

in simulation [66.93–95]. At present, most swarm

robotic systems consist of mobile robots that operate

on the ground. An example is the Kilobot platform

(Fig. 66.2a), which was designed to facilitate the fab-

rication and operation of thousands of robots – includ-

ing their charging, programming and activation all at

once [66.88]. Other state-of-the-art robotic systems in-

clude the r-one (Fig. 66.2b), which features, among

others, a set of IR transmitters and receivers for com-

munication and relative localization [66.89], and the

Khepera I-IV [66.96] and e-puck [66.97], which fea-

ture a range of sensors including a camera. Increasingly,

swarm robotic systems operate in spaces other than on

the ground, such as underwater [66.90, 98] (Fig. 66.2c)

or in the air [66.99, 100]. In some robotic systems,

the swarms operate and collaborate across multiple

spaces, such as on the ground and in the air [66.91, 101]

(Fig. 66.2d,e).

According to their system architecture, most swarm

robotic systems can be categorized into either multi-

robot systems or modular reconfigurable robot systems.

Multirobot systems are composed of multiple distinct

robots, which are typically mobile and able to perform

(collectively) more than one task in parallel (Fig. 66.2a–

c). Modular reconfigurable robot systems are composed

of component modules that can be physically linked

together to form a robot (Fig. 66.2f). A few hybrid sys-

tems exist, sharing properties of both multirobot and

modular reconfigurable robot systems [66.91, 102–104]

(Fig. 66.2d).

Of particular interest among systems of modular re-

configurable robots are those where the robots can build

themselves [66.105, 106]. The term self-reconfigurable

denotes the general ability of physical modules to re-

configure themselves, regardless of whether the process

is centrally controlled, for example, by an external com-

puter, or decentralized and autonomous. In the follow-

ing, we use the term self-assembly to refer to processes

by which pre-existing components (separate or distinct

parts of a disordered structure) autonomously organize
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a) b) c)

d) e) f)

Fig. 66.2a–f Examples of swarm robotic systems: (a) Kilobots developed by Harvard University [66.88]; (b) r-one

(after [66.89], photo courtesy of J. McLurkin, Rice University); (c) Lily developed in the CoCoRo project (after [66.90],

photo courtesy of T. Schmickl, University of Graz); (d,e) a heterogeneous system studied in the Swarmanoid project

(after [66.91], photo courtesy of M. Dorigo, Université Libre de Bruxelles); (f) Pebbles (after [66.92], photo courtesy of

D. Rus, MIT)

into patterns or structures without external interven-

tion. Self-assembly is responsible for the generation of

much of the order in nature [66.107] and has widely

been applied in the synthesis of products from molec-

ular components. Increasingly, the potential of self-

assembly processes involving larger components – up

to the centimeter-scale – is being recognized [66.108].

In robotic systems, two distinct classes of self-assem-

bling systems exist [66.109]: (i) systems in which the

components that self-assemble are externally propelled,

and (ii) systems in which the components that self-as-

semble are self-propelled.

Sensing and Communication
In most multirobot systems, robots interact with each

other by using their sensors or some form of com-

munication. Dudek et al. [66.110] presented a detailed

taxonomy considering communication range, topology,

and bandwidth. In the following, we adopt a simpler

categorization proposed by Cao et al. [66.111]:

� Interaction via environment refers to the transfer

of information that is mediated through the mem-

ory of the environment. In this case, robots leave

persistent signs that stimulate the activity of other

robots. This kind of indirect communication is also

referred to as stigmergy [66.16]. Stigmergic com-

munication is widely used in social insect societies,

for example, during the construction of mounds by

termites of Macrotermes bellicosus [66.8], and has

been implemented in several swarm robotic sys-

tems [66.112–116].

� Interaction via sensing refers to local interactions

that occur between agents as a result of agents

sensing one another, but without explicit communi-

cation [66.111, p. 12]. We include in this category

interactions where agents sense each other indi-

rectly, that is, where the current presence or motion

of another agent can be inferred from changes in the

environment. Note that the boundary to stigmergic

communication is blurred; for example, consider

the situation where multiple agents push an object

simultaneously [66.117–119].

In some social animals, the members of a group ob-

serve a common leader individual. Their actions can

be highly dependent on the observed behavior of

the leader, as, for instance, during an attack of the

group [66.120]. In other animals, no recognizable

leader individual exists; instead, individuals observe

nearby group members. The latter situation is typi-

cal for swarm systems. It is reported, for instance,

for animal groups that exhibit herding, flocking,

and schooling behavior [66.8]. Note that where the

groups are not homogeneous, even a minority of in-

dividuals may be able to influence the rest of the

group [66.121].

In principle, interaction via sensing can be consid-

ered an implicit form of communication, in par-
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ticular, as an observed agent can change action

and thereby influence the behavior of its observers.

Arkin [66.122] referred to the interaction via sens-

ing category as cooperation without communica-

tion, and showed that it is sufficient to accom-

plish tasks, that require the cooperation of multiple

robots. Other examples of swarm robotic studies us-

ing interaction via sensing include [66.123–126].

� Interaction via communication refers to interac-

tions involving explicit communication. Thereby,

information is either broadcast or transferred to

specific teammates. Information transfer can take

place through direct physical interactions, such as

touch. This latter form of communication can also

be referred to as direct interaction [66.127]. Ex-

plicit communication can improve the performance

of a multirobot system. This is typically the case

where the system benefits from robots being re-

cruited to certain areas of the environment. Balch

and Arkin [66.128] studied such an environment

and showed that it can be sufficient for each robot

to signal its overall state. The transfer of more

elaborate information however would not result in

any significant increase in task performance. Ex-

plicit communication is commonly used in modular

reconfigurable robot systems, for example, to ex-

change information between inter-connected mod-

ules or to support the docking process of separate

modules [66.129].

Control and Coordination
Over the last two decades, a range of design methods

have been proposed for the control of swarm robotic

systems. They can be broadly classified into behavior-

based design methods and automated design meth-

ods [66.130].

In behavior-based design methods, the user ap-

proaches the problem in a bottom-up manner [66.131].

A repertoire of behaviors for individual robots is de-

fined and often refined through a trial-and-error process.

A common approach is the use of finite state machines.

Each state defines a basic behavior. Transitions between

states can be triggered by probability, external events,

time-outs, and combinations of these [66.132–134].

A prominent example is the use of response threshold

functions, for example,

1� exp�si=�i or
s2

i

s2
i C �2

i

;

which define the probability for an individual to engage

in task i based on the perceived task stimulus si and

threshold �i. The particular threshold value �i can either

be fixed for each individual from the outset [66.135] or

learned during its lifetime [66.136, 137]. In both cases,

the mechanism can facilitate the emergent allocation of

tasks in groups of otherwise identical individuals (see

also Sect. 66.2.4). In addition, intentional approaches

to task allocation have been considered [66.138, 139].

These require the agents to cooperate explicitly with

each other. For example, the decentralized ALLIANCE

algorithm [66.140, 141] can be used for groups of het-

erogenous robots to perform tasks and subtasks, which

may have ordering dependencies, in a fault-tolerant

way. It assumes that the robots detect with some prob-

ability the effect of their own actions as well as the

actions of other team members.

Virtual potential fields [66.142, 143], and physi-

comimetics [66.144], is another widely used behavior-

based design method. The robots mimic a physical par-

ticle under the influence of a potential field. The latter

guides the particle toward a point of minimal poten-

tial energy. While the goal point, which the robot shall

reach, would exert an attractive force on the particle,

any obstacle would exert a repulsive force. Other robots

can exert forces on the particle as well. Using this con-

cept, a wide repertoire of behaviors can be realized,

such as the collective movement of robots arranged in

particular formations [66.145], or the tracking of mul-

tiple moving targets [66.146]. The properties of the

resulting swarm systems, for example, the cohesion of

the swarm, can also be formally analyzed [66.147].

Other design methods include the Growing

Point Language [66.148], the Origami Shape Lan-

guage [66.149], and Proto [66.150]. These languages

were developed in the context of Amorphous Comput-

ing [66.151], which considers systems of massively

distributed, disordered, asynchronous, and locally

interacting computational devices. The Proto language

has been extended for use on mobile devices. This

extension was validated with a swarm of 40 iRobot

robots [66.152]. Some amorphous computing ap-

proaches allow users to specify desired global system

properties in the language. A compiler then produces

the local rule set for the agents to achieve these

properties [66.149].

Automated design methods can be grouped into

reinforcement learning and evolutionary robotics. In re-

inforcement learning [66.153], an agent interacts with

its environment by choosing actions and receiving re-

wards. Matarić [66.154, 155] applied reinforcement

learning in a swarm robotic context. The robots had to

learn how to collaborate in a foraging task. The robots
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were provided with a set of hand-coded behaviors (as

in a behavior-based approach) and were required to

learn how to correlate appropriate conditions for each

of these behaviors in order to optimize the higher-level

behavior [66.155]. The difficulties of using reinforce-

ment learning in a swarm robotic context are discussed

in [66.130]. A recent survey of reinforcement learning

in robotics is reported in [66.156].

Evolutionary robotics is an approach to design-

ing robots, or aspects of them (e.g., morphology,

control) using evolutionary algorithms [66.157, 158].

This approach can also be applied to the design of

swarm robotic systems. In principle, evolution can

bypass both the problem of decomposing a given

task and the problem of identifying basic behaviors

that achieve the subtasks [66.159, 160]. Early studies

in evolutionary robotics developed collective behav-

ior such as herding or flocking in simplistic simula-

tion environments [66.161–163]. Simulation environ-

ments with physically embodied agents were consid-

ered in [66.159], where neural network controllers for

aggregation were first evolved using a group of five

robots in a simple simulation environment; the best

of these controllers were subsequently validated us-

ing a more detailed simulation model of the robots.

Quinn et al. [66.164] evolved neural network con-

trollers for collective motion using a group of three

simulated robots and subsequently tested the best-rated

network in 100 trials with a group of three physical

robots. Watson et al. [66.165] went a step further in that

controllers for a simple phototaxis task were directly

evolved on a group of eight physical robots. Working

toward a distributed evolution of robot morphologies in

hardware, Griffith et al. [66.166] demonstrated a sys-

tem of template-replicating polymers, which were made

of reconfigurable modules that slid passively on an

air table and executed a finite state machine to con-

trol their connectivity. Recent work on evolutionary

swarm robotics considers cultural evolution, for ex-

ample, where behaviors that can be imitated (memes)

are subject to an evolutionary process. In these, the

robots engage as both teachers and learners to exchange

memes [66.167].

Several design methods were developed specifically

for, or mainly adopted in, the context of modular re-

configurable robot systems. One class of algorithms

addresses the problem of how to adjust the relative po-

sitions of modules without changing their connection

topology. Yim [66.168] proposed the use of gait con-

trol tables to produce a range of animal-like locomotion

patterns, such as the walking gaits of hexapods. Each

gait control table specifies for each control cycle and

module a basic action to be performed. The controller

is executed either from a central place or in a distributed

fashion. In the latter case, the modules synchronize their

actions using internal timers. Shen et al. [66.169] pro-

posed hormone-inspired communication and control, in

which artificial hormones help modules to synchronize

actions and discover changes in their topology. For ex-

ample, a set of independent caterpillar-like robots could

be connected into a single entity, which would adapt

its gait to the new topology. In a similar experiment,

a connected entity was manually split into smaller enti-

ties that continued to move as independent caterpillars.

Støy [66.170] proposed a role-based control algorithm

to let modular robots display periodic locomotion pat-

terns. A module’s role specifies its actions and how

to synchronize them with neighbor modules. For com-

munication, a parent–child architecture is used; thus,

modules need to be arranged in acyclic graphs. An ex-

tended version of the control algorithm can also cope

with cycles.

Another class of algorithms addresses the problem

of how to adjust the relative positions of modules by

changing the connection topology [66.106]. One ap-

proach is to formulate the problem as a search problem.

For example, in order to reconfigure a lattice-based

robot from one topology to another, a graph search

is performed, where the start node of the graph cor-

responds to the initial topology of the robot and the

end node corresponds to the desired topology of the

robot [66.171]. Due to the combinatorial explosion of

possibilities, an exhaustive search of such graphs is im-

practical whenever the number of modules is not small.

State-of-the-art approaches are thus heuristic and con-

sider ways of reducing the problem complexity. For

example, Yoshida et al. [66.172] proposed a two-level

motion planner. A global planner ensures that the robot

as a whole follows a predefined 3D trajectory. To do

so, it specifies several candidate paths that bring indi-

vidual modules from the tail to the head of the robot.

A motion scheme selector chooses a feasible path for

each module based on a rule database. Another exam-

ple is to merge logically a group of nearby modules into

meta-modules, which, typically, have more advanced

locomotion abilities than the individual modules. The

problem is then reduced to developing controllers for

both meta-modules and modular robots composed of

meta-modules [66.173]. In principle, modular robots

can solve the search problem on the fly [66.174]. Other

than by search, the reconfiguration problem can also

be attempted by local movement strategies, for ex-
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ample, random walks [66.175, 176], cellular automata

rules [66.177], gradient rules [66.178, 179], or combi-

nations of these [66.180]. These approaches naturally

lead to decentralized implementations, as is desired in

swarm robotics.

66.3.2 Tasks

A range of capabilities have already been demonstrated

with swarm robotic systems. In the following, a brief

overview is given. More detailed information is pro-

vided in Chaps. 71–74 of Part F of this handbook.

Garnier et al. [66.189] demonstrated how a group of 20

Alice robots aggregate in a homogeneous environment.

The robots mimic the aggregation behavior of cock-

roaches, which are reported to join and leave clusters

with probabilities that depend on the sizes of clus-

ters [66.190]. Such probabilistic algorithms have the ad-

vantage that, as long as the environment is bounded, it

is not required that the robots initially form a connected

graph in terms of their sensing and/or communication.

A deterministic algorithm for aggregation is considered

in [66.181]. It requires robots to have one binary sen-

sor, which informs them whether or not there is another

robot in their line of sight. The robots do not need mem-

ory and do not need to perform arithmetic computation.

They rotate on the spot when they perceive another

robot, and move backward along a circular trajectory

otherwise. This algorithm was validated with groups of

40 e-puck robots (Fig. 66.3a).

Werfel et al. [66.116] developed a system of robots

that can simultaneously construct and navigate struc-

tures from a supply of building blocks (Fig. 66.3b). The

robots are inspired by termites, which use stigmergic

rules to construct sophisticated structures, in particular,

the mounds they inhabit. Given a desired target struc-

ture, it is possible to generate automatically a set of

rules to be uploaded onto each robot. Using only local

information, these rules allow the robots to coordinate

their activities in a way that avoids conflict. A group of

three robots constructed several structures, one resem-

bling a castle.

Halloy et al. [66.182] showed that hybrid societies

comprising both cockroaches and robots can collec-

tively decide to aggregate under either of two shel-

ters (Fig. 66.3c) and that it is possible for the robots

to influence the decision-making process. In general,

such interactive robots could be used to study and

control animal groups [66.182, 191], including live-

stock [66.192, 193], and to inform ecological conserva-

tion policy.

Following the pioneering simulation works on

boids [66.30], Turgut et al. [66.183] demonstrated how

a group of robots can flock through a real environment

using simple rules. To align with each other, the robots

used virtual heading sensors, each comprising a digital

compass and a wireless communication module. Flock-

ing was demonstrated with 9 Kobot robots in a bounded

environment (Fig. 66.3d).

Krieger et al. [66.184] studied algorithms that al-

low a group of robots to forage (Fig. 66.3e). The robots

rested in a central place, the nest. A robot would leave

the nest if the total energy of the colony dropped below

a threshold. Each robot had its own threshold, which ef-

fectively enabled the division of labor within the group.

In addition, a robot would leave the nest when being

recruited by another robot that had found a cluster of

food. The pair of robots would then perform a tandem

run to reach the cluster. The algorithms were tested on

groups of up to 12 Khepera robots. The groups were

reported to perform more efficiently when employing

the division of labor and recruitment mechanisms than

without such mechanisms.

Groß et al. demonstrated how a group of 16

s-bot robots self-assemble into a single composite en-

tity [66.185]. The process was seeded by one of the

robots activating its light emitting diode (LED) ring

in red. Other robots activated their LED rings in blue.

Once a robot would connect to the seed structure, it

became red too, thereby attracting other robots to the

structure as it grows (Fig. 66.3f). The problem of self-

assembling into arbitrary morphologies of s-bot robots

was considered in [66.194].

Holland and Melhuish [66.186] studied algorithms

that allow groups of robots to sort (and cluster) ob-

jects of different types (Fig. 66.3g). Six robots were

programmed using simple rules, which regulated the

conditions under which objects of different types were

picked up and deposited.

Following the pioneering work of Kube

et al. [66.195, 196], Chen et al. [66.187] proposed

an algorithm for a group of robots to transport ob-

jects larger than themselves toward a goal location

(Fig. 66.3h). The robots were programmed to only

push the object across the portion of its surface where

the direct line of sight to the goal is occluded by the

object. The algorithm was proven to work for objects

of arbitrary convex shape and it was tested with 20

e-puck robots.

Ijspeert et al. [66.188] studied an algorithm that al-

lows a group of robots to pull sticks out of the ground

collaboratively (Fig. 66.3i). Upon encountering a stick,
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a) b)

d) e)

g) h)

c)

f)

i)

Fig. 66.3a–i Examples of capabilities demonstrated by swarm robotic systems: (a) aggregation (after [66.181]); (b)
construction (after [66.116]; reprinted with permission from AAAS); (c) decision making (after [66.182]; photo courtesy

of J. Halloy, Université Libre de Bruxelles); (d) flocking (after [66.183]; photo courtesy of E. Şahin, Middle East Tech-

nical University); (e) foraging (after [66.184]; photo courtesy of L. Keller, University of Lausanne); (f) self-assembly

(after [66.185]); (g) sorting of objects (after [66.186]; photo courtesy of C. Melhuish, Bristol Robotics Laboratory); (h)
transport of objects (after [66.187]); (i) pulling sticks out of the ground (after [66.188]; reprinted with permission from

Springer)

a robot would only be able to pull it partially out of

the ground. It would then wait for a second robot to

arrive and pull the stick out completely. The optimal

waiting time for the first robot was derived from an an-

alytic model of the system. The algorithm was validated

using a system of six Khepera robots.

66.4 Research Challenges

Research challenges concerning the use of swarm intel-

ligence in optimization are mainly related to increasing

their efficiency. More specifically, in addition to pro-

viding an innovative way of problem solving, swarm

intelligence approaches must also be efficient concern-

ing, for example, computation time in order to be

able to compete with state-of-the-art optimization tech-

niques. This may often be achieved by hybridizing

swarm intelligence approaches with components taken

from optimization algorithms in other fields such as,

for example, operations research. The interested reader

may find various references to such kind of techniques

in [66.197].

With regard to swarm robotics, a major challenge

is the transition from systems operating in structured

indoor environments, as typically found in laborato-

ries, to the more complex environments found in the

real world. Over the next decades, swarms of robots

are expected to have impact in a range of application

scenarios, including cognitive factories, deep sea ex-
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ploration, disaster management, precision farming, and

space systems. Working toward more complex environ-

ments also concerns the ability of swarms of robots to

interact safely with humans. Another challenge con-

cerns the miniaturization of swarm robotic systems.

Most of the current systems comprise of centimeter-

sized robots. The swarm robotics approach, however,

should be equally applicable to intelligent autonomous

devices operating at scales from a millimeter down to

a micrometer. This could have profound implications,

for example, on advanced materials and healthcare

technologies.
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