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When AI technologies are applied to real-world problems, it is often difficult for devel-
opers to anticipate all possible eventualities. Especially in long-lived systems, changing 
circumstances may require changes not only to domain knowledge but also to the 
reasoning process that brings it to bear. This requires introspective reasoning, metarea-
soning by a system about its own internal reasoning processes. This chapter investi-
gates applying introspective reasoning to improve the performance of a case-based 
reasoning system, by guiding learning to improve how a case-based reasoning system 
applies its cases.

Case-based reasoning (CBR) is a problem-solving methodology that exploits prior 
experiences when solving new problems, retrieving relevantly similar cases and adapt-
ing them to fit new needs (for an overview and survey, see Mantaras et al., 2005). 
Many CBR systems store each newly solved problem and its solution as a new case for 
future use, enabling them to continuously improve their case knowledge. Neverthe-
less, the success of a CBR system depends not only on its cases, but also on its ability 
to use those cases appropriately in new situations, which depends on factors such as 
the system’s similarity measure and the case adaptation mechanism. Consequently, it 
is desirable to enable CBR systems to improve the knowledge and processes by which 
they bring their cases to bear.

Metareasoning techniques provide a promising basis for self-improving systems (see 
Anderson & Oates, 2007, or Cox, 2005, for recent reviews). As described by Cox and 
Raja (this vol., chap. 1), the metareasoning approach incorporates a metareasoning 
layer, with monitoring and control capabilities over the reasoning process, to adjust 
that reasoning process as needed. Introspective learning techniques have used self-
models as a way to determine when, what, and how to improve the reasoning of 
systems. Here we focus on how a self-model may be exploited; an open challenge is 
how to provide capabilities for extending and refining self-models that are themselves 
imperfect or incomplete (Leake & Wilson, 2008).

Previous research on introspective CBR has shown that metareasoning can enable 
a CBR system to learn by refining its own reasoning process. That work has tended to 
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apply the introspective approach only to a single aspect of the CBR system, for 
example, to adjust the indices used for retrieval. This chapter presents research on 
developing an introspective reasoning model enabling CBR systems to autonomously 
learn to improve multiple facets of their reasoning processes.

The remainder of this chapter describes an approach in which an introspective 
reasoner monitors the CBR process with the goal of adjusting the retrieval and reuse 
strategies of the system to improve solution quality. Novel aspects of this approach, 
compared to previous work on introspective reasoning for CBR, include that it applies 
a unified model for improving the two main stages of the CBR process, that a single 
failure may prompt multiple forms of learning, and that it performs internal tests to 
empirically assess the value of changes proposed by the introspective reasoner, to 
determine which ones should be retained.

The next section discusses previous work on introspective learning for case-based 
reasoning. The following section presents a detailed description of our approach and 
its implementation. The approach has been evaluated on problems from a fielded 
industrial application for design of pollution control equipment, for which we provide 
results in the next section. Before concluding the chapter, we put our model into 
context with respect to the metareasoning models discussed in chapter 1 of this 
volume. In the last section we present our conclusions and directions for future 
research.

Related Work

Birnbaum et al. (1991) first proposed the use of self-models within case-based reason-
ing. Work by Cox and Ram (1999) develops a set of general approaches to introspective 
reasoning and learning that automatically select the appropriate learning algorithms 
when reasoning failures arise. Their work defines a taxonomy of causes of reasoning 
failures and proposes a taxonomy of learning goals, used for analyzing the traces of 
reasoning failures and responding to them. Here case-based reasoning is a vehicle for 
supporting introspective reasoning: CBR is used to explain reasoning failures and 
generate learning goals.

A number of studies apply introspective approaches to improve the performance 
of CBR systems. Leake (1996) identifies the knowledge sources a CBR system uses in 
its reasoning process and the required self-knowledge about these sources, and pro-
vides examples of refinement of retrieval knowledge using model-based reasoning and 
of acquisition of adaptation knowledge by search plans. Fox and Leake (2001) devel-
oped a system inspired by the Birnbaum et al. proposal to refine index selection for 
case-based reasoners. Fox and Leake’s work develops a declarative model for describing 
the expectations for correct reasoning behavior, and applies that model to detect and 
diagnose reasoning failures. When the introspective reasoner is able to identify the 
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feature that caused the failure, the system’s memory is reindexed, resulting in signifi-
cant performance improvement. The DIAL system (Leake et al., 1995) improves case 
adaptation using introspection. This research focuses on improving the performance 
of the system by storing the traces of successful adaptation transformations and 
memory search paths for future reuse. Likewise, Craw (2006) proposes an introspective 
learning approach for acquiring adaptation knowledge, making it closely related to 
our work. However, a key difference is that their learning step uses the accumulated 
case base as training data for adaptation learning, in contrast to our approach of 
incrementally refining adaptation knowledge in response to failures for individual 
problems.

Arcos (2004) presents a CBR approach for improving solution quality in evolving 
environments. His work focuses on improving the quality of solutions for problems 
that arise only occasionally, by analyzing how the solutions of more typical problems 
change over time. Arcos’s algorithm improves the performance of the system by 
exploiting the neighborhoods in the solution space but, unlike the model presented 
in this chapter, learns only from success.

The REM reasoning shell (Murdock & Goel, 2008) presents a meta-case-based rea-
soning technique for self-adaptation. The goal of REM is the design of agents able to 
solve new tasks by adapting their own reasoning processes. Meta-case-based reasoning 
is used for generating new task-method decomposition plans. Because the goal in REM 
is the assembly of CBR reasoning components, the metamodel is focused on describing 
the components in terms of their requirements and their effects. In contrast, our 
model is focused on describing the expected correct properties of the components and 
their possible reasoning failures.

Introspective reasoning to repair problems may also be seen as related to the use 
of confidence measures for assessing the quality of the solutions proposed by a CBR 
system (Cheetham & Price, 2004; Delany et al., 2005). Confidence measures provide 
expectations about the appropriateness of proposed solutions. A high confidence solu-
tion that is determined to be erroneous reveals a failure of the reasoning process used 
to form the prediction, which points to the need to refine the self-model. The unex-
pected success in a low-confidence solution may do so as well. Nevertheless, because 
confidence measures provide no explanations for their assessments, they are not 
helpful for revealing the origin of the reasoning failure, making their failures hard to 
use to guide repairs.

Introspective Reasoning Approach

The goal of our introspective reasoning system is to detect reasoning failures and to 
refine the function of reasoning mechanisms, to improve system performance  
on future problems. To achieve this goal, the introspective reasoner monitors the 
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reasoning process, determines the possible causes of its failures, and performs actions 
that will affect future reasoning processes.

To give our system criteria for evaluating its case-based reasoning performance, we 
have created a model of the correctly-functioning CBR process itself, together with a 
taxonomy of reasoning failures. Failures of a CBR system’s reasoning process are 
modeled as conflicts between observed system performance and predictions from the 
model. These failures, in turn, are related to possible learning goals. Achieving these 
goals repairs the underlying cause of the failure.

As illustrated in the bottom portion of figure 11.1, the case-based reasoning process 
consists of four steps: (1) case retrieval/similarity assessment, which determines which 
cases address problems most similar to the current problem, to identify them as start-
ing points for solving the new problem; (2) case adaptation, which forms a new solution 
by adapting/combining solutions of the retrieved problems; (3) case revision, which 
evaluates and adjusts the adapted solution; and (4) case retention, in which the system 
learns from the situation by storing the result as a new case for future use.
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Figure 11.1
Introspective reasoner components. The horizontal line divides the CBR process (bottom) and 

the introspective reasoner (top).
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Reasoning failures may be revealed by either of two types of situation: (i) when the 
retrieval or adaptation step is unable to propose a solution, or (ii) when the solution 
proposed by the system differs from the desired final solution. Failures of the retrieval 
or adaptation steps are identified directly by contrasting their performance with model 
predictions. The second type of failure can be detected by monitoring the revision 
step. In CBR systems, the revision step often involves interaction with the user to 
determine the final solution. This interaction provides a feedback mechanism for 
assessing the real quality of the solution initially proposed.

For each of the four CBR steps, the model encodes expectations, and the expecta-
tions are associated with learning goals that are triggered if the expectations are vio-
lated. For example, the expected behavior of the similarity assessment step is to rank 
the retrieved cases correctly. If they are ranked incorrectly, the failure may be due to 
using an inappropriate weighting when similarity assessments along different dimen-
sions are aggregated. Consequently, a possible strategy for solving the failure is to 
refine the weight model, and a corresponding learning goal is to learn new 
weightings.

Our model is domain independent, that is, it is focused on the general case-based 
reasoning process for retrieval and adaptation, rather than on specific details of those 
processes for any particular domain. The model deals with three types of knowledge: 
indexing knowledge, ranking knowledge, and adaptation knowledge. To apply the 
model to any concrete application, domain-specific retrieval and adaptation mecha-
nisms must be linked to the model.

Indexing knowledge determines the subspace of the case base considered relevant 
to a given problem. Ranking knowledge identifies the features considered most rele-
vant to determining similarity, given a collection of retrieved cases. Adaptation knowl-
edge defines transformative and/or generative operations for fitting previous solutions 
to a current problem.

Our approach is shaped by two assumptions about the underlying CBR system. The 
first is that the system is initially provided with general retrieval and adaptation 
mechanisms, which apply uniform criteria to problems throughout the problem space. 
This is a common property of many case-based reasoning systems, but experience 
developing CBR systems has shown that this uniform processing may result in sub-
optimal processing, in turn resulting in the generation of low-quality solutions. Con-
sequently, one of the focuses of our approach is to address this problem: One of the 
learning goals of the introspective reasoner is to determine the real scope of cases, to 
weight the different ranking criteria, and to refine the adaptation model for different 
problem space regions.

The taxonomy defined for the learning goals borrows partially from the taxonomy 
of learning goals proposed by Cox and Ram (1999). Nevertheless, in our approach the 
learning goals are oriented specifically toward refining the CBR process. For example, 
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determining the scope of cases is modeled in terms of differentiation/reconciliation 
goals, whereas improving the ranking criteria is modeled in terms of refinement/
organization goals.

The second working assumption is that the CBR system is able to determine internal 
confidence estimates for its solutions to new problems. Because confidence assessment 
will be domain specific, it is not part of our general model. In the application we 
consider, the system always serves in an advisory role to an engineer, who assesses 
the system-generated solution before applying it. The engineer’s assessment provides 
a natural source of feedback for judging whether the system’s confidence value was 
appropriate.

Rather than reasoning about numeric confidence values, we deal with confidence 
using three qualitative values: low confidence, medium confidence, and high confidence. 
The mapping to the numeric intervals that represent the qualitative values must be 
defined in each application. For instance, in our chemical application, due to the 
importance of safety constraints in the chemical processes, high confidence is ascribed 
to values greater than 0.8 on a 0–1 scale, and the threshold for low confidence is 0.6.

The system’s introspective reasoning is organized into five tasks: (1) the monitoring 
task, in charge of maintaining a trace of the CBR process; (2) the quality assessment 
task, which analyzes the quality of the solutions proposed by the system; (3) the blame 
assessment task, responsible for identifying the reasoning failures; (4) the hypothesis 
generation task, in charge of proposing learning goals; and (5) the hypothesis evaluation 
task, which assesses the impact of proposed improvements on solution generation.

Figure 11.1 depicts the introspective reasoning components. The horizontal line 
divides the CBR process (bottom) from the Introspective Reasoner (top). Rounded 
boxes represent inference processes; dashed boxes represent knowledge generated by 
inference; dashed lines show knowledge dependencies; black-tipped arrows show 
inference flows; and hollow-tipped arrows denote control relationships.

Monitoring
The monitoring task tracks the case-based reasoning process. For each problem solved 
by the CBR system, the monitor generates a trace containing: (1) the cases retrieved, 
with a link to the indexing knowledge responsible for the retrieval; (2) the ranking 
criteria applied to the cases, together with the values that each criterion produced and 
the final ranking; and (3) the adaptation operators that were applied, with the sources 
to which they were applied (the cases used) and the target changes produced (the 
solution features).

Note that our model does not require that the adaptation step use only a single 
case, nor that all the retrieved cases be involved in all adaptations; any such con-
straints depend on specific applications, independent of the general model. Similarly, 
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our model distinguishes application of indexing criteria and ranking criteria as two 
subprocesses involved in the retrieval step, but it does not require that they be decou-
pled in the implementation being monitored. For instance, a K-nearest neighbor 
approach (Cover & Hart, 1967) uses the value of K to determine the number of cases 
considered and uses the distance measure as a ranking criterion. Other approaches 
might separate indexing and ranking by, for example, using crude criteria for indexing 
and finer-grained criteria for case ranking.

Quality Assessment
When the user’s final solution is provided to the system, quality assessment is triggered 
to determine the “real” quality of the system-generated solution, by analyzing the 
differences between the system’s proposed solution and the final solution. Quality 
assessment provides a result in qualitative terms: low quality, medium quality, or high 
quality.

Given the system’s initial confidence assessment and the final quality assessment, 
the introspective reasoner fires learning mechanisms when there is a mismatch 
between the two. There are two main types of possible mismatches. When the confi-
dence was high but the actual quality is low, the conflict points to a failure at the 
retrieval stage, because the confidence of a solution has a strong relationship with the 
coverage of the retrieved cases (Cheetham, 2000).

On the other hand, when the confidence was low but the quality is demonstrated 
to be high, the unexpected success may be due either to low coverage from cases (none 
of the system’s cases appeared highly relevant) or to bad ranking of the retrieved cases 
(the most relevant cases were not considered, due to a failure of the ranking polices 
to identify them). When the mismatch between the confidence and the quality assess-
ments is small (i.e., high versus medium, medium versus high, medium versus low, 
and low versus medium) it may suggest a failure in the adaptation stage.

Blame Assessment
Blame assessment starts by identifying the source of the failure. It takes as input the 
differences between the solution and expected result, and tries to relate the solution 
differences to the retrieval or the adaptation mechanisms. The system searches the 
taxonomy of reasoning failures and selects those that apply to the observed solution 
differences. For instance, when a final solution is radically different from the solution 
proposed by the system, the failure may be caused by the indexing knowledge, that 
is, either the relevant precedents have not been retrieved or too many cases have been 
retrieved.

Search for applicable failures in the failure taxonomy uses the trace generated by 
the monitoring module. It starts by analyzing the index failures. There are three types 
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of index failures: wrong index, broad index, and narrow index. When none of the 
retrieved cases has a solution close to the current solution, the wrong index failure is 
selected. A broad index failure is selected when many cases are retrieved and their 
solutions are diverse. On the other hand, when a small set of cases is retrieved, the 
narrow index failure is selected.

Ranking failures are identified by comparing the retrieval rankings with the solution 
differences they generate. Examples of ranking failures are inappropriate ranking scheme, 
overestimated weights, and underestimated weights.

Adaptation failures are identified by linking the solution differences to the adapta-
tion operators stored in the monitoring trace. When adaptation uses interpolation, 
adaptation failures originate in inappropriate interpolation policies.

Because the introspective reasoner will often not be able to determine a unique 
source for a failure, all the possible causally supported failures are chosen, resulting 
in multiple types of learning goals from a single failure.

Hypothesis Generation
The fourth reasoning stage, hypothesis generation, identifies the learning goals related 
to the reasoning failures selected in the blame assignment stage. Each failure may be 
associated with more than one learning goal. For instance, there are multiple ways of 
solving overestimated weights. For each learning goal, a set of plausible local retrieval/
adaptation changes in the active policies is generated, using a predefined taxonomy.

Table 11.1 shows some of the types of hypotheses generated to explain failures in 
the retrieval and adaptation stages. The changes must be local because their applicabil-
ity is constrained to the neighborhood of the current problem. For instance, when a 
refinement goal is selected for the adaptation knowledge, an adaptation adjustment 
is selected from a predefined collection of tuning actions depending on the nature of 
the original adaptation. Specifically, when adaptations are related to numerical fea-
tures the tuning actions determine different types of numerical interpolations. The 
two main types of changes in numeric features affect the shape and slope of the inter-
polation curve.

Table 11.1
Examples of types of hypotheses used by the introspective reasoner

Failure Learning Goal

Missing index Create index

Broad index Refine index

Underestimated weight Adjust weighting

Inappropriate interpolation Change shape
Increase slope
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Hypothesis Evaluation
The fifth reasoning stage, hypothesis evaluation, evaluates the impact of introducing 
retrieval/adaptation changes. Because the introspective reasoner does not have a com-
plete model of the inference process, it is not possible for it to definitively predict the 
effects of changes. Consequently, before altering the CBR system, some empirical 
evidence about the impact of the change must be obtained. In our current design this 
evidence is obtained by re-solving the problem, applying each proposed change and 
evaluating its impact. Retrieval/adaptation changes that improve the quality of the 
solution are incorporated into the CBR inference mechanisms. Note that when  
the introspective reasoner provides a problem to the CBR system for testing purposes, 
the case retention step is deactivated.

Experiments

We have tested the introspective reasoner as an extension to a fielded industrial design 
application. We have developed a case-based reasoning system for aiding engineers in 
the design of gas treatment plants for the control of atmospheric pollution due to 
corrosive residual gases that contain vapors, mists, and dusts of industrial origin 
(Arcos, 2001). A central difficulty for designing gas treatment plants is the lack of a 
complete model of the chemical reactions involved in the treatment processes. Con-
sequently, the expertise acquired by engineers from their practical experience is essen-
tial for solving new problems. Engineers have many preferences and deep chemical 
knowledge, but our interactions have shown that it is hard for them to determine in 
advance (i.e., without a new specific problem at hand) the scope and applicability of 
previous cases. They apply some general criteria concerning factors such as cost and 
safety conditions, but other criteria depend on specific working conditions of the 
treatment process.

On the other hand, because engineers make daily use of the application system to 
provide the final solutions to customers, the system has the opportunity to compare 
its proposed solutions with the solutions finally delivered. Thus, we have the oppor-
tunity to assess the impact of the introspective reasoner on the quality of the solutions 
proposed by the CBR system.

Applying the CBR Process
The inference process in this design application is decomposed into three main stages: 
(1) selecting the class of chemical process to be realized; (2) selecting the major equip-
ment to be used; and (3) determining the values for the parameters for each piece of 
equipment.

The quality of proposed solutions is computed automatically, by comparing the 
proposed solution to the solution applied by the experts at these three different stages. 
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Mismatches at earlier steps are more serious than at later ones. For example, except 
in the case of underspecified problems, a mismatch with the class of the chemical 
process would indicate a very low-quality solution.

The retrieval and adaptation steps were designed taking into account the three 
knowledge sources described in the previous section: indexing criteria, ranking criteria, 
and adaptation operators. Here the problem features are related to the detected pol-
lutants, the industrial origin of the pollutants, and working conditions for the pollu-
tion-control equipment (flow, concentrations, temperature). Indexing criteria 
determine the conditions for retrieving cases. The main indexing criteria are related 
to the initially defined chemical relations among pollutants. Ranking criteria deter-
mine a preference model defined as a partial order. Initially, the preferences are 
homogeneous for the whole problem space. Throughout the experiments, the intro-
spective reasoner automatically refines the initial model.

Reasoning failures originate from situations in which the criteria do not properly 
identify the main pollutants or critical working conditions. The consequences are 
manifested in solutions for which the proposed chemical process is not correct  
or there are inappropriate washing liquids, or by mismatches on equipment 
parameters.

Testing Scenario
The design application can solve a broad range of problems. However, to test the 
effects of introspective reasoning for learning to handle novel situations, it is desirable 
to focus the evaluation on sets of frequently occurring problems which share at least 
a pollutant (the minimal indexing criterion), in order to have reuse. On the other 
hand, it is necessary to have sufficient diversity: Good performance on quasi-identical 
problems can be obtained by case learning alone, so such problems do not generate 
opportunities for the introspective reasoner.

We decided to focus the evaluation of the system on problems with the presence 
of hydrogen sulfide, a toxic gas produced by industrial processes such as wastewater 
treatment. From the existing application, we had access to the 510 such solved prob-
lems, ordered chronologically. We divided the problems into two sets: 300 initial 
system cases and 210 testing problems.

To evaluate the contribution of the introspective reasoner we performed an ablation 
study, comparing the performance of the system when presenting the problems 
sequentially for five different reasoning strategies. In addition to testing inputs in 
chronological order, we repeated the experiments ten times with random orders for 
the testing problems, to assess the sensitivity of learning to problem ordering. The 
tested reasoning strategies are the following:

No-Retain, a strategy that solved the problems without introspective reasoning and 
without incorporating the solved cases into the case memory;
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Retain, which solved the problems without introspective reasoning but incorporated 
solved cases into the system (the only learning normally done by CBR systems);
Int-Retr, which combined Retain with introspective reasoning only for retrieval 
refinement;
Int-Adapt, which combined Retain with introspective reasoning only for adaptation 
refinement; and
Int-Compl, which combined Retain with introspective reasoning for both retrieval 
refinement and adaptation refinement.

Results
Table 11.2 shows the results of the evaluation for chronological problem presentation 
(results for random ordering were similar). Results support that the storage of solved 
problems—case learning alone—improves the performance of the system, but also 
show that this policy is not sufficient. Although the number of high-confidence solu-
tions increased significantly, the decrease of low-quality solutions is not statistically 
significant (see second column in table 11.2).

A second conclusion from the results is that the main contribution of using intro-
spection to refine retrieval knowledge is to reduce the number of low-quality solutions 
(a 36.67 percent reduction compared with case learning alone). In our design applica-
tion this improvement is achieved by providing more accurate ranking policies for 
determining the chemical process to be realized.

The main contribution of using introspection for refining adaptation knowledge 
(see fourth column in table 11.2) is an increase in the number of high-quality solu-
tions (a 12.5 percent increment from Retain). In our task, learning more appropriate 
adaptation policies enables better determination of the different equipment 
parameters.

Interestingly, when introspection adjusts both retrieval and adaptation (last column 
in table 11.2), the improvement in the retrieval step has an indirect effect on the 
adaptation step, increasing the number of high-quality solutions. An intuitive expla-
nation is that better retrieval also facilitates the adaptation process. Thus, using both 
introspection strategies, the increase in the number of high-quality solutions, with 
respect to case learning alone, reaches 15.63 percent.

Table 11.2
Average solution quality for all the strategies

No-Retain Retain Intr-Retr Int-Adap Int-Compl

High-Quality 23.81% 30.92% 30.95% 34.29% 35.75%

Medium-Quality 59.52% 54.59% 60.00% 52.86% 56.04%

Low-Quality 16.67% 14.49% 9.05% 12.85% 8.21%
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Comparing the number of problems that changed their quality of solution, 12 
percent of the total solved problems qualitatively increased their solution quality 
when introspection was used. Solution qualities varied, but the use of introspection 
did not decrease the solution quality for any problem. Moreover, the reduction in 
low-quality solutions is statistically significant (ρ < 0.05), even though the increase in 
high-quality solutions is not statistically significant. Consequently, we conclude that 
the number of problems whose solution quality was improved by the use of introspec-
tion is statistically significant.

Table 11.3 summarizes the introspective reasoner’s processing. Results summarize 
the experiments using both introspection strategies, reflecting learning goals triggered 
from the detection of 135 non-high-confidence solutions. Most activity was focused 
on ranking and adaptation failures, because these are the most difficult tasks. Note 
that not all the generated hypotheses were considered useful by the system (see third 
and fourth columns): revisions to the reasoning process were performed for 17 percent 
of the instances for which learning goals were triggered. This result illustrates that the 
introspective reasoner is dealing with partial understanding of the CBR process and 
that the introspective learner’s hypotheses should be tested before being applied.

It is clear that the incorporation of the introspective reasoner entails some compu-
tational overhead. However, it does not interfere with normal system performance: 
The introspective reasoner is triggered only after a problem is solved and is a back-
ground process without user intervention. Most of the cost of introspective reasoning 
arises from hypothesis generation. Table 11.3 shows that the ratio between failures 
and hypotheses generated is 0.6, because only failures highly explained by the model 
become hypotheses. Consequently, the number of hypotheses to verify is limited.

A risk of triggering metareasoning in response to individual reasoning failures is 
the possibility of treating exceptions as regular problems. In the current experiments, 
such situations did not arise, but in general we assume that the user is responsible for 
recognizing the exceptions. In addition, only taking action in response to clearly 
identified failures helps the system to avoid reasoning about exceptions.

Table 11.3
Summary of the number of times learning goals are triggered. Occ stands for failure occurrences, 

Prop stands for hypotheses generated, and Inc stands for changes incorporated into the CBR 

process

Failures Occ. Prop. Inc.

Indexing Knowledge 12 5 3

Ranking Knowledge 83 41 8

Adaptation Knowledge 74 56 12
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Research on humans has shown that introspection may sometimes have negative 
consequences. Experiments reported by Wilson and Schooler (1991) showed that, 
when people are asked to think about the reasons for a given decision, their attempt 
to form plausible explanations for the specific context of the current decision may 
result in nonoptimal explanations, negatively affecting future decisions. However, 
such risks do not apply directly to our approach. First, only the changes incorporated 
into the CBR process affect future decisions, that is, not the exploration of plausible 
hypotheses. Second, the goal of the hypothesis evaluation process is to verify the effect 
of candidate changes on the system. Third, the changes incorporated only have local 
effects.

Relationship to the Metareasoning Manifesto

Compared to the metareasoning models described in chapter 1 of this volume, our 
approach is closely related to the use of metalevel control to improve the quality of 
decisions. Taking the “Duality in reasoning and acting” diagram (fig. 1.2) of chapter 
1 as a starting point, our approach incorporates some revisions, as illustrated in figure 
11.2 and described in the following points.

First at all, at the ground level, our approach adds the user of the system. The role 
of the user is twofold: the user (1) presents new problems to the system and (2) pro-
vides feedback by revising the solution proposed by the object level. This second role 
is crucial since it allows the metalevel to estimate the performance of the object level.

In our system, the metalevel continuously monitors the object level (the case-based 
reasoning process) and assesses the quality of the solutions proposed by the reasoner 
(using the quality assessment module). The feedback of the user’s final solution is 
exploited to assess the mismatch between system’s expectations for its solution (the 
solution proposed at the object level) and the correct solution (the solution obtained 
from the ground level).

Figure 11.2
Relating our model with existing metareasoning models.
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We note the importance of the hypothesis evaluation step. Because the introspec-
tive reasoner cannot completely predict the effects of changing the reasoning level, 
the hypothesis evaluation phase acts as an online trainer. Thus, the metalevel, analo-
gously to the ground level, has the ability to require that the object level solve new 
problems (top-most query arrow in figure 11.2). Moreover, when the metalevel is 
testing the performance of the object level, it can temporally deactivate the retention 
step (in our experiments this is achieved by activating the No-Retain policy).

The control of the object level is achieved by acting over three types of knowledge 
components used in the reasoning process at the object level: indexing knowledge, 
ranking knowledge, and adaptation knowledge.

Conclusions

This chapter presented a new introspective model for autonomously improving the 
performance of a CBR system by reasoning about system problem-solving failures. To 
achieve this goal, the introspective reasoner monitors the reasoning process, deter-
mines the causes of the failures, and performs actions that will affect future reasoning 
processes.

The introspective level reasons about the reasoning at the object level and about 
alternative choices to improve the object-level reasoning. Specifically, it relies on a 
causal model of the correctly functioning retrieval and adaptation stages of CBR. 
Failures of a CBR system’s reasoning process are modeled as conflicts between observed 
system performance and predictions from the causal model. The sources of these 
conflicts are identified and associated learning goals are introduced, sometimes trig-
gering multiple types of learning. As a result the case-based reasoning process is 
improved for future problem solving.

We have tested the introspective reasoner in a fielded industrial design application. 
Experiments show that the use of the introspective reasoner improved the perfor-
mance of the system. Introspection-based refinements of retrieval knowledge reduced 
the number of low-quality solutions; refinements to adaptation knowledge increased 
high-quality solutions. Moreover, the combination of both is able to generate more 
high-quality solutions.

Because we tested the introspective prototype in a fielded application previously 
developed by one of the authors, we had the opportunity to deeply analyze and 
compare the performance of both systems. The fielded application was developed by 
introducing many ad hoc mechanisms (concerning similarity and adaptation), whereas 
the introspective prototype was initially provided with only some broad mechanisms. 
Over the course of the experiments, the introspective prototype was able to refine its 
initial reasoning and reach a performance comparable to that of the fielded applica-
tion. Thus, one lesson of this research is that a domain-independent introspective 
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reasoner is a powerful tool that facilitates the design of a CBR system by providing a 
mechanism that can autonomously improve the system’s reasoning when required.

Because our model of the CBR reasoning process is domain independent, it can be 
applied in other domains. The engineering effort for incorporating the metareasoning 
component to other domains would be concentrated on linking domain-specific 
aspects of the CBR reasoning process to the appropriate parts in the model (retrieval, 
adaptation, and revision models). The application of the metareasoning component 
to other design domains would provide an opportunity to validate the completeness 
of the taxonomies of reasoning failures and learning goals. Our current work aims at 
exploring the generality of our approach.

Acknowledgments

This research has been partially supported by the Spanish Ministry of Education and 
Science project MID-CBR (TIN2006-15140-C03-01), EU-FEDER funds, and by the Gen-
eralitat de Catalunya under the grant 2005-SGR-00093. This work has been conducted 
in the framework of the Doctoral Program in Computer Science of the Universitat 
Autònoma de Barcelona. This material is also based upon work supported by the 
National Science Foundation under grant No. OCI-0721674.

References

Anderson, M. L., & Oates, T. (2007). A review of recent research in metareasoning and metalearn-

ing. AI Magazine, 28(1), 7–16.

Arcos, J. L. (2001). T-air: A case-based reasoning system for designing chemical absorption plants. 

In D.W. Aha & I. Watson (Eds.), Case-based reasoning research and development. No. 2080 in Lecture 

Notes in Artificial Intelligence (pp. 576–588). Berlin: Springer-Verlag.

Arcos, J. L. (2004). Improving the quality of solutions in domain evolving environments. In P. 

Funk & P. A. Conzález-Calero (Eds.), Proceedings of the 7th European Conference on Case-Based 

Reasoning. No. 3155 in Lecture Notes in Artificial Intelligence (pp. 464–475). Berlin: 

Springer-Verlag.

Birnbaum, L., Collins, G., Brand, M., Freed, M., Krulwich, B., & Pryor, L. (1991). A model-based 

approach to the construction of adaptive case-based planning systems. In R. Bareiss (Ed.), Proceed-

ings of the DARPA Case-Based Reasoning Workshop (pp. 215–224). San Mateo, CA: Morgan 

Kaufmann.

Cheetham, W., & Price, J. (2004). Measures of solution accuracy in case-based reasoning systems. 

In P. Funk & P. A. Conzález-Calero (Eds.), Proceedings of the 7th European Conference on Case-Based 

Reasoning. No. 3155 in Lecture Notes in Artificial Intelligence (pp. 106–118). Berlin: 

Springer-Verlag.



182  J. L. Arcos, O. Mülâyim, and D. B. Leake

Cheetham, W. (2000). Case-based reasoning with confidence. In E. Blanzieri & L. Portinale (Eds.), 

Proceedings of the 5th European Workshop on Case-Based Reasoning. No. 1898 in Lecture Notes in 

Artificial Intelligence, (pp.15–25). Berlin: Springer-Verlag.

Cover, T. M., & Hart, P. E. (1967). Nearest neighbor pattern classification. IEEE Transactions on 

Information Theory, 13, 21–27.

Cox, M. T., & Ram, A. (1999). Introspective multistrategy learning: On the construction of learn-

ing strategies. Artificial Intelligence, 112, 1–55.

Cox, M. T. (2005). Metacognition in computation: A selected research review. Artificial Intelligence, 

169(2), 104–141.

Craw, S., Wiratunga, N., & Rowe, R. C. (2006). Learning adaptation knowledge to improve case-

based reasoning. Artificial Intelligence, 170, 1175–1192.

Delany, S. J., Cunningham, P., Doyle, D., & Zamolotskikh, A. (2005). Generating estimates of 

classification confidence for a case-based spam filter. In H. Muñoz-Avila & F. Ricci (Eds.), Proceed-

ings of the 6th International Conference, on Case-Based Reasoning. No. 3620 in Lecture Notes in 

Artificial Intelligence (pp. 177–190). Berlin: Springer-Verlag.

Fox, S., & Leake, D. B. (2001). Introspective reasoning for index refinement in case-based reason-

ing. Journal of Experimental & Theoretical Artificial Intelligence, 13, 63–88.

Leake, D. B., Kinley, A., & Wilson, D. C. (1995). Learning to improve case adaption by introspec-

tive reasoning and CBR. In M. Veloso & A. Aamodt (Eds.), Proceedings of the First International 

Conference on Case-Based Reasoning. No. 1010 in Lecture Notes in Artificial Intelligence (pp. 

229–240). Berlin: Springer-Verlag.

Leake, D. B., & Wilson, M. (2008). Extending introspective learning from self-models. In M. T. 

Cox & A. Raja (Eds.), Metareasoning: Thinking about thinking, Papers from the AAAI Workshop (pp. 

143–146). Technical Report WS-08-07. Menlo Park, CA: AAAI Press.

Leake, D. B. (1996). Experience, introspection, and expertise: Learning to refine the case-based 

reasoning process. Journal of Experimental & Theoretical Artificial Intelligence, 8(3), 319–339.

Mantaras, R., McSherry, D., Bridge, D., Leake, D., Smyth, B., Craw, S., et al. (2005). Retrieval, 

reuse, revision, and retention in CBR. Knowledge Engineering Review, 20(3), 215–240.

Murdock, J. W., & Goel, A. K. (2008). Meta-case-based reasoning: Self-improvement through 

self-understanding. Journal of Experimental & Theoretical Artificial Intelligence, 20(1), 1–36.

Wilson, T. D., & Schooler, J. W. (1991). Thinking too much: Introspection can reduce the quality 

of preferences and decisions. Journal of Personality and Social Psychology, 60(2), 181–192.


