Infection-Based Self-Configuration in Agent Societies

Norman Salazar
A, Artificial Intelligence
Research Institute
Campus UAB 08193
Bellatera, Spain
norman@iiia.csic.es

Juan A.
Rodriguez-Aguilar
IIIA, Artificial Intelligence
Research Institute
Campus UAB 08193
Bellatera, Spain

Josep LI. Arcos
[IIA, Artificial Intelligence
Research Institute
Campus UAB 08193
Bellatera, Spain

arcos@iiia.csic.es

jar@iiia.csic.es

ABSTRACT

Norms have become a common mechanism to regulate
the behavior of agents in multi-agent systems (MAS).
However, establishing a stable set of norms is not triv-
ial, particularly in dynamic environments, under chang-
ing (and unpredictable) conditions. We propose a com-
putational model that facilitates agents in a MAS to
collaboratively evolve their norms, reconfigure them-
selves, to adapt to changing conditions. Our approach
borrows from the social contagion phenomenon to ex-
ploit the notion of positive infection: agents with good
behaviors become infectious to spread their norms in
the agent society. By combining infection and inno-
vation, a mechanism allowing agents exploring new
norms, our computational model helps MAS to con-
tinuously stabilize despite perturbations.

1. INTRODUCTION

Norms have become a common mechanism to regulate the be-
havior of agents in multi-agent systems. However, establishing an
adequate set of norms is not trivial. Norms exist to balance the
agent’s interests with respect to the society’s, in such a way that
each agent is able to pursue its individual goals without preventing
other agents’ goals. This becomes more complicated in dynamic
environments where changes in the system can cause the set of
norms to become unexpectedly obsolete. Therefore, methods for
learning and/or evolving the existing norms are needed.

In societies, conventions result when members agree upon a spe-
cific behavior. Thus, a norm convention refers to a set of norms that
has been established among the members of a society. The learning
of norm conventios, usually referred to as either self-organization
or emergence, has been studied from the social sciences’ and multi-
agent system’s perspectives. One of the trends of thought in social
studies is that norm conventions emerge by propagation or conta-
gion, where social facilitation and imitation are key factors [5, 4].

From the MAS point of view, the studies in [12] and [11] show
that norm emergence is possible. However, these works only ana-
lyze norm propagation, though norm innovation (the discovery of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

new norms) is a very important factor for the social evolution of
societies. If we intend to establish norm conventions in dynamic
environments, propagating norms may not be enough since it im-
plies that at least someone in the society has the correct norms and
this may not be the case. This is why a mechanism to produce new
norms is also necessary. Alternatively, in [1] work has been done
to optimize the norms with respect to the agent’s utility function
without taking into account conventions, by means of reinforce-
ment learning. Nonetheless, reinforcement learning can also be
used for social conventions as shown in [10].

Since it has been argued that norms follow an evolutionary pro-
cess [2], evolutionary Algorithms (EA) have been employed to find
norms or rules in agent societies. Nonetheless, they are usually
applied either: (i) as a centralized process; or (ii) as an individual
process for each agent. In the centralized approach, a global EA
tries to find a set of norms that rules the behavior of all agents. This
is achieved by maintaining multiple societies with different norm
sets each, and applying the evolutionary process to them, (e.g. [6]).
This technique presents some disadvantages. First of all, it is an
off-line process, i.e. the algorithm is ran for mock up systems and
when the best norms are found they are hardwired to the agents.
As the complexity of the domain grows, this approach becomes
very slow because it requires multiple simulations at the same time.
Furthermore, it is a top-down approach, whereas what we pursue
is a bottom-up method (namely, agents learning norms by them-
selves). An alternative approach is based on embedding an EA in
each agent so that each agent employs some kind of reinforcement
learning to find its appropriate behavior or policies. A study of dif-
ferent techniques can be found in [8]. These methodologies do not
have an explicit propagation mechanism, though conventions still
arise. Agents that interact frequently with each other must evolve
policies that decrease conflicts among them. The problem with this
approach is that the time required for all the agents to stabilize their
EA may be too long, and then is also an off-line methodology.

Therefore, observe that the approaches discussed so far are not
suitable to help MAS reconfigure themselves, by adapting their
norms, in highly dynamic environments, namely under changing
(and unpredictable) conditions. In this paper we try to make head-
way in this matter by proposing a computational model that facili-
tates agents in a MAS to collaboratively evolve their norms, recon-
figure themselves, to adapt to changing conditions. Our approach
largely borrows from the social contagion phenomenon [4]. How-
ever, we propose a different notion of infection, namely positive
infection: agents with good behaviors that help to improve the so-
cial welfare become infectious to spread their norms. With agents
constantly infecting each other, the MAS can reach a stable set of
norms. And yet, the MAS may still lapse into stagnation. To pre-
vent such undesired outcome, our model incorporates an innova-

tion mechanism that allows agents exploring new norms though the
MAS has already reached a stable state. By combining infection
and innovation, our model manages to help the MAS to continu-
ously stabilize in spite of perturbations. Our infection-based model
is realized as a distributed evolutionary algorithm. We choose EA
since the contagion process can be modeled as an evolutionary ap-
proach. Furthermore, we believe that selection through fitness is
compatible with the idea in social sciences of structure equality[4],
regarded as an important issue in social learning.

The paper is organized as follows. Section 2 formilizes our self-
configuration problem. In section 3 we describes our proposal for
an infection-based model. Section 4 presents empirical results ob-
tained in a traffic domain. Finally, section 5 draws some conclu-
sions and sets paths to future research.

2. THE PROBLEM. A FORMAL MODEL

Let Ag be a finite set of agents situated in some environment,
S a set of environment states, A a finite set of actions the agents
can take in the environment, and NV a finite set of social norms that
constrain the actions agents can take. At each time ¢, the agents
in Ag can take actions, leading to a new environment state. Thus,
function 7 : S x 22 — S models the transition of the environment
from one state to another as agents act. Finally, we consider that
not all environment states are equally valuable. Hence, the need
for a social welfare function v : S — R that values the environ-
ment state resulting after the agents in Ag perform their actions. A
system that includes all the elements above shall be referred as a
norm-aware multi-agent system (NAMAS).

Now we turn our attention to the agents within the multi-agent
system. As mentioned above, agents are situated in some environ-
ment. Furthermore, agents are social because: (i) each agent can
communicate with other agents within the multi-agent system; and
(i1) each agent is aware of some social norms. Therefore, notice
that agents perform communicative actions to exchange informa-
tion and environment actions to change the environment state. On
the one hand, when deciding the next action to take, agents de-
part from their local perception of the environment and may take
into account the social norms they are aware of. Each agent’s so-
cial norms express what the agent currently believes is socially per-
mitted. Nonetheless, agents individually decide whether to accept,
follow, their social norms when deciding the next action to make.
Whatever the case, we assume that each agent can value the result
of performing actions following its social norms. In other words,
agents can measure the utility of following their social norms. On
the other hand, agents must decide what to do with the information
they receive from others as well as whether to share information
and with whom. Regarding these communicative actions, we shall
consider that agents only exchange information regarding the social
norms they are aware of along with their valuations. Notice that we
shall not assume that agents are connected according to any partic-
ular topology, unlike [11, 9]. Thus, as time goes by, agents may
exchange information with different peers.

Finally, based on the result of the actions on the environment and
the interactions with other agents, each agent must develop a norm
transition function for changing his social norms to better act on
the environment. Bundling all the agent features introduced so far,
we propose the following formal definition of norm-aware agent.

DEFINITION 1 (NORM-AWARE AGENT). Given a norm-aware
multi-agent system {Ag, S, A, N, 7, u), each agent ag; € Ag is a
norm-aware agent characterized by a tuple (N}, St, u;, ¢, O%, T;),
where:

N} C N stands for the social norms at time t; St is the agent’s

perception of the environment; u, is an individual welfare function;
It . Ag — 2V x R models norm valuations received from other
agent; O : Ag — 2V x R models norm valuations sent to other
agent; and T; : (2N x R)" — 2N is a norm transition function
that allows an agent to change his social norms.

Moreover, we can proceed to define the distributed self-configuration

problem (DSCP).

DEFINITION 2 (DSCP). Given a norm-aware multi-agent sys-
tem (Ag, S, A, N, w, u), the distributed self-configuration problem
is that of learning the norm transition functions 11, . .., T, of the
agents in Ag that: (i) maximize the social welfare u; and (ii) guar-
antee the continuous convergence of the social welfare.

3. AN INFECTION-BASED MODEL

We will start by analyzing what we require to solve the DSCP.
This is done under the assumption that agents cooperate. Firstly,
each agent autonomously chooses its actions based on its local
observations of the environment state, and without the need for
approval or guidance from a central authority. Secondly, and ac-
cording to definition 2, the social welfare must be maximized. At
this aim, and in the spirit of the distributed nature of the prob-
lem, we must find a way of factoring the social welfare in terms
of the agents’ individual welfare. The factoring must grant that
by maximizing the individual welfare, the social welfare is also
maximized. It is important to notice that the mechanics of factor-
ing are domain dependant, thus outside of the scope of this paper.
And finally, an agent’s norms should be able to adapt to expected
or unexpected changes in the environment. Real-life systems dy-
namically change with time, be it the number of participants, the
environment properties, etc. When such changes occur the norms
may become obsolete, invalidating the existing conventions and in-
fluencing the current welfare. Therefore, a mechanism to return
the multi-agent system to a stable state whenever this happens is
needed, namely a mechanism that guarantees continuous stabiliza-
tion. Nonetheless, reaching a stable state is not enough, since it
does not guarantee the welfare maximization. In account of this,
we also require a continuous convergence scheme. We understand
by continuous convergence the ability of re-accomplishing welfare
maximization whenever the norms are required to evolve.

Social contagion [4] is a phenomenon that occurs in societies,
and causes individuals to spread their behavior among them, akin
to an infectious disease. We propose that by modeling social con-
tagion into a norm-aware multi-agent system framework, stable
NAMAS states can be reached, as endorsed by the work in [12].
However, likewise in societies, not any behavior is worth spread-
ing because this may eventually lead to undesired phenomena (e.g.
violent mobs). In the context of our problem, we propose a differ-
ent notion of infection, namely positive infection: agents with good
behaviors that help improve the social welfare become infectious
to spread their norms. A good behavior stands for a behavior that
fulfills the agent’s individual welfare. Since our aim is to spread the
norms that are beneficial to the agent society, the stable state to be
reached should have a positive effect on the social welfare, which
is a nudge towards our maximization objective. Furthermore, we
argue that an agent cannot infect its peer with all its norms because
this would lead infected agents to pure imitation, and eventually
to a prematurely stable state. Hence, infecting other agents with
subsets of norms may have beneficial effects on the infected agent.

Figure 1 graphically shows the main steps of our infection-based
model for the DSCP. Agent A probes its surroundings for neigh-
boring agents. Close by agents respond to probe. Agent A then

AgentB

Figure 1: a) agent A probes its surrounding agents for information about their norms; b) agents respond to the probing; ¢) agent A selects and starts

to infect agent B ; d) agent B changes its norms because of the infection

proceeds to select a neighbor (agent B) based on the responses.
Agent B is then infected with some of agent A’s genetic code.

With agents constantly infecting each other the continuous sta-
bilization can be achieved. However, infection by itself can cause
stagnation, halting the maximization of the social welfare. Hence,
each agent must include an innovation mechanism to explore new
norms even if the NAMAS is in a stable state. The combination
of continuous stabilization and innovation makes the continuous
convergence possible. Every time stabilization is reached, the in-
novation mechanism will try to break away from it. This shall only
happen if another stable state with higher social welfare does exist.
This will occur until there is no better stable state.

We propose a distributed evolutionary algorithm. We choose EA
to emerge norms for two reasons: i) the evolution of the contagion
process can be modeled as an evolutionary approach in such a way
that innovation becomes a natural part of the process; and ii) the
take over effect of the selection mechanism can guide the NAMAS
population toward norm conventions. Since our algorithm borrows
from genetic algorithms (GA), we recall the basic concepts of GA
in the subsequent subsections while we progressively, elaborate our
infection-based model.

3.1 Individuals and Agents

Individuals are the basis of GA and other evolutionary algo-
rithms. They take inspiration on the genotype of biological organ-
isms, whereas agents in a multi-agent system are akin to organisms
in an environment. Therefore, we believe both ideas are comple-
mentary and can be fused into a single entity. This new entity, here-
after referred to as evolutionary agent, represents an agent that has
genes encoding some of the agents’ behavior (rules, norms, poli-
cies, etc). The exact encoding of the norms varies depending on
the features of the problem.

Thus, an evolutionary agent contains an individual. As to the
DSCP, an evolutionary agent is a norm-aware agent whose norms
are encoded in a gene vector. In classic GA an individual represents
a possible configuration of a whole system or problem. The fitness
function is a measure of its potential as a solution for the system.
However, with individuals representing norms within agents, a fit-
ness function must measure an agent’s performance instead of the
system’s. Not surprisingly, a norm-aware agent shall employ its
individual welfare as fitness function to measure its performance.
Hence, with the individuals distributed and the performance mea-

sured agent-wise, the selection and the genetic operators cannot
be applied as a global process. At this aim, an evolutionary agent
includes local selection, crossover and mutation functions so that
each agent can decide by itself (with sexual operators, the part-
ner(s) can also affect the decision), who to select, when and how to
recombine and mutate.

3.2 Selection

In GAs (and other EA), the selection operator dictates the direc-
tion of the search process. It is a centralized operator that selects,
out of a population of individuals, the best (fittest) individuals to
which subsequently apply genetic operators. Thus, its application
makes the fitness of the individuals impact on the evolution pro-
cess [3]. The selection mechanism is also closely related to the
genotypic diversity of the individuals in the genetic search, i.e. the
number of different gene vectors in the population. Since this is one
of the reasons why we chose an approach based on GA, it follows
that selection is central to solve our problem.

Regarding a NAMAS, we must endow each agent with a selec-
tion mechanism that allows it to select one of its peer agents (figure
1.c), out of the agents it is capable of communicating with (figure
1.a), based on the received information (figure 1.b). We demand
the agent selection mechanism to satisfy the following properties:
(1) it must rank agents according to their fitness values (survival of
the fittest); (2) it must select the best agents more frequently;(3) a
weak gene vector should not overtake an already established one in
the population.

We propose to adapt a roulette wheel [3], one of the most com-
mon selection methods, to satisfy properties 1-3 listed above. Al-
gorithm 1 outlines such adaptation. Given an agent ag, the mecha-
nism selects another agent ag’ from its current neighborhood. First,
the neighbors’ fitness are recomputed in terms of ag’s fitness ®
(lines 2-4): subtracting from ag’s fitness value (®(g), where g
stands for ag’s genes) its neighbors’ (¢ag; is the fitness value re-
ceived from agent ag;) when minimizing (reversed when maximiz-
ing). The new values are stored into array Y. If ag’s fitness is
one of the lower ones (according to the Kseiection parameter) then
it marks itself for replacement (lines 7-8). This occurs because
ag realizes that some neighbor(s) it has probed are better and it is
worth being replaced (totally infected) by them. When neighboring
agents with negative recalculated fitness exist (line 10), the fitness
of all neighbors will be scaled (lines 11-13). Thereafter, the mech-

: N «— neighborhood(ag)
: foreach ag; € N do
Y(ag;) < ®(9) — bag;
. end for
T(ag) — 0
: Sorted < sort {ag} U N order by T descending
. if (indexof(ag) € Sorted > |Sorted| — kseiection) then
mark myself for-replacement
. end if
1 if (3ag; € N | Y(ag;) < 0) then
foreach ag; € N do
T(agi) — Y(agi) + |[min{Y(ag)lag; € N}
end for
: end if
: roulette « distribution roulette from N using T
. ag’ « select from roulette

N R e g e oy S

Algorithm 1: Selection operator of agent ag.

anism creates a distribution roulette using the fitness values in T
[71(line 15). Finally, a neighbor agent can be selected for infection
using the roulette (line 16).

3.3 Infection and Innovation

Once an agent has selected a peer agent, it is ready to engage in
an infection process aimed at improving both agents’ genes. Intu-
itively, an infection occurs by having an infectious agent injecting
its genes into the selected agent. The infected agent shall employ
the genes from the contagious agent to change its own genes. This
is akin to a retrovirus infection. Once again we shall take inspira-
tion on GA.

In GAs, the crossover, is a sexual operator that works under
the assumption that by combining useful segments of parent in-
dividuals, the resulting new individuals are improved with respect
to them. The classic crossover, called single-cut crossover, ran-
domly selects a cut point in the parents’ gene sequences and then
exchanges the genes between the parents, resulting in two new in-
dividuals. Consider now a parent as a contagious agent and a child
as the infected one. Unfortunately, a straightforward application
of this crossover is not possible, because: (i) whereas in GAs the
parent individuals are discarded, in our NAMAS setting we can-
not discard agents; (ii) whereas in GAs non-selected individuals
are lost for the next generation, agents uninfected must remain in
the NAMAS; and (iii) whereas in GAs multiple children can be
produced by the same individual on the same iteration, we cannot
create new agents on a whim.

Therefore, we propose a mechanism that shall distinguish be-
tween two cases: (a) two-way infection, from the two agents, two
new gene sequences are created to replace their current ones. With
the replacement happening only if the agent has not participated in
an infection during the current iteration; and (b) a one-way infec-
tion, where an agent marked for replacement during the selection
replaces all its genes with the exact copy of the other agent’s genes.
Notice that each agent seeks to infect another agent and in turn can
also be infected, though only once (per iteration).

Finally, to implement an innovation operator that helps agents
escape local optima and explore new norms, we resort to the muta-
tion operator employed by GAs. Although different operators have
been proposed in the literature [3, 7], we use a basic one, consisting
in the mutation (change) of genes with some probability.

3.4 Infection-Based Algorithm

With the components of our model defined, algorithm 2 stands
for our distributed evolutionary infection-based algorithm.
Algorithm 2 considers that agents act over the environment a

time step in the incubation time set (e.g. Tincubation = {100, 200,
...}) is reached. Then all agents locally start their evolutionary
process. Thus, the algorithm repeatedly interleaves agents’ actions
and evolution. We introduce the notion of incubation time (line
3) because the effects of changes to an agent’s genes may not be
reflected immediately. Likewise virus, infections take some time to
take effect. Thus agents require time to assess the influence of the
contagion by acting over the environment during a period of time.
Algorithm 2 runs agent-wise, hence agents can join in and leave the
NAMAS at will.

Let us analyze the core flow of each agent (lines 5-8). Firstly,
each agent, ag, evaluates itself using its individual welfare, i.e. its
fitness function (®). Secondly, ag runs the selection operator with
parameter Kseection (algorithm 1) to select a peer, ag’, to infect .
Thirdly, with probability pinfection, ag tries to infect ag’ (infec-
tion). Finally, the mutation operator changes some of the agent’s
genes with probability pmutation. Although the core of each agent
may resemble a GA, recall that the selection and infection opera-
tors work by having agents exchanging genetic information on a
distributed manner.

1: repeat

2 shuffle the agents in the multi-agent system
3 if (¢t € Tincubation) then

4 foreach ag € NAMAS do
5: ag.evaluate()

6: ag’ — ag.selection()
7. ag'infection(aglv pinfection)
8 ag.mutation(Pmutation)

9 end for
0 end if
1: until NAMAS stops

—_—

Algorithm 2: Infection-based Algorithm.

In terms of social theory, our approach combines the concepts of
imitation and innovation. The selection operation guides the search
by selecting whom to imitate while the infection operator deter-
mines how to imitate. In our case an agent imitates by copying
(parts of) other agents’ norms to subsequently combine them with
its own in hopes of getting better ones. Through selection and in-
fection the NAMAS is deemed to reach norm conventions (a state
where most of the agents have common norms). Even though this
is a desired outcome it may be the case that the established conven-
tion(s) do(es) not maximize the social welfare, i.e. social stagna-
tion is reached. To prevent this outcome we introduce the mutation
operator as a purely innovative mechanism for creating new norms.

Although we might be tempted to regard infection as an inno-
vation operator, the Finally, it is time to analyze: (i) whether the
agents considered in algorithm 2 satisfy our theoretical notion of
norm-aware agent; and (ii) the way our model tackles the DSCP.
On the one hand, the communicative actions of a norm-aware agent
are realized by exchanging genetic information with the neighbors.
Furthermore norm transition function 7;, results of combining op-
erators selection, infection, and mutation. Thus, the DCSP is solved
by letting evolutionary agents autonomously learn their norm tran-
sition functions. In next section we empirically illustrate how in-
deed our is valuable to tackle the DSCP in a particular scenario.

4. EMPIRICAL RESULTS

The DSCP that we study and experiment with is based on the
"rules of the road" example, formerly presented in [10]. In particu-
lar, we consider an environment with multiple roads intersecting at
multiple points, and populated by a high number of cars that move
at their discretion along the roads. We chose this case because the

cars’ autonomy poses a problem: they may crash when two cars
occupy the same space at the very same time. Crashes particularly
occur around junctions. When two cars from neighboring roads ar-
rive at the same time to a junction, they crash whenever none of
them stops. Ideally, one of them should stop, while the other con-
tinues. However, both of them might stop, leading to problems for
the upcoming cars, i.e. bottlenecks or more crashes. To summa-
rize, our objective is for each car to learn the norms it must follow
so that the number of crashes and bottlenecks is minimized. Notice
though that we do not tackle the same problem as [10].

Our environment is represented as a torus-grid where each road
can go from north to south or west to east. It is formed by a se-
quence of contiguous cells in the same direction. A junction is the
area where two roads from different directions intersect. The cen-
tral junction cell allows cars to change directions. Moreover, roads
do not have dead ends (thanks to the torus-grid).

Each car, a;, corresponds to an evolutionary agent with two pos-
sible actions: go or wait. The environment states are represented
by the cars’ positions, the crashes, and the bottlenecks. Each car
has a local (partial) view of the environment state. The norms take
the form if precondition then action. Since crashes occur more
frequently at junctions, the goal of the norms is to regulate the be-
havior of cars at junctions. Hence, when a car arrives at a junction
at the same time that another car, it must learn whether to keep go-
ing or stop depending on the direction (norms NO and N1 below).
Moreover, cars need a norm to avoid crashes caused by sudden
stops from other cars on the same road (norm N3 below).The pa-
rameterized norms are represented by the following templates:

NO; IF (car IN junction) AND (car-direction = north-to-south) AND (other-
car AT right) THEN X?

N1; IF (car IN junction) AND (car-direction = west-to-east)
AND (other-car AT lefr) THEN X}

N2; IF (car NOT IN junction) AND (other-car AT
immediate-front) THEN X 22

where X7, X}, X? are variables over A.

Notice agents learn their norms by finding values for X?, X} X2.
Thus, this instance of the DSCP consists of learning for each agent
in the NAMAS, the norm transition function, 7;, that leads to the
values of X;, that maximize the social-welfare, u.

In our scenario the social-welfare increases when the the number
of crashes and waiting time diminishes (crashes are the priority).
Therefore, by measuring the performance of each car in function
of these terms we have that w =) w,;. The utility fuction the
measures the above mentioned individual performance is given by:

1
1+ 0 crashes + 1 - waiting

u;)]
where 7o and ~; are penalty factors (>= 0).

Finally, each agent can request to its neighboring agents their
current performance, for selection purposes, as well as their norms,
for infection purposes.

4.1 Experiments & Results

We designed our experiments to verify three hypotheses: whether
our computational model 1) allows NAMAS to reach stable sets of
norms; 2) requires all operators for the norms to converge; and 3)
allows NAMAS to continuously stabilize and converge in spite of
perturbations.

Each experiment consists of 50 discrete event simulations, each
one up to 60000 ticks. A simulation runs a randomly created envi-
ronment consisting of a 50 x 50 torus-grid, 21 roads, 48 junctions

Time to Stability Crashes Waiting Time

Time Interval | % Pert. TOM Mdn TOM | Mdn | IQM | Mdn

[0, 20000] 0 2087.5 2000 | 8.88 9 | 43.92 43
[20001, 30000] 20 50 50 | 10.48 10 | 54.32 51
[30001, 40000] 40 366 350 | 12.72 12 | 57.84 57
[40001, 50000] 60 756 700 | 11.52 12 | 49.76 46

[50001, 60000] 80 1397.6 1350 | 9.48 9 | 48.12 48

Table 1: Results for 50 simulations

*Note: IQM = InterQuartile Mean; Mdn = Median

100
< Selection + Infection with Set 3
o 80 Selection + Innovation with Set2 =
£ All Combinations with Set 3
j2]
b 60
Q
<
c 40|
[
2
g- 20

0

0 2000 4000 6000 8000 10000 12000 14000
Ticks
Figure 2: Worst case for each of the operators combinations.

and a population of 100 car agents with some initial norms. At
each time step, each agent can perform an action based on its cur-
rent norms. Every 50 ticks (incubation time in alg. 2) the agents’
performances are measured and the evolutionary process (alg. 2)
starts within each agent. All changes to the genes become effective
after all agents completed their evolutionary process.

We set parameters as follows: i) for algorithm 2 pinfection =
0.90 and prmutation = 0.0003 in all agents; and ii) utility function’s
Yo = 50 and 1 = 5 to put more pressure on reducing the crashes,
while preventing traffic jams.

For this particular problem we know beforehand that 4 attractors
exist: two optimal (go-wait-go & wait-go-go) and two sub-optimal
((go-wait-wait & wait-go-wait)).

Hypothesis 1. We consider that a NAMAS reaches a stable state
when at least 80% of its agents settle to the same norms so that
no other norms can upstage them. Thus, we measured from the
simulations the time (ticks) to reach stability and the quality of
norms (average crashes and waiting time per incubation time). The
first row of Table 1 shows the aggregated measures for an experi-
ment that ran for 20000 ticks. We observe that the NAMAS readily
reaches stability (~2000 ticks) and the quality of norms correspond
to norms in the optimal attractors.

Hypothesis 2. Now we run experiments that set up cars differ-
ently by combining a choice of operators with a choice of initial
norms. We draw the initial norms out of the sets in table 2: 1) all
possible norms; 2) attractor-free norms; and 3) norms whose com-
bination does not create attractors. We draw the operators from the
following combinations: (a) selection, (innately infects the worst
neighboring agent); (b) selection + infection, (has the proper infec-
tion operator); (c) selection + mutation; (d) all operators. Selection
appears in all cases because it is a fundamental part of the model.

We measured the number of agents that converge to an optimal
attractor per tick (the most dominant attractor per simulation). Fig-
ure 2 shows the settings that lead to the worst results for each com-
bination of operators. We observe that: (i) all operators helps reach
stability around 3500 ticks (close to the results above); (ii) selec-
tion + mutation deceivingly seems to converge to around 40 agents
(this is an artifact of the aggregation because sometimes the NA-
MAS reaches a stable state (> 80 agents) whereas it does quite
poorly (< 10 agents) others); (iii) as to selection+infection, not a
single agent can obtain the desired norms because it is impossible
to create an optimal attractor through gene recombination; (iv) se-

(g0-g0-20),(go-go-wait),(go-wait-go),(go-wait-wait)
(wait-go-go),(wait-go-wait),(wait-wait-go), (wait-wait-wait)
Set 2 (go-go-go),(go-go-wait),(wait-wait-go),(wait-wait-wait)
Set 3 | (go-go-go),(go-go-wait) OR (wait-wait-go),(wait-wait-wait)

Set 1

Table 2: Initial norms sets

lection’s worst case, occurs whenever there is not an (sub-)optimal
attractor in the population to take over the rest.

Initializing the norms from set 1 works the best for all the com-

binations and the performance difference between the four of them
is minimal. Nevertheless, notice that for these cases a certain num-
ber of optimal attractors already exist in the populations. In more
complex problems with bigger search spaces, the chances of a sit-
uation like this arising is potentially very low. Thus, our results
confirm that using all the operators is the most reliable option for
open NAMAS for which we cannot know the norms agents depart
with.
Hypothesis 3. Now we introduce perturbations during the simula-
tions by randomly changing the actions of each norm for a number
of agents. We list the perturbations we employed in our simula-
tions in the second column of Table 1. For instance, when reaching
20001 ticks, 20% of the agents had their norms changed. We mea-
sured the time to stability and the quality of norms as shown in
rows 2-5 in Table 1. In all simulations of the experiment, the NA-
MAS converged to one of the optimal attractors. Figure 3 shows the
results of a particular simulation. We observe that the wait-go-go
attractor becomes stable early on. After each one of the first three
perturbation, we observe a downwards spike. Nevertheless the NA-
MAS rapidly reaches the stable state afterwards while maintaining
the same attractor. However, the last perturbation leads to an in-
teresting phenomenon: a transition between attractors occur, but
once again the NAMAS reaches a stable state. From this results we
conclude that our approach is robust against perturbations.

5. CONCLUSIONS AND FUTURE WORK

In this paper we tackle the distributed self-configuration prob-
lem, namely the problem of finding the norms for each agent in a
norm-aware multi-agent system that maximize the social welfare
and guarantee its convergence despite environmental or agent pop-
ulation changes. We have proposed a computational model that aids
agents in a NAMAS to collaboratively evolve their norms, recon-
figure themselves, to adapt to changing conditions. Our approach
largely borrows from the social contagion phenomenon. However,
we propose it as a positive notion: agents with good behaviors that
help to improve the social welfare become infectious to spread their
norms. Our infection-based model is computationally realized as a
distributed evolutionary algorithm.

As a proof of concept we have selected a case study over which
we formulated a DSCP. We showed that our infection-based model
allowed the NAMAS to reach stable sets of norms, and to continu-
ously stabilize in spite of heavy perturbations. To justify the need
of the different operators, we showed that by removing some of
them there are cases where no stabilization can be achieved. And
yet, our approach shares drawbacks with other evolutionary algo-
rithms: (i) the sensitivity to evolutionary parameters; and (ii) we
cannot guarantee that the solution to which the system converges is
always the best. We plan to tackle the first problem by resorting to
the self-adaptation techniques common in EA.

Finally, notice that cooperation among agents is an important
component of our selection and infection mechanisms. We find
interesting to explore how our model applies to scenarios where
cooperation can be no longer assumed.

100 T, T T
(U AW Y
/ Hﬂ I [N

[!

60"

Number of Agents

N . e S G
0 10000 20000 30000 40000 50000 60000
Ticks

P

Figure 3: Transition from norm attractor to norm attractor.

6. ACKNOWLEDGMENTS

The authors thank CONACYyT for the scholarship of the first au-
thor. This work was funded by IEA (TIN2006-15662-C02-01), OK
(IST-4-027253-STP), eREP(EC-FP6-CIT5-28575) and Agreement
Technologies (CONSOLIDER CSD2007-0022, INGENIO 2010).

7. REFERENCES

[1] S. Abdallah and V. Lesser. Multiagent reinforcement
learning and self-organization in a network of agents. In
AAMAS 2007, pages 172-179, 2007.

[2] R. Axelrod. An evolutionary approach to norms. The
American Political Science Review, 80(4):1095-1111, 1986.

[3] T. Béck. Evolutionary Algorithms in Theory and Practice:
Evolution Strategies, Evolutionary Programming, Genetic
Algorithms. Oxford University Press, Oxford, 1996.

[4] R. Burt. Social contagion and innovation: Cohesion versus
structural equivalence. American J. of Sociology,
92:1287-1335, 1987.

[5] R. Conte and M. Paolucci. Intelligent social learning.
Artificial Society and Social Simulation, 4(1):1-23, 2001.

[6] I.-K. Jeong and J.-J. Lee. Evolving multi-agents using a
self-organizing genetic algorithm. Applied Mathematics and
Computation, 88:293-303, 1997.

[7] Z. Michalewicz. Genetic Algorithms+Data

Structures=Evolution Programs. Springer Verlag, 3rd

edition, 1996.

D. Moriarty, A. Schultz, and J. Grefenstette. Evolutionary

algorithms for reinforcement learning. Artificial Intelligence

Research, 11(1-1):241-276, 1999.

J. Pujol, J. Delgado, R. Sangiiesa, and A. Flache. The role of

clustering on the emergence of efficient social conventions.

In IJCAI 2005, pages 965-970, 2005.

[10] S. Sen and S. Airiau. Emergence of norms through social
learning. In IJCAI 2007, pages 1507-1512, 2007.

[11] Y. Shoham and M. Tennenholtz. On the emergence of social
conventions: Modeling, analysis, and simulations. Artificial
Intelligence, 94(1-2):139-166, 1997.

[12] A. Walker and M. Wooldridge. Understanding the emergence
of conventions in multi- agent systems. In ICMAS 1995,
pages 384-389, 1995.

[8

—

[9

—

