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Abstract

This work extends the Particle Swarm Optimiza-
tion (PSO) algorithm for working on dynamic envi-
ronments. We propose an evaporation mechanism to
solve the outdated memory problem. We empirically
show that our evaporation mechanism is able to achieve
self-adaption without any knowledge on when changes
occur.

1 Introduction

The original version of Particle Swarm Optimization
(PSO) was proposed by J. Kennedy and R. Eberhart
in 1995. PSO was aimed to produce a collaborative
intelligence behavior by borrowing the analogy of social
interaction. In PSO a number of particles is placed in a
search space, each particle trying to reach the optimal
position. The movements of each particle are based
on the combination of a cognitive and a social model.
The cognitive model drives each particle to its best
found position. The social model drives each particle
to the best position found by particles belonging to its
neighborhood.

Since 2001, when Eberhart and Shi proposed the
original PSO for solving dynamic optimization prob-
lems, different authors have proposed extensions to
the original PSO algorithm, such as reseting the parti-
cles position frequently or using a multi-swarm model
[9], for improving its adaptiveness in dynamic environ-
ments.

In order to adapt the PSO for working on dynamic
environments, two main problems have been identified:
diversity loss (due to particles’ convergence) and out-
dated memory (due to the environment dynamism)[1].
Diversity loss has been addressed either by introducing
randomization, repulsion, dynamic networks, or multi-
populations [1]. Repulsion leads the particles to spread

over the search space allowing a broader exploration of
the search space. Nevertheless, the time to reach the
optimum increases, and sometimes is not reached, due
to the excess of exploration. For instance, RPSO [8]
proposes a repulsive social model as a way to find the
optimum in very complex static optimization problems.

The outdated memory problem has been tackled by
setting current particle positions as their best positions
or by re-evaluating best positions to detect the changes
(increasing the computation cost). Most of these ex-
isting approaches assume that either the changes are
known in advance by the algorithm or that they can
be easily detected (hypothesis not feasible in many real
problems).

In this paper we propose a new method, inspired
on the ant pheromone evaporation mechanism [6], able
to work on dynamic environments without any knowl-
edge about when changes will occur. Using the Moving
Peaks Benchmark (MPB) [4], we will show how our
approach, together with a diversity lost mechanism,
presents good performance results.

2 The evaporation mechanism

We propose a hybrid PSO-RPSO algorithm to deal
with the diversity lost problem and an evaporation
mechanism to deal with the outdated memory prob-
lem. The main motivation for the hybrid algorithm
is to better control the distribution of the particles:
RPSO particles will mainly present an exploration be-
havior whereas PSO particles will be more focused on
an exploitation behavior. Using this hybrid approach,
some particles are collaborating each other to reach the
optimal value whereas other particles are mainly ex-
ploring possible new local optimums (i.e. maintaining
the diversity). A similar behavior has been achieved by
Charge Particle Swarm Optimization (CPSO) [2] and
Quantum Swarm Optimization QSO [3]. Nevertheless,
CPSO presents a quadratic complexity and QSO uses



a randomization operator to spread explorer particles
around the peaks.

For solving the outdated memory problem when the
changes are not known in advance, we hypothesize that
providing a mechanism for continuously forgetting is
better than a periodical resetting approach. Moreover,
a continuous mechanism avoids the assumption that
changes can be predicted in some way.

We propose an evaporation mechanism for reduc-
ing the fitness value of the best position found by each
particle along time. This mechanism will penalize op-
timums that were visited a long time ago. Thus, evap-
oration provides an automatic dissipation mechanism
over the information taking into account the adqui-
sition time. The idea of evaporation is not new. Ant
Systems use evaporation in pheromone trails as a mech-
anism to achieve a signal degradation [6].

We incorporated an evaporation factor ν on the best
position found by each particle. Specifically, at each
particle iteration, when the fitness value of the cur-
rent position is not better than the fitness value of the
best position stored in its memory, the fitness value of
the memory best position is decreased by the evapo-
ration factor ν. This evaporation factor will affect the
cognitive model of each particle, providing a dynamic
tradeoff between the cognitive and the social informa-
tion.

3 Experiments

We used Moving Peaks Benchmark (MPB) [4] for
comparing our evaporation mechanism with an in-
formed mechanism where the memory of the particles is
reseted to their current position whenever a change oc-
curred. MPB is a benchmark to compare dynamic op-
timization algorithms by modeling problems less com-
plex than the real world but more complex that a sim-
ple simulation. MPB allows to generate search spaces
that change over time (in the height, width and loca-
tion of peaks).

For experimentation, a 4-dimensional search space
with dimension ranges from 0 to 100 was generated.
Since we were interested in analyzing the outdated
memory problem, the experiments were performed
with a single peak. A run consisted of 100 peak
changes. The peak changed its height (height ∈ [30,
70]), width (width ∈ [0.001, 0.1]), and position every
5000 steps. Results are based on averages over 30 runs
with uncorrelated peak changes at different distances
(peak shift ∈ [1, 6]). The evaporation factor selected
in the experiments was ν = 0.7.

We focused the analysis of the results on the offline
error (see Table 1). The offline error measures the per-

Peak shift Evaporation Informed
1 0.1682 ± 0.0180 0.1865 ± 0.0141
2 0.2878 ± 0.0189 0.3316 ± 0.0167
3 0.4258 ± 0.0228 0.5000 ± 0.0247
4 0.5996 ± 0.0299 0.6666 ± 0.0314
5 0.8246 ± 0.0387 0.8686 ± 0.0386
6 1.0937 ± 0.0442 1.0938 ± 0.0493

Table 1. Offline Error ± Std. Dev.

formance of an algorithm when tracking environment
changes (where an error equal to zero indicates the per-
fect tracking). Offline error is calculated as the error
average of all the best solutions found since the last
peak change.

Resuts in Table 1 show that the evaporation mech-
anism was able to maintain a performance equivalent
to the informed mechanism (with a memory initializa-
tion after each peak change). Thus, the evaporation
factor provides a self-adaptation mechanism that al-
low particles to autonomously track the changes in the
environment.

From these initial encouraging results, we are now
designing more exhaustive experiments for analyzing
the impact of different evaporation values and for com-
paring our hybrid PSO-RPSO algorithm with the ex-
isting literature.
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