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Abstract

When Al technologies are applied to real-world prob-
lems, it is often difficult for developers to anticipate all
the knowledge needed. Previous research has shown
that introspective reasoning can be a useful tool for
helping to address this problem in case-based reason-
ing systems, by enabling them to augment their routine
learning of cases with learning to make better use of
their cases, as problem-solving experience reveals de-
ficiencies in their reasoning process. In this paper we
present a new introspective model for autonomously
improving the performance of a CBR system by rea-
soning about system problem solving failures. We illus-
trate its benefits with experimental results from tests
in an industrial design application.

Introduction

The application of Al technologies to real-world prob-
lems has shown that it is difficult for developers to antic-
ipate all possible eventualities. Especially in long-lived
systems, changing circumstances may require changes
not only to domain knowledge but also to the reason-
ing process which brings it to bear. This requires intro-
spective reasoning, metareasoning by a system about
its own internal reasoning processes. This paper in-
vestigates applying introspective reasoning to improve
the performance of a case-based reasoning system, by
guiding learning to improve how a case-based reasoning
system applies its cases.

Case-based reasoning (CBR) is a problem-solving
methodology that exploits prior experiences when solv-
ing new problems, retrieving relevantly similar cases
and adapting them to fit new needs (for an overview
and survey, see Mantaras et al. (2005)). Many CBR
systems store each newly-solved problem and its solu-
tion as a new case for future use, enabling them to con-
tinuously improve their case knowledge. Nevertheless,
the success of a CBR system depends not only on its
cases, but also on its ability to use those cases appropri-
ately in new situations (which depends on the similarity
measure and the case adaptation mechanisms). Conse-
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quently, it is desirable for CBR systems to improve the
processes by which they bring their cases to bear.

Metareasoning techniques provide a promising ba-
sis for self-improving systems (see (Anderson & Oates
2007; Cox 2005) for recent reviews). As described by
Cox and Raja 2007, the metareasoning approach incor-
porates a meta-reasoning layer, with monitoring and
control capabilities over the reasoning process, to adjust
that reasoning process as needed. Previous research on
introspective CBR has shown that metareasoning can
enable a CBR system to learn by refining its own rea-
soning process. That work has tended to apply the in-
trospective approach only to a single aspect of the CBR
system, for example, to adjust the indices used for re-
trieval. This paper presents research on developing an
introspective reasoning model enabling CBR systems to
autonomously learn to improve multiple facets of their
reasoning processes.

The remainder of this paper describes an approach in
which an introspective reasoner monitors the CBR pro-
cess with the goal of adjusting the retrieval and reuse
strategies of the system to improve solution quality.
Novel aspects of this approach, compared to previous
work on introspective reasoning for CBR, include that
it applies a unified model for improving the two main
stages of the CBR process, that a single failure may
prompt multiple forms of learning, and that it performs
internal tests to empirically assess the value of changes
proposed by the introspective reasoner, to determine
which ones should be retained.

The next section discusses previous work on intro-
spective learning for case-based reasoning. The follow-
ing section presents a detailed description of our ap-
proach and its implementation. The approach has been
evaluated on problems from a fielded industrial applica-
tion for design of pollution control equipment, for which
we provide results in the next section. Before conclud-
ing the paper, we put in context our model with respect
to the metareasoning models discussed in (Cox & Raja
2007). In the last section we present the conclusions
and future work.



Related Work

Birnbaum et al. (1991) first proposed the use of self-
models within case-based reasoning. Work by Cox &
Ram (1999) develops a set of general approaches to in-
trospective reasoning and learning, automatically se-
lecting the appropriate learning algorithms when rea-
soning failures arise. This work defines a taxonomy of
causes of reasoning failures and proposes a taxonomy of
learning goals, used for analyzing the traces of reason-
ing failures and responding to them. Here case-based
reasoning is a vehicle for supporting introspective rea-
soning: CBR is used to explain reasoning failures and
generate learning goals.

A number of studies apply introspective approaches
to improve the performance of CBR systems. Leake
(1996) identifies the knowledge sources a CBR sys-
tem uses in its reasoning process and the required self-
knowledge about these sources, and provides examples
of refinement of retrieval knowledge using model-based
reasoning and of acquisition of adaptation knowledge by
search plans. Fox and Leake (2001) developed a system
inspired by Birnbaum et al’s proposal to refine index se-
lection for case-based reasoners. Fox and Leake’s work
develops a declarative model for describing the expec-
tations for correct reasoning behavior, and applies that
model to detecting and diagnosing reasoning failures.
When the introspective reasoner is able to identify the
feature that caused the failure, the system’s memory
is re-indexed, resulting in significant performance im-
provement. The DIAL system (Leake, Kinley, & Wil-
son 1995) improves case adaptation using introspection.
This research focuses on improving the performance of
the system by storing the traces of successful adaptation
transformations and memory search paths for future
reuse. Likewise, Craw (2006) proposes an introspective
learning approach for acquiring adaptation knowledge,
making it closely related to our work. However, a key
difference is that their learning step uses the accumu-
lated case base as training data for adaptation learning,
in contrast to our approach of incrementally refining
adaptation knowledge in response to failures for indi-
vidual problems.

Arcos (2004) presents a CBR approach for improving
solution quality in evolving environments. His work fo-
cuses on improving the quality of solutions for problems
which arise only occasionally, by analyzing how the so-
lutions of more typical problems change over time. Ar-
cos’s algorithm improves the performance of the system
by exploiting the neighborhoods in the solution space
but, unlike the model presented in this paper, learns
only from success.

The REM reasoning shell (Murdock & Goel 2008)
presents a meta-case-based reasoning technique for self-
adaptation. The goal of REM is the design of agents
able to solve new tasks by adapting their own reasoning
processes. Meta-case-based reasoning is used for gener-
ating new task-method decomposition plans. Because
the goal in REM is the assembly of CBR reasoning com-
ponents, the meta-model is focused on describing the

components in terms of their requirements and their ef-
fects. In contrast, our model is focused on describing
the expected correct properties of the components and
their possible reasoning failures.

Introspective reasoning to repair problems may also
be seen as related to the use of confidence mea-
sures for assessing the quality of the solutions pro-
posed by a CBR system (Cheetham & Price 2004;
Delany et al. 2005). Confidence measures provide ex-
pectations about the appropriateness of proposed solu-
tions. A high confidence solution that is determined to
be erroneous reveals a failure of the reasoning process
used to form the prediction, pointing to the need to re-
fine the self model. The unexpected success in a low
confidence solution may do so as well. Nevertheless,
because confidence measures provide no explanations
of their assessments, they are not helpful for revealing
the origin of the reasoning failure, making their failures
hard to use to guide repairs.

Introspective Reasoner

The goal of our introspective reasoning system is to de-
tect reasoning failures and to refine the function of rea-
soning mechanisms, to improve system performance for
future problems. To achieve this goal, the introspective
reasoner monitors the reasoning process, determines the
possible causes of its failures, and performs actions that
will affect future reasoning processes.

To give our system criteria for evaluating its case-
based reasoning performance, we have created a model
of the correctly-functioning CBR process itself, together
with a taxonomy of reasoning failures. Failures of a
CBR system’s reasoning process are modeled as con-
flicts between observed system performance and pre-
dictions from the model. These failures, in turn, are re-
lated to possible learning goals. Achieving these goals
repairs the underlying cause of the failure.

As illustrated in the bottom portion of Figure 1, the
case-based reasoning process consists of four steps:

(1) Case retrieval/similarity assessment, which deter-

mines which cases address problems most similar to
the current problem, to identify them as starting
points for solving the new problem,

(2) Case adaptation, which forms a new solution by

adapting/combining solutions of the retrieved prob-
lems,

(3) Case revision, which evaluates and adjusts the

adapted solution, and

(4) Case retention, in which the system learns from the

situation by storing the result as a new case for future
use.

Reasoning failures may be revealed by either of two
types of situation: i) when the retrieval or the adapta-
tion step is not able to propose a solution, or ii) when
the solution proposed by the system differs from the
final solution. Failures of the retrieval or adaptation



steps are identified directly by contrasting their perfor-
mance with model predictions. The second type of fail-
ure can be detected by monitoring the revision step. In
CBR systems, the revision step often involves interac-
tion with the user to determine the final solution. This
interaction provides a feedback mechanism for assessing
the “real” quality of the solution initially proposed.

For each of the four CBR steps, the model encodes
expectations, and the expectations are associated with
learning goals which are triggered if the expectations
are violated.

For example, the expected behavior of the similar-
ity assessment step is to rank the retrieved cases cor-
rectly. If they are ranked incorrectly, the failure may be
due to using an inappropriate weighting when similarity
assessments along different dimensions are aggregated.
Consequently, a possible strategy for solving the fail-
ure is to refine the weight model, and a corresponding
learning goal is to learn new weightings.

Our model is domain independent, i.e., it is focused
on the general case-based reasoning process for retrieval
and adaptation, rather than on specific details of those
processes for any particular domain. The model deals
with three types of knowledge: indexing knowledge,
ranking knowledge, and adaptation knowledge. To ap-
ply the model to any concrete application, domain-
specific retrieval and adaptation mechanisms must be
linked to the model.

Indexing knowledge determines the sub-space of the
case base considered relevant to a given problem. Rank-
ing knowledge identifies the features considered most
relevant to determining similarity, given a collection of
retrieved cases. Adaptation knowledge defines transfor-
mative and/or generative operations for fitting previous
solutions to a current problem.

Our approach is shaped by two working hypotheses.
The first is that the system is initially provided with
general retrieval and adaptation mechanisms, which ap-
ply uniform criteria to problems throughout the prob-
lem space. This is a common property of many case-
based reasoning systems, but experience developing
CBR systems has shown that this uniform processing
often results in sub-optimal processing, in turn result-
ing in the generation of low quality solutions. Conse-
quently, one of the focuses of our approach is to address
this problem: One of the learning goals of the introspec-
tive reasoner is to determine the ’real’ scope of cases, to
weight the different ranking criteria, and to refine the
adaptation model for different problem space regions.

The taxonomy defined for the learning goals par-
tially borrows from the taxonomy of learning goals
proposed in (Cox & Ram 1999). Nevertheless, in
our approach the learning goals are specifically ori-
ented towards refining the CBR process. For exam-
ple, determining the scope of cases is modeled in terms
of differentiation/reconciliation goals, whereas improv-
ing the ranking criteria is modeled in terms of refine-
ment/organization goals.

A second working hypothesis is that the CBR system

Meta-Model
Reasoning-Failures
Learning-Goals

7 |

//, v

]

: Inference :__ _ ‘(" Hypothesis Blame

1 Trace |99 Generation Assessment
L s

’ S~
/ ,
/
¥ ,’/ r [l
( - ) Hypothesis 4 Quality ! Solution t
Monit ’
onitoring ( Evaluation ) e (Assessmem 1 Quality :
N // H
\

7
/ Lo pr—

2 Z AN
7 T 7 T
/ \ S . \\
/ e, Z oMoy
. ) Proposed | R ! Final X
Retrieve Adapt : Solution {7 Revise : Solution Retain
.

[ A anesaess

B
Problem |« User

Figure 1: Introspective reasoner components. The hor-
izontal line divides the CBR process (bottom) and the
Introspective Reasoner (top).

is able to determine an internal estimate of confidence
for the solution it provides for a new problem. Because
this assessment will be domain-specific, it is not part
of our general model. In the application we consider,
the system always serves in an advisory role to an engi-
neer, who assesses the system-generated solution before
applying it. The engineer’s assessment provides a natu-
ral source of feedback for judging whether the system’s
confidence value was appropriate.

Because we are not interested in reasoning about nu-
meric confidence values, we deal with confidence using
three linguistic labels: low confidence, medium confi-
dence, and high confidence. The mapping to the nu-
meric intervals that represent the linguistic values must
be defined in each application. For instance, in our
chemical application, due to the important safety con-
straints in the chemical processes, a high confidence is
considered for values higher that 0.8 and low confidence
has the threshold at 0.6.

The system’s introspective reasoning is organized into
five tasks:

(1) the monitoring task, in charge of maintaining a trace

of the CBR process;

(2) the quality assessment task, that analyzes the quality

of the solutions proposed by the system;

(3) the blame assessment task, responsible for identifying

the reasoning failures;

(4) the hypotheses generation task, in charge of propos-

ing learning goals; and

(5) the hypotheses evaluation task, that assesses the im-

pact of proposed improvements on solution genera-
tion.

Figure 1 depicts the introspective reasoning com-
ponents. The horizontal line divides the CBR pro-
cess (bottom) from the Introspective Reasoner (top).



Rounded boxes represent inference processes; dashed
boxes represent knowledge generated by inference;
dashed lines show knowledge dependencies; black-
tipped arrows show inference flows; and hollow-tipped
arrows denote control relationships.

Monitoring

The monitoring task tracks the case-based reasoning
process. For each problem solved by the CBR system,
the monitor generates a trace containing: 1) the cases
retrieved, with a link to the indexing knowledge respon-
sible for the retrieval; 2) the ranking criteria applied
to the cases, together with the values that each crite-
rion produced and the final ranking; and 3) the adapta-
tion operators which were applied, with the sources to
which they were applied (the cases used) and the target
changes produced (the solution features).

Note that this does not require that the adaptation
step use only a single case, nor that all the retrieved
cases must be involved in all adaptations; any such con-
straints depend on specific applications, independent of
the general model. Similarly, our model distinguishes
application of indexing criteria and ranking criteria as
two sub-processes involved in the retrieval step, but it
does not require that they be decoupled in the imple-
mentation being monitored. For instance, a K-nearest
neighbor approach (Cover & Hart 1967) uses the value
of K to determine the number of cases considered and
uses the distance measure as a ranking criterion. Other
approaches might use crude criteria for indexing and
finer-grained criteria for case ranking.

Quality Assessment

When the user’s final solution is provided to the system,
quality assessment is triggered to determine the ’real’
quality of the system-generated solution, by analyzing
the differences between the system’s proposed solution
and the final solution. Quality assessment provides a
result in qualitative terms: low quality, medium quality,
or high quality.

Given the system’s initial confidence assessment and
the final quality assessment, the introspective reasoner
fires learning mechanisms when there is a mismatch be-
tween the two. There are two main types of possible
mismatches. When the confidence was high but the
quality is demonstrated to be low, the reasoning failure
points to the retrieval stage, because the confidence of
a solution has a strong relationship with the coverage
of the retrieved cases (Cheetham 2000).

On the other hand, when the confidence was low but
the quality is demonstrated to be high, the unexpected-
ness of success may be either due to low coverage from
cases (none of the system’s cases appeared highly rele-
vant) or due to bad ranking of the retrieved cases (the
most relevant cases were not considered, due to a failure
of the ranking polices to identify them). When the mis-
match between the confidence and the quality assess-
ments is small (i.e. high versus medium, medium ver-

sus high, medium versus low, and low versus medium)
it may suggest a failure in the adaptation stage.

Blame Assessment

Blame assessment starts by identifying the source of
the failure. It takes as input the differences between
the solution and expected result, and tries to relate
the solution differences to the retrieval or the adapta-
tion mechanisms. The system searches the taxonomy
of reasoning failures and selects those that apply to the
observed solution differences.

For instance, when a final solution is radically dif-
ferent from the solution proposed by the system, the
failure may be caused by the indexing knowledge, i.e.
either the relevant precedents have not been retrieved
or too many cases have been retrieved.

Search for applicable failures in the failure taxonomy
uses the trace generated by the monitoring module. It
starts by analyzing the index failures. There are three
types of index failures: wrong index, broad index, and
narrow index. When none of the retrieved cases have a
solution close to the current solution, the wrong index
failure is selected. A broad index failure is selected
when many cases are retrieved and their solutions are
diverse. On the other hand, when a small set of cases
is retrieved, the narrow index failure is selected.

Ranking failures are identified by comparing the re-
trieval rankings with the solution differences they gen-
erate. Examples of ranking failures are inappropri-
ate ranking, overestimated weights, and underestimated
weights.

Adaptation failures are identified by linking the so-
lution differences to the adaptation operators stored in
the monitoring trace. When adaptation uses interpola-
tion, adaptation failures originate in inappropriate in-
terpolation policies.

Because the introspective reasoner will often not be
able to determine a unique failure origin, all the possi-
ble causally-supported failures are chosen, resulting in
multiple types of learning goals from a single failure.

Hypothesis Generation

The fourth reasoning stage, Hypothesis Generation,
identifies the learning goals related to the reasoning
failures selected in the blame assignment stage. Each
failure may be associated with more than one learning
goal. For instance, there are multiple ways of solving
overestimated weights. For each learning goal, a set of
plausible local retrieval/adaptation changes in the ac-
tive policies is generated, using a predefined taxonomy.

Table 1 shows some of the types of hypotheses gen-
erated to explain failures in retrieval and adaptation
stages. The changes must be local because their appli-
cability is constrained to the neighborhood of the cur-
rent problem. For instance, when a refinement goal is
selected for the adaptation knowledge, an adaptation is
selected from a pre-defined collection of tuning actions
depending on the nature of the adaptation. Specifi-
cally, when adaptations are related to numerical fea-



Failure
Missing Index
Broad Index Refine Index
Underestimated Weight Adjust Weighting
Inappropriate interpolation | Change shape
Increase slope

Learning Goal
Create Index

Table 1: Examples of types of hypotheses used by the
Introspective Reasoner.

tures the tuning actions are types of numerical inter-
polations. The two main changes in numerical features
are related to the shape and slope of the interpolation
curve.

Hypothesis Evaluation

The fifth reasoning stage, Hypothesis Evaluation, eval-
uates the impact of introducing retrieval/adaptation
changes. Because the introspective reasoner does not
have a complete model of the inference process, it is
not possible for it to definitively predict the effects
of changes. Consequently, before altering the CBR
system, some empirical evidence about the impact of
the change must be obtained. In our current design
this is obtained by re-solving the problem, applying
each proposed change and evaluating its impact. Re-
trieval/adaptation changes that improve the quality of
the solution are incorporated into the CBR inference
mechanisms.

Note that when the introspective reasoner provides a
problem to the CBR system for testing purposes, the
case retention step is deactivated.

Experiments

We have tested the introspective reasoner as an exten-
sion to a fielded industrial design application. We have
developed a case-based reasoning system for aiding en-
gineers in the design of gas treatment plants for the
control of atmospheric pollution due to corrosive resid-
ual gases which contain vapors, mists, and dusts of in-
dustrial origin (Arcos 2001). A central difficulty for
designing gas treatment plants is the lack of a complete
model of the chemical reactions involved in the treat-
ment processes. Consequently, the expertise acquired
by engineers with their practical experience is essential
for solving new problems. Engineers have many pref-
erences and deep chemical knowledge, but our interac-
tions have shown that it is hard for them to determine in
advance (i.e. without a new specific problem at hand)
the scope and applicability of previous cases. They ap-
ply some general criteria concerning factors such as cost
and safety conditions, but other criteria depend on spe-
cific working conditions of the treatment process.

On the other hand, because engineers make daily use
of the application system to provide the final solutions
to customers, the system has the opportunity to com-
pare its proposed solutions with the solutions finally

delivered. Thus, we have the opportunity to assess the
impact of the introspective reasoner on the quality of
the solutions proposed by the CBR system.

Applying the CBR process

The inference process in this design application is de-
composed into three main stages:

(1) selecting the class of chemical process to be realized,;
(2) selecting the major equipment to be used; and

(3) determining the values for the parameters for each

piece of equipment.

The quality of proposed solutions is computed auto-
matically, by comparing the proposed solution to the
solution applied by the experts at these three differ-
ent levels. Mismatches at earlier steps are more serious
than at later ones. For example, except in the case of
under-specified problems, a mismatch with the class of
the chemical process would indicate a very low quality
solution.

The retrieval and adaptation steps have been de-
signed taking into account the three knowledge sources
described in the previous section: indexing criteria,
ranking criteria, and adaptation operators. Here the
problem features are related to the detected pollutants,
the industrial origin of the pollutants, and working con-
ditions for the pollution-control equipment (flow, con-
centrations, temperature). Indexing criteria determine
the conditions for retrieving cases. The main indexing
criteria are related to the initially defined chemical re-
lations among pollutants. Ranking criteria determine
a preference model defined as partial orders. Initially,
the preferences are homogeneous for the whole problem
space. Throughout the experiments, the introspective
reasoner automatically refines the initial model.

Reasoning failures originate from situations in which
the criteria do not properly identify the main pollutants
or critical working conditions. The consequences are
manifested in solutions for which the proposed chemical
process is not correct or there are inappropriate washing
liquids, or by mismatches on equipment parameters.

Testing Scenario

The design application can solve a broad range of prob-
lems. However, to test the effects of introspective rea-
soning for learning to handle novel situations, it is de-
sirable to focus the evaluation on sets of frequently-
occurring problems which share at least a pollutant
(minimal indexing criterion), in order to have reuse.
On the other hand, it is necessary to have sufficient
diversity—good performance on quasi-identical prob-
lems can be obtained by case learning alone, so does not
generate opportunities for the introspective reasoner.
We decided to focus the evaluation of the system
on problems with the presence of hydrogen sulphide,
a toxic gas produced by industrial processes such as
waste water treatment. From the existing application,
we had access to the 510 such solved problems, ordered
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Figure 2: Average solution quality for all the strategies.

chronologically. We divided the problems into two sets:
300 initial system cases and 210 testing problems.

To evaluate the contribution of the introspective rea-
soner we performed an ablation study, comparing the
performance of the system when presenting the prob-
lems sequentially for five different reasoning strategies.
In addition to testing inputs in chronological order, we
repeated the experiments ten times with random or-
ders for the testing problems, to assess the sensitivity
of learning to problem ordering. The tested reasoning
strategies are the following:

e No-Retain, a strategy that solved the problems
without introspective reasoning and without incorpo-
rating the solved cases into the case memorys;

e Retain, which solved the problems without intro-
spective reasoning and incorporating solved cases into
the system (the only learning normally done by CBR
systems);

e Int-Retr, which combined Retain with introspective
reasoning only for the retrieval refinement;

e Int-Adapt, which combined Retain with introspec-
tive reasoning only for adaptation refinement; and

e Int-Compl, which combined Retain with introspec-
tive reasoning for both retrieval refinement and adap-
tation refinement.

Results

Figure 2 shows the results of the evaluation for chrono-
logical problem presentation (results for random order-
ing were similar). Results support that the storage
of solved problems—case learning alone—improves the
performance of the system, but also show that this pol-
icy is not sufficient because the number of high con-
fidence solutions is increased but the number of low
quality solutions is not decreasing (see second column
in Figure 2).

A second conclusion from the results is that the main
contribution of using introspection to refine retrieval
knowledge is to reduce the number of low quality so-
lutions (a 36.67 % reduction). In our design applica-

Failures Occ. | Prop. | Inc.
Indexing Knowledge 12 ) 3
Ranking Knowledge 83 41 8
Adaptation Knowledge | 74 56 12

Table 2: Summary of the number of times learning
goals are triggered. Occ stands for failure occurrences,
Prop stands for hypotheses generated, and Inc stands
for changes incorporated into the CBR process.

tion this improvement is achieved by providing more
accurate ranking policies for determining the chemical
process to be realized.

The main contribution of using introspection for re-
fining adaptation knowledge (see fourth column in Fig-
ure 2) is an increase in the number of high quality solu-
tions (a 12.5 % increment). In our task, learning more
appropriate adaptation policies enables better determi-
nation of the different equipment parameters.

Interestingly, when introspection adjusts both re-
trieval and adaptation (last column in Figure 2), the
improvement in the retrieval step has an indirect ef-
fect on the adaptation step, increasing the number of
high quality solutions. An intuitive explanation is that
better retrieval also facilitates the adaptation process.
Thus, using both introspection strategies, the increase
in the number of high quality solutions reaches 15.63
%.

Comparing the number of problems that changed
their quality of solution, 12 % of the solved problems
qualitatively increased their solution quality. Solution
qualities varied, but the use of introspection did not
decrease the solution quality for any problem. More-
over, the reduction in low quality solutions is statisti-
cally significant (p < 0.05), even though the increase
of high quality solutions is not statistically significant.
Consequently, we conclude that the number of prob-
lems whose solution quality was improved by the use of
introspection is statistically significant.

Table 2 summarizes the activity inside the Intro-
spective Reasoner. Results summarize the experiments
using both introspection strategies, reflecting learning
goals triggered from the detection of 135 non-high-
confidence solutions. Most activity was focused on
ranking and adaptation failures, because these are the
most difficult tasks. Note that not all the generated
hypotheses were considered useful by the system (see
third and fourth columns): revisions to the reasoning
process were performed for 17 % of the instances for
which learning goals were triggered.

This result illustrates that the introspective reasoner
is dealing with partial understanding of the CBR pro-
cess and that the introspective learner’s hypotheses
should be tested before being applied.

It is clear that the incorporation of the introspective
reasoner entails a computational overhead. However,
it does not interfere with normal system performance:
the introspective reasoner is triggered only after a prob-



lem is solved and is a background process without user
intervention. Most of the cost of introspective reason-
ing arises from hypothesis generation. Table 2 shows
that the ratio between failures and hypotheses gener-
ated 0.6, because only failures highly explained by the
model become hypotheses. Consequently, the number
of hypotheses to verify is limited.

A risk of triggering metareasoning in response to in-
dividual reasoning failures is the possibility of treating
exceptions as regular problems. In the current experi-
ments, such situations did not arise, but in general we
assume that the user is responsible for recognizing the
exceptions. In addition, only taking action in response
to clearly identified failures helps the system to avoid
reasoning about exceptions.

Research on humans has shown that introspection
may sometimes have negative consequences. Experi-
ments reported in (Wilson & Schooler 1991) showed
that, when people is forced to think about the reasons
of a given decision, they focus only on plausible expla-
nations in the specific context of the decision. This
introspective process usually generates non-optimal ex-
planations affecting negatively future decisions. How-
ever, such risks do not apply directly to our approach.
First, only the changes incorporated into the CBR. pro-
cess are affecting future decisions, i.e. not the explo-
ration of plausible hypotheses. Second, the goal of the
hypothesis evaluation process is to verify the effect of
candidate changes on the system. Third, the changes
incorporated only have a local effects.

Relationship to the Metareasoning
Manifesto

Compared to the metareasoning models described by
Cox and Raja (2007), our approach is closely related to
the use of meta-level control to improve the quality of
decisions. Taking as inspiration their ‘Duality in rea-
soning and acting’ diagram, our approach incorporates
some revisions (see Figure 3).

First at all, at the ground level, our approach adds
the user of the system. The role of the user is twofold:
(1) she presents new problems to the system, and (2)
provides a feedback by revising the solution proposed
by the Object level. This second role is crucial since it
allows to the Meta-level to estimate the performance of
the Object level.

In our system, the Meta-level continuously monitors
the Object level (the case-based reasoning process) and
assesses the quality of the solutions proposed by the rea-
soner (using the quality assessment module). The user’s
final solution is used to assess the mismatch between
system’s expectations for its solution (the solution pro-
posed at the object level) and the correct solution (the
solution obtained from the ground level).

It is important to note the importance of the hypoth-
esis evaluation step. Because the introspective reasoner
cannot completely predict the effects of changing the
reasoning level, the hypothesis evaluation phase acts as

Query
Query | ( \ P Change
Ground | Proposal Object Meta-
Level Revise Level Monitoring Level
> >
——
User CBR Reasoning Metareasoning

Figure 3: Relating our model with existing Metarea-
soning Models.

an on-line trainer. Thus, the Meta-level, analogously
to ground level, has the ability to require the Object
level to solve new problems (Top-most query arrow in
Figure 3). Moreover, when the Meta-level is testing the
performance of the Object level it can temporally de-
activate the retention step (in our experiments this is
achieved by activating the No-Retain policy).

The control of the object level is achieved by acting
over three types of knowledge components used in the
reasoning process at the object level: indexing knowl-
edge, ranking knowledge, and adaptation knowledge.

Conclusions

This paper presented a new introspective model for au-
tonomously improving the performance of a CBR sys-
tem by reasoning about system problem solving fail-
ures. To achieve this goal, the introspective reasoner
monitors the reasoning process, determines the causes
of the failures, and performs actions that will affect fu-
ture reasoning processes.

We have created a causal model of the correctly func-
tioning retrieval and adaptation stages of CBR. Fail-
ures of a CBR system’s reasoning process are modeled
as conflicts between observed system performance and
predictions from the causal model. The sources of these
conflicts are identified and associated learning goals are
fired, sometimes triggering multiple types of learning.
As a result of the process, the CBR reasoning process
is improved for future problem solving.

We have tested the introspective reasoner in a fielded
industrial design application. Experiments show that
the use of the introspective reasoner improved the per-
formance of the system. Introspection-based refine-
ments of retrieval knowledge reduced the number of low
quality solutions; refinements to adaptation knowledge
increased high quality solutions. Moreover, the com-
bination of both is able to generate more high quality
solutions.

Because our model of the CBR reasoning process is
domain independent, it can be applied in other do-
mains. The engineering effort for incorporating the
metareasoning component to other domains would be
concentrated on linking domain-specific aspects of the
CBR reasoning process to the appropriate parts in the
model (retrieval, adaptation, and revision models). The



application of the metareasoning component to other
design domains would provide an opportunity to vali-
date the completeness of the taxonomies of reasoning
failures and learning goals. Our current work aims at
exploring the generality of our approach.
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