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IIIA, Artificial Intelligence Research Institute
CSIC, Spanish Council for Scientific Research

Campus UAB, 08193 Bellaterra, Catalonia, Spain
{oguz,arcos}@iiia.csic.es

Abstract. In Case-Based Reasoning systems, the election of the appro-
priate cases for the case base and the design of an accurate similarity
measure are crucial issues. Case-Base Maintenance techniques provide a
way to improve the case base mainly by identifying and deleting the cases
that produce noise in a system. In this paper we present a novel method
for identifying possible future problems with low confidence solutions
based on evolutionary techniques. We call these problems dubious future
problems. Moreover, some experiments are provided for illustrating the
usage of the method.
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1 Introduction

A Case-Based Reasoning(CBR) system solves new problems by reusing the so-
lutions of similar previously solved problems. A case base representative of the
problems to be solved and an accurate design of a similarity measure are cru-
cial for fitting the CBR hypothesis that states “similar problems have similar
solutions”.

With the increasing complexity of CBR systems, several techniques for the
analysis of the case base structure and its relation with the similarity measure
used in the retrieval phase have been proposed [1, 2]. The techniques known as
Case-Base Maintenance (CBM) have demonstrated their capacity for improving
the competence of CBR systems. Since in many applications the correctness of
the cases cannot be assured (either because a part of the problem description
may be unknown/incorrect or the solution wrongly labeled), existing CBM tech-
niques are focused on improving the systems competence by means of deleting
some cases of the case base [3–5]. For instance, in [5] a complexity measure for
highlighting areas of uncertainty within the problem space is proposed.

The assumption of CBM techniques is that the analysis of the cases provided
in the case base is a good approach for estimating the performance of the system
in future cases. Nevertheless, new problems to be solved will be slightly different
to the existing cases. Thus, the possibility of systematically assessing the per-
formance of a system in a set of possible future problems becomes an interesting
issue.



The use of confidence measures on the solutions provided by a CBR sys-
tem provides an assessment about how sure the system is about the solution
it proposes [6]. The importance of the availability of such a confidence mea-
sure is emphasised throughout recent research introducing possible confidence
calculations, e.g. [7, 8].

With the importance of confidence in a CBR system in mind, we came up
with the intuitive idea behind our proposal: If one could foresee the confidence of
a CBR system for possible future problems, he/she could detect future fallacies
and hence make improvements to leverage the overall confidence of the system
in a proactive fashion. We call future problems with low confidence solutions
dubious future problems.

In this work, we present an introspective method inspired on evolutionary
techniques to detect problematic zones(in terms of confidence) in the problem
space given an existing case base and a similarity measure. To effectively scan
the problem space, we conducted the search for dubious future problems in two
steps: First, we explored the problem space defined by the case base to find
dubious future problems. Then, we carried out an exploitation phase to better
locate these problems in the CB within their future neighbourhoods.

In this work we describe how this search is achieved assuming the availability
of the following knowledge in a CBR system:

– a domain ontology associated with the case base;
– a similarity metric; and
– a confidence measure that attaches a confidence value for each solution pro-

vided by the CBR system.

The paper is organized as follows: Section 2 describes the details of the evo-
lutionary method we are proposing and its two steps: Exploration and Exploita-
tion. Section 3 presents experimental results. Conclusions and future work are
presented in Section 4.

2 Exploration and Exploitation with an Evolutionary
Approach

Given a domain ontology associated with a CBR system, we are interested in
identifying possible future problems that are similar enough to the current cases
and that the confidence on their solutions provided by the CBR system is low.
Depending on the features that characterise a domain, the problem space can
be too vast or even infinite. To tackle the task with an analytical approach
by analysing the mathematical properties of the similarity measure could be
a theoretical alternative but in real applications, where the similarity measure
usually becomes a complex calculation, it cannot be performed easily. Genetic
Algorithms [9, 10] (GA) have demonstrated their capabilities for exploring vast
search spaces. They have the advantage of scanning the search space in a parallel
manner using a fitness function as heuristics for search. Inspired by the Darwin’s
theory of evolution, solution of a problem is evolved through a GA.



A GA is an iterative algorithm that starts with an initial set of possible so-
lutions (represented by chromosomes) called initial population. In each iteration
the population is transformed (by means of genetic operators such as selection,
crossover, and mutation) into a new generation hoping that each new generation
will be better than the previous population. The chance of being selected for a
chromosome as a survivor and/or a parent (of offspring chromosomes) is deter-
mined by its fitness, i.e. its suitability as a solution for the problem. A GA runs
until some termination criterion is satisfied like passing a number of iterations
or satisfying a fitness threshold.

In the search for dubious problems, the search space is the space of all prob-
lems that can be generated according to the domain ontology (i.e. in our case
we will be using GA to find problems not the solutions). Moreover, since we are
looking for dubious problems, the lesser confident the CBR system is about a
solution the more preferable candidate will be the problem.

With a diverse initial population and an appropriate fitness function, dubious
problems would evolve throughout generations of the running GA. However, as
commonly seen in practice, GAs might have a tendency to converge towards
local optima [9]. In our approach, this would result as getting stuck to a low
confidence zone and generating problems only within that locality instead of
scanning a wider region in the problem space. In many GAs, mutation is the
trusted genetic operator to avoid this problem as it introduces diversity to the
population, nevertheless it is usually not a guarantee.

Our approach to effectively search the problem space and to avoid local min-
ima is to divide the search into two steps, namely Exploration and Exploitation
of dubious future problems. In the Exploration step, the aim is to find dubious
future problems which are similar enough to existing cases and which are as dis-
similar as they could be to each other. The similarity to existing cases argument
is to avoid dealing with irrelevant problems which have no neighbour cases in
the CB. The confidence for a solution to a generated problem which has no sim-
ilar neighbours would probably be very low, but since this would already be an
expected result, it would not be of much interest to bring these problems to the
expert’s inspection. Additionally, the dissimilarity between dubious future prob-
lems is for the sake of obtaining diversity in the results of Exploration to achieve
a richer set of future problems and their neighbours after the Exploitation step.

Successively, in the Exploitation step our objective is to find future neigh-
bours of the dubious future problems encountered in the Exploration step for
providing a more precise analysis of the low confidence local regions. In the Ex-
ploitation step, existing cases in the case base with low confidence solutions are
also involved in the search.

Both, Exploration and Exploitation steps, incorporate two proximity limits
in terms of similarity to an existing case or a future problem. These limits define
the preferred region in the problem space during the search for dubious future
problems and their neighbours. We will explain both limits in detail for each
step in the next sub-sections. See Figure 1 for examples of proximity limits in
the exploration step.



In many genetic algorithms, it is a good practise to maintain the diversity
in the population in each generation or after a certain number of generations.
This need may arise, for example, in the case where we have many similar chro-
mosomes in a population due to successive crossover between similar parents or
when we do not observe a significant improvement at the fitness of the chro-
mosomes after a number of generations. Then, the diversity can be regained by
reducing the number of similar chromosomes and by replacing a group of chro-
mosomes with new ones respectively. We also added a Diversity Preservation
feature to our GAs for both steps to keep the population’s diversity at a desired
level.

The following sub-sections describe the details of the Exploration and Ex-
ploitation steps.

2.1 Exploration

The goal of the Exploration step is to identify an initial set of dubious problems
similar enough to the cases defined in a case base. For the Exploration step,
the proximity limits mentioned above define the preferred region of the search
for dubious problems. The outer limit defines the border for the less similar
problems, while the inner limit defines the border for the most similar ones to an
existing case in the CB. We also use the inner limit to draw a border around the
found dubious future problems since we are looking for dubious future problems
as diverse they are as possible in this step. A graphical representation of the
Exploration step is provided in Figure 1.

Throughout the execution of the GA for Exploration, we maintain a list of
encountered future problems with low confidence solutions LCFP. During the
evaluation of a population, each time we come across a chromosome representing
a dubious problem we add it to the LCFP list.

The concepts used in the GA for the Exploration step are explained below:

Chromosomes: Each chromosome in our population represents a future prob-
lem where each gene is a feature of the problem. The value of a gene is thus one
of the possible values for the associated feature.

Initial Population: The initial population is formed by chromosomes gen-
erated by the Random-Problem-Generator function (RPG). RPG is a function
able to generate a new problem by assigning random values for each problem
feature. Values for problem features can be easily generated using the defini-
tions of features in the domain ontology (feature definitions explicitly state the
data type and the set of possible values for a feature). It should also be con-
sidered that in the existence of domain constraints Random-Problem-Generator
function generates valid problems that conform to those constraints. Otherwise,
generated future problems might be non-valid or irrelevant in the domain. The
size of the population directly depends on the vastness of the problem space of
the CB that is being worked on.
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Fig. 1. Graphical representation of the Exploration step.

Fitness Function: The fitness of a chromosome is determined by two param-
eters: the confidence value of the solution to the problem represented by the
chromosome and the similarity (supplied by the similarity metric) of the prob-
lem to the nearest problem in the CB.

The fitness function has to be adapted in each different domain or CBR sys-
tem. However, the following guidelines should be used in Exploration regardless
of the domain or the application:

– The lower the confidence value is for a chromosome, the better candidate is
that chromosome.

– A chromosome in the preferred proximity of an existing case is a better
candidate than a chromosome which is not in this proximity.

– The confidence factor of the fitness is more significant than the similarity
factor. This is not surprising since we are searching for dubious problems.

Our proposal for the fitness function definition is the following:

Fitness(c) = Confidence(c)2 × SimilarityFactor(c)

where c is the chromosome to be evaluated; Confidence(c) is the confidence
value supplied by the CBR application after solving c; and SimilarityFactor is
calculated as follows:



SimilarityFactor(c) = partSimEC(c) + partSimFP (c)

where partSimEC(c) refers to the similarity of c to existing cases and partSimFP (c)
refers to the similarity of c to previously found future problems. partSimEC(c)
is defined as:

partSimEC(c) =
{

1− (OB + IB −maxSim(c, CB)) if maxSim(c, CB) ≥ IB
1−maxSim(c, CB) otherwise

where maxSim(c, CB) is the similarity value of c to the most similar case in
the CB, IB is the inner proximity threshold and OB is the outer proximity
threshold. partSimFP (c) is defined as:

partSimFP (c) =
∑

p∈FP

(similarity(c, p)− IB)

where FP ⊂ LCFP is the set of future problems to which c is more similar
than the allowed value IB and similarity(c, p) is the similarity value of c to the
problem p.

Following the previously defined guidelines, SimilarityFactor penalizes the
chromosomes that are too close to either cases or future problems discovered in
previous iterations(i.e. inside the radius defined by the inner threshold).

It should also be noted that for a desired chromosome(i.e. representing a
dubious future problem which is in the preferred proximity of an existing case)
our proposed function produces a fitness value which is lower than that for a
non-desired one.

Moreover, when a chromosome satisfies the confidence threshold and the
proximity limits for existing cases and found future problems we add it to the
LCFP list.

Selection: We defined a fitness-proportionate selection method. Fitness-proporti-
onate selection is a commonly used and well studied selection mechanism where
each chromosome has a chance proportional to its fitness value to be selected as
a survivor and/or parent for the next generations. However, since we are inter-
ested in chromosomes with lower fitness values as explained above, to comply
with our fitness function, selection of a chromosome was inversely proportional
to its fitness value.

Crossover: We use single-point crossover as it is simple enough and widely
used. Depending on the observed convergence of the GA, this method could eas-
ily be replaced by Two-Point or n-Point crossover methods.

Mutation: Generally, one random gene value is altered for a number of off-
spring chromosomes in the population. If a local minima problem is observed,
more genes and/or more chromosomes can be mutated.



Diversity Preservation: We decided to use a diversity threshold that can be
tuned for each application. Specifically, at each generation the number of twins
is calculated and, if it exceeded the diversity threshold, the twins are removed
probabilistically using as probability their fitness value (i.e. twins with higher
fitness have a higher probability to be deleted).

In our approach, the validity of a problem is another important issue. Due
to the application of genetic operators in the evolution cycle, they are likely to
reproduce offspring chromosomes which are non-valid. We may deal with these
chromosomes basically in two ways: we may replace them with new valid chro-
mosomes or we may let some of them survive hoping them to produce nice
offspring in the following generations. In the former option, the replacement can
be done in the Diversity Preservation. In the latter option, either a validity check
can be incorporated into the fitness function reducing the fitness of non-valid
chromosomes or simply non-valid chromosomes can be excluded from the LCFP
after the termination of the Exploration step. In the current implementation we
adopted this last solution.

Termination: The termination criterion for the GA can be reaching a number
of generations or a number of dubious future problems. We let the population
evolve for a certain number of generations.

Result: As the result of the GA we obtain the list of future problems with
low confidence solutions LCFP.

2.2 Exploitation

The goal of the Exploitation step is to explore the neighbourhood of the low-
confidence problems discovered in the Exploration step in order to improve the
analysis of the case base.

If there exist any retained cases in the CB with low confidence solutions we
also take them into account for exploitation. We name the list of those cases as
Low Confidence Existing Cases (LCEC).

Similarly to the Exploration step, during the execution of the GA for the
Exploitation step, we maintain a list of Low Confidence Problem Neighbours
LCPN . We initialise this list with the members of the union set LCEC ∪LCFP.
That is, the members of this list are the problems and cases that we want to
exploit.

For the Exploitation phase, the proximity limits define the preferred region
of the search for neighbour problems. The outer limit defines the border for
the less similar problems, while the inner limit defines the border for the most
similar ones to any member of the LCPN . A graphical representation of the
Exploitation step is provided in Figure 2.

The concepts used in the GA for the Exploitation step are the following:

Chromosomes, Selection, Crossover, Mutation, Diversity Preserva-
tion: These concepts have the same definitions as the corresponding ones pre-
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Fig. 2. Graphical representation of the exploitation step.

viously given in the Exploration step.

Initial Population: We partially feed the initial population with the union
set of LCEC ∪ LCFP hoping to reproduce similar problems and we use the
Random-Problem-Generator to reach to the wanted initial population size.

Fitness Function: The fitness of a chromosome c in the Exploitation step de-
pends only on its neighbourhood to any member of LCPN . The fitness function
is defined as follows:

Fitness(c) =
{

1− (OB + IB −maxSim(c,LCPN )) if maxSim(c,LCPN ) ≥ IB
1−maxSim(c,LCPN ) otherwise

where maxSim(c,LCPN ) is the similarity value of c to the most similar problem
in LCPN .

When a chromosome satisfies the proximity limits for a member of LCPN
or if it is a dubious future problem we add it to the LCPN list.

Termination: We let the population evolve for a certain number of genera-
tions in Exploitation as well.



Result: At the end, the Exploitation step provides the list LCPN in which
we both have dubious future problems together with their neighbours whether
they are themselves dubious or not.

3 Experimentation

To carry out a simple, yet a complete experiment, we used the Zoology dataset
available from UCI machine learning repository which has 100 examples and
7 solution classes. The domain ontology explicitly defines the data type and
the set of possible values of each feature. In addition, we explicitly stated the
constraints for the domain that restrict non-existing animals, e.g. an animal
cannot have feathers and hair at the same time. Thus, we were able to generate
valid future problems using this ontology.

In the genetic representation of the Zoology domain, each chromosome has 16
genes corresponding to the 16 features of each example in the data set. 15 of these
features(Hair, Feathers, Egss, Milk, Airbone, Aquatic, Predator, Toothed,
Backbone, Breathes, Venomous, Fins, Tail, Domestic, Catsize) are boolean
valued and 1 of them is an enumeration (Legs {0 2 4 5 6 8}). We defined
an additional not-supplied value for each feature to be able simulate non-
complete problems. The RPG function generated random chromosomes using
these features and their possible values.

For both Exploration and Exploitation, in each generation :

– 40% of the population was selected as survivors to the next generation using
Fitness Proportionate Selection(FPS).

– 60% of the chromosomes were selected as parents using FPS and Single-Point
Crossover was applied between each pair to reproduce offspring.

– Mutation was applied to the randomly chosen 5% of the offspring modifying
a gene’s value for each chosen chromosome.

– The diversity threshold for the twin chromosomes was 5%, we kept this
amount of twins in the new generation and replaced the rest of them with
new ones created by the RPG.

– We evaluated each chromosome in the population using fitness functions
defined in subsections 2.1 and 2.2 . During evaluation we maintained the list
LCFP in the Exploration and LCPN in the Exploitation.

– GAs were terminated after a given number of generations which was 50 or
80.

We used a k-NN-Retrieve method with an Euclidean metric and k = 3. The
Similarity Metric returned us similarity values in the range [0.0, 1.0]. This
metric calculated the minimum similarity between two cases in the Zoology
domain as 0.3536, where the maximium similarity was 0.9683. So, we chose
the test range [0.93, 0.99] for the proximity limit values in our experiments.
We kept the proximity for Exploitation narrower than Exploration since in the
former step we are exploiting future problems to have a better idea of their
future neighbourhood.



The Reuse method returned the solution class with the highest confidence
value. The confidence measure used was an implementation of the Similarity
Ratio Within K introduced in [8] and the range for confidence values was [0.0,
3.0]. We noted that in the domain:

– 2 cases had solutions with confidence values confidence < 1.0
– 7 cases had solutions with confidence values 1.0 <= confidence <= 2.0
– 50 cases had solutions with confidence values 2.0 < confidence < 3.0
– 41 cases had solutions with confidence values confidence = 3.0

So, a value of 2.0 for low confidence seemed a reasonable threshold for this
domain.

Trying different settings for inner and outer proximity limits for both cases
and future problems, GA population sizes and number of generations allowed
for evolution, we wanted to see how the GAs evolved with the resulting LCFP,
LCPN lists. Because of the random nature of GAs, for each setting we executed
the Exploration and Exploitation steps five times to get an average value for the
number of the members of the lists.

In the Table 1 we give some of the experimentation results for different GA
settings, confidence thresholds and proximity limits. Where,
– PopSize : Population size for both GAs;
– GenrCnt : Number of generations we allow for the evolution in both GAs;
– ThrsConf : Threshold for Low Confidence;
– EC-IB : Inner limit of similarity for existing cases;
– EC-OB : Outer limit of similarity for existing cases;
– FP-IB : Inner limit of similarity for future problems;
– FP-OB : Outer limit of similarity for future problems;
– LCEC : Number of the members of the LCEC list;
– LCFP : Number of the members of the LCFP list; and
– LCPN : Number of the members of the LCPN list.

The results show that we may encounter a higher number of dubious future
problems and their neigbours when,

– the initial population is richer in size;
– GAs evolve during more generations;
– the area within proximity limits is wider;and
– the threshold of low confidence is high.

For example, in the third and fourth rows of the table, we can observe that
increasing the population size from 100 to 150, we had obtained lists LCFP and
LCPN with more future problems. The first and second lines give an example
where we widened the proximity in exploration and had a richer LCFP list and
in turn after exploiting this richer list we got a richer LCPN as well.

It should be noted that although it is possible to get a richer list of future
problems adjusting proximity limits, our aim is to find dubious problems within
a reasonable neighbourhood of existing cases. So, these limits should be chosen
carefully. The low confidence threshold is another crucial parameter because it
is a matter of decision of up to which value we could regard the confidence of a
solution as acceptable.



Table 1. Experimental Results

PopSize GenrCnt ThrsConf EC-IB EC-OB FP-IB FP-OB LCEC LCFP LCPN
100 50 2.0 0.98 0.95 0.99 0.96 7 6 108
” ” ” ” 0.94 ” ” 7 10 141
” ” ” 0.97 0.93 ” ” 7 21 176
” ” ” 0.96 ” ” ” 7 21 165

150 ” ” ” ” ” ” 7 29 238
100 80 ” ” ” ” ” 7 27 225
” 50 1.0 ” ” ” ” 2 26 174
” 50 ” 0.98 0.94 ” ” 2 11 159
” 80 ” 0.97 0.93 ” 0.95 2 25 140
” ” ” ” 0.94 0.98 0.96 2 12 123

150 ” ” ” ” ” ” 2 20 243
100 80 ” ” ” ” ” 2 7 235

4 Conclusions

In this paper we presented a novel method for identifying future low confidence
regions given an existing case base. We have proposed an evolutionary approach
for exploring the problem space. We achieved the exploration by conducting a
search in two steps: first, we explored the problem space defined by the case base
to find dubious future problems; next, we carried out an exploitation phase to
better locate the problems in the CB within their neighbourhoods.

We described the experiments performed with a classification dataset and
provided some hints about how to tune the method parameters according to the
systems designer interests.

We believe that the introduced method can be used in most, if not all, of the
CBR applications in which it is possible to generate future problems using the
domain ontology and evaluate them using the confidence and similarity measures
provided by the CBR system.

The next step in our work is to characterise the regions identified by the
dubious future problems for providing a more abstract analysis tool. The goal
is to analyse neighbour dubious problems trying to characterise them according
to a collection of patterns like holes, borders etc. These patterns may lead to
an automatised maintenance or at least a collection of guidelines for a manual
maintenance by a domain expert. For instance, a dubious problem found near
existing cases of another class could be indicative of an erroneous reuse.

As a future work, we also plan to design a graphical tool for navigating
through the problem space. We plan to join the method described in this paper
with a visualisation method for case base competence based on the solution
qualities presented in [11].
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