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ABSTRACT

Computing melodic similarity is a very general problem
with diverse musical applications ranging from music anal-
ysis to content-based retrieval. Choosing the appropriate
level of representation is a crucial issue and depends on
the type of application. Our research interest concerns the
development of a CBR system for expressive music pro-
cessing. In that context, a well chosen distance measure
for melodies is a crucial issue. In this paper we propose
a new melodic similarity measure based on the I/R model
for melodic structure and compare it with other existing
measures. The experimentation shows that the proposed
measure provides a good compromise between discrimi-
natory power and the level of abstraction of melody rep-
resentation.

1. INTRODUCTION

Computing melodic similarity is a very general problem
with diverse musical applications ranging from music anal-
ysis to content-based retrieval. Choosing the appropriate
level of representation is a crucial issue and depends on
the type of application. For example, in applications such
as pattern discovery in musical sequences [1], [4], or style
recognition [4], it has been established that melodic com-
parison requires taking into account not only the individ-
ual notes but also the structural information based on mu-
sic theory and music cognition [12].

Our research interest concerns the development of a
CBR system for expressive music processing. In that con-
text (e.g. for retrieval and reuse mechanisms), a well cho-
sen distance measure for melodies is of importance. Some
desirable features of such a measure are the ability to dis-
tinguish phrases from different musical styles and to rec-
ognize phrases that belong to the same song. We propose
a new way of assessing melodic similarity, representing
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the melody as a sequence of I/R structures (conform Nar-
mour’s Implication/Realization (I/R) model for melodic
structure [10]). The similarity is then assessed by cal-
culating the edit-distance between I/R representations of
melodies. We compared this assessment to assessments
based on note representations [9], and melodic contour
representations [2, 7].

We have found that the discriminatory power (using an
entropy based definition) of the note level distance mea-
sure is much lower than that of the contour and I/R level
measures. Also, taking into account interval durations
within the contour level measures, tended to decrease the
discriminatory power. We argue that the I/R level mea-
sure is an appropriate compromise that takes into account
rhythmical/temporal information in an implicit way, with-
out losing discriminatory power.

The paper is organized as follows: In Section 2 we
briefly introduce the Narmour’s Implication/Realization
Model. In section 3 we describe the four distance mea-
sures we are comparing — the note-level distance pro-
posed in [9], two variants of contour-level distance and
the I/R-level distance we propose as an alternative. In sec-
tion 4 we report the experiments performed using these
four distance measures on a dataset that comprises mu-
sical phrases from a number of well known jazz songs.
The paper ends with a discussion of the results, and the
planned future work.

2. THE IMPLICATION/REALIZATION MODEL

Narmour [10, 11] has proposed a theory of perception and
cognition of melodies, the Implication/Realization model,
or I/R model. According to this theory, the perception of
a melody continuously causes listeners to generate expec-
tations of how the melody will continue. The sources of
those expectations are two-fold: both innate and learned.
The innate sources are ‘hard-wired’ into our brain and pe-
ripheral nervous system, according to Narmour, whereas
learned factors are due to exposure to music as a cul-
tural phenomenon, and familiarity with musical styles and
pieces in particular. The innate expectation mechanism
is closely related to thegestalt theoryfor visual percep-
tion [5, 6]. Gestalt theory states that perceptual elements
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Figure 1. Top: Eight of the basic structures of the I/R
model. Bottom: First measures of All of Me, annotated
with I/R structures.

are (in the process of perception) grouped together to form
a single perceived whole (a ‘gestalt’). This grouping fol-
lows certain principles (gestalt principles). The most im-
portant principles areproximity (two elements are per-
ceived as a whole when they are perceptually close),sim-
ilarity (two elements are perceived as a whole when they
have similar perceptual features, e.g. color or form, in vi-
sual perception), andgood continuation(two elements are
perceived as a whole if one is a ‘good’ or ‘natural’ contin-
uation of the other). Narmour claims that similar princi-
ples hold for the perception of melodic sequences. In his
theory, these principles take the form ofimplications: Any
two consecutively perceived notes constitute a melodic in-
terval, and if this interval is not conceived as complete, or
closed, it is animplicative interval, an interval that implies
a subsequent interval with certain characteristics. In other
words, some notes are more likely to follow the two heard
notes than others. Two main principles concernregis-
tral direction and intervallic difference. The principle of
registral direction states that small intervals imply an in-
terval in the same registral direction (a small upward in-
terval implies another upward interval, and analogous for
downward intervals), and large intervals imply a change in
registral direction (a large upward interval implies another
upward interval and analogous for downward intervals).
The principle of intervallic difference states that a small
(five semitones or less) interval implies a similarly-sized
interval (plus or minus 2 semitones), and a large intervals
(seven semitones or more) implies a smaller interval.

Based on these two principles, melodic patterns can
be identified that either satisfy or violate the implication
as predicted by the principles. Such patterns are called
structuresand labeled to denote characteristics in terms
of registral direction and intervallic difference. Eight such
structures are shown in figure 1(top). For example, the
P structure (‘Process’) is a small interval followed by an-
other small interval (of similar size), thus satisfying both
the registral direction principle and the intervallic differ-
ence principle. Similarly the IP (‘Intervallic Process’) struc-
ture satisfies intervallic difference, but violates registral
direction.

Additional principles are assumed to hold, one of which
concernsclosure, which states that the implication of an
interval is inhibited when a melody changes in direction,
or when a small interval is followed by a large interval.
Other factors also determine closure, like metrical posi-
tion (strong metrical positions contribute to closure, rhythm

(notes with a long duration contribute to closure), and
harmony (resolution of dissonance into consonance con-
tributes to closure).

We have designed an algorithm to automate the anno-
tation of melodies with their corresponding I/R analyses.
The algorithm implements most of the ‘innate’ processes
mentioned before. The learned processes, being less well-
defined by the I/R model, are currently not included. Nev-
ertheless, we believe that the resulting analysis have a rea-
sonable degree of validity. An example analysis is shown
in figure 1(bottom).

3. MEASURING MELODIC DISTANCES

For the comparison of the musical material on different
levels, we used a measure for distance that is based on
the concept ofedit-distance(also known as Levenshtein
distance [8]). In general, the edit-distance between two
sequences is defined as the minimum total cost of trans-
forming one sequence (the source sequence) into the other
(the target sequence), given a set of allowed edit opera-
tions and a cost function that defines the cost of each edit
operation. The most common set of edit operations con-
tains insertion, deletion, and replacement. Insertion is the
operation of adding an element at some point in the tar-
get sequence; deletion refers to the removal of an element
from the source sequence; replacement is the substitution
of an element from the target sequence for an element of
the source sequence.

Because the edit-distance is a measure for comparing
sequences in general, it enables one to compare melodies
not only as note sequences, but in principle any sequential
representation can be compared. In addition to compar-
ing note-sequences, we have investigated the distances be-
tween melodies by representing them as sequences of di-
rectional intervals, directions, and I/R structures, respec-
tively.

These four kinds of representation can be said to have
different levels of abstraction, in the sense that some rep-
resentations convey more concrete data about the melody
than others. Obviously, the note representation is the most
concrete, conveying absolute pitch, and duration informa-
tion. The interval representation is more abstract, since
it conveys only the pitch intervals between consecutive
notes. The direction representation abstracts from the size
of the intervals, maintaining only their sign. The I/R rep-
resentation captures pitch interval relationships by distin-
guishing categories of intervals (small vs. large) and it
characterizes consecutive intervals as similar or dissimi-
lar. The scope of this characterization (not all interval-
pairs are necessarily characterized), depends on metrical
and rhythmical information.

An example may illustrate how the interval, direction
and I/R measures assess musical material. In figure 2,
three musical fragments are displayed. The direction mea-
sure rates A – B and A – C as equally distant, which is not
surprising since A differs by one direction from both B
and C. The interval measure rates A as closer to B than
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Figure 2. An example illustrating differences of similarity
assessments by the interval, direction and I/R measures.

to C. The most prominent difference between A and C in
terms of intervals is the jump between the last note of the
first measure and the first note of the second. In fragment
A this jump is a minor third down, and for C it is a perfect
fourth up. It can be argued that this interval is not really
relevant, since the first three and the last three notes of the
fragments form separate perceptual groups. The I/R dis-
tance assessment does take this separation into account, as
can be seen from the I/R groupings and rates fragment A
closer to C than to fragment B.

The next subsections briefly describe our decisions re-
garding the choice of edit-operations and weights of oper-
ations for each type of sequence. We do not claim these
are the only right choices. In fact, this issue deserves fur-
ther discussion and might benefit also from empirical data
conveying human similarity ratings of musical material.

3.1. An edit-distance for note sequences

In the case of note sequences, we have followed Mon-
geau and Sankoff’s approach [9]. They propose to ex-
tend the set of basic operations (insertion, deletion, re-
placement) by two other operations that are more domain
specific: fragmentationand consolidation. Fragmenta-
tion is the substitution of a number of (contiguous) el-
ements from the target sequence for one element of the
source sequence; conversely, consolidation is the substitu-
tion of one element from the target-sequence for a number
of (contiguous) elements of the source sequence. In mu-
sical variations of a melody for example, it is not uncom-
mon for a long note to be fragmented into several shorter
ones, whose durations add up to the length of the original
long note.

The weights of the operations are all linear combina-
tions of the durations and pitches of the notes involved in
the operation. The weights of insertion and deletion of a
note are equal to the duration of the note. The weight of
a replacement of a note by another note is defined as the
sum of the absolute difference of the pitches and the ab-
solute difference of the durations of the notes. Addition-
ally, there is a weight factor for the duration difference, in
order to control the relative importance of pitch and dura-
tion attributes. Fragmentation and consolidation weights
are calculated similarly: the weight of fragmenting a note
n1 into a sequence of notesn2, n3, ..., nN is again com-
posed of a pitch part and a duration part. The pitch part
is defined by the sum of the absolute pitch differences be-

tweenn1 and n2, n1 and n3, etc. The duration part is
defined by the absolute difference between the duration
of n1, and the summed durations ofn2, n3, ..., nN . Just
like the replacement weight the fragmentation weight is a
weighted sum of the pitch and duration parts. The weight
of consolidation is exactly the converse of the weight of
fragmentation.

3.2. An edit-distance for contour sequences

One way to conceive of the contour of a melody is as
comprising the intervallic relationships between consec-
utive notes. In this case, the contour is represented by a
sequence of signed intervals. Another idea of contour is
that it just refers to the melodic direction (up/down/repeat)
pattern of the melody, discarding the sizes of intervals (the
directions are represented as 1,0,-1, respectively). In our
experiment, we have computed distances for both kinds of
contour sequences.

We have restricted the set of edit operations for both
kinds of contour sequences to the basic set of insertion,
deletion and replacement, thus leaving out fragmentation
and consolidation, since there is no correspondence to frag-
mentation/consolidation as musical phenomena (as there
is trivially in the case of note-sequences). The weights for
replacement of two contour elements (intervals or direc-
tions) is defined as the absolute difference between the el-
ements, and the weight of insertion and deletion is defined
as the absolute value of the element to be inserted/deleted
(conform Lemstr̈om and Perttu [7]).

Additionally, one could argue that when comparing two
intervals, it is also relevant how far the two notes that con-
stitute each interval are apart in time. This quantity is
measured as the time interval between the starting posi-
tions of the two notes, also called the Inter Onset Interval
(IOI). We incorporated the IOI into the weight functions
by adding it as a weighted component. For example, letP1

andIOI1 respectively be the pitch interval and the IOI be-
tween two notes in sequence 1 andP2 andIOI2 the pitch
interval and IOI between to notes in sequence 2, then the
weight of replacing the first interval by the second, would
be|P2 −P1|+ k · |IOI2 − IOI1|. The weight of deletion
of the first interval would be1 + k · IOI1.

3.3. An edit-distance for I/R sequences

The sequences of (possibly overlapping) I/R structures (I/R
sequences, for short) that the I/R parser generated for the
musical phrases, were also compared to each other. Just
as with the contour sequences, it is not obvious which
kinds of edit operations could be justified beyond inser-
tion, deletion and replacement. It is possible that research
investigating the I/R sequences of melodies that are musi-
cal variations of each other, will point out common trans-
formations of music at the level of I/R sequences. In that
case, edit operations may be introduced to allow for such
common transformations. Presently however, we know of
no such common transformations, so we allowed only in-
sertion, deletion and replacement.



As for the estimation of weights for edit operations
upon I/R structures, note that unlike the replacement oper-
ation, the insertion and deletion operations do not involve
any comparison between I/R structures. It seems reason-
able to make the weights of insertion/deletion somehow
proportional to the ‘importance’ or ‘significance’ of the
I/R structure to be inserted/deleted. Ideally the (unformal-
ized) notion of significance of an I/R structure would de-
pend on the context of the structure. However, this would
not make sense in the case of editing sequences, as this
would create a cyclic dependence among the weights of
edit operations. Therefore we propose to take the size of
an I/R structure, referring to the number of notes the struc-
ture spans, as a more practical indicator of the significance
of an I/R structure. The weight of an insertion/deletion of
an I/R structure can then simply be the size of the struc-
ture.

The weight of a replacement of two I/R structures should
assign high weights to replacements that involve two very
different I/R structures and low weights to replacements of
an I/R structure by a similar one. The rating of distances
between different I/R structures (which to our knowledge
has as yet remained unaddressed) is an open issue. Dis-
tance judgments can be judged on class attributes of the
I/R structures, for example whether the structure captures
a realized or rather a violated expectation. Alternatively,
or in addition, the distance judgment of two instances of
I/R structures can be based on instance attributes, such as
the number of notes that the structure spans (which is usu-
ally but not necessarily three), the registral direction of the
structure, and whether or not the structure is chained with
neighboring structures.

Aiming at a straight-forward definition of replacement
weights for I/R structures, we decided to take into account
four attributes. The first term in the weight expression is
the difference in size (i.e. number of notes) of the I/R
structures. Secondly, a cost is added if the direction of the
structures is different (where the direction of an I/R struc-
ture is defined as the direction of the interval between the
first and the last note of the structure). Thirdly, a cost is
added if one I/R structure is chained with its successor
and the other is not (this depends metrical and rhythmical
information). Lastly, a cost is added if the two I/R struc-
tures are not of the same kind (e.g.P andVP). A special
case occurs when one of the I/R structures is theretro-
spectivecounterpart of the other (a retrospective structure
generally has the same up/down contour as it’s prospec-
tive counterpart, but different interval sizes; for instance,
a retrospective P structure typically consists of two large
intervals in the same direction, see [10] for details). In
this case, a reduced cost is added, representing the idea
that a pair of retrospective/prospective counterparts of the
same kind of I/R structure is more similar than a pair of
structures of different kinds.

3.4. Computing the Distances

The minimum cost of transforming a source sequence into
a target sequence can be calculated using the following

recurrence equation for the distancedij between two se-
quencesa1, a2, ..., ai andb1, b2, ..., bj :

dij = min


di−1,j + w(ai, ∅) (a)

di,j−1 + w(∅, bj) (b)

di−1,j−1 + w(ai, bj) (c)

di−1,j−k + w(ai, bj−k+1, ..., bj), 2 ≤ k ≤ j (d)

di−k,j−1 + w(ai−k+1, ..., ai, bj), 2 ≤ k ≤ i (e)

for all 1 ≤ i ≤ m and1 ≤ j ≤ n, wherem is the
length of the source sequence andn is the length of the
target sequence. The terms on the right side respectively
represent the cases of (a) deletion, (b) insertion, (c) re-
placement, (d) fragmentation and (e) consolidation. Addi-
tionally, the initial conditions for the recurrence equation
are are:

di0 = di−1,j + w(ai, ∅) deletion

d0j = di,j−1 + w(∅, bj) insertion

d00 = 0

For two sequencesa andb, consisting ofm andn elements
respectively, we takedmn as the distance betweena and
b. The weight functionw, defines the cost of operations
(which we discussed in the previous subsections). For
computing the distances between the contour and I/R se-
quences respectively, the terms corresponding to the cost
of fragmentation and consolidation are simply left out of
the recurrence equation.

4. EXPERIMENTATION

A crucial question is how the behavior of each distance
measure can be evaluated. One possible approach could
be to gather information about human similarity ratings
of musical material, and then see how close each distance
measure is to the human ratings. Although this approach
would certainly be very interesting, it has the practical dis-
advantage that it may be hard to obtain the necessary em-
pirical data. For instance, it may be beyond the listener’s
capabilities to confidently judge the similarity of musi-
cal fragments longer than a few notes, or to consistently
judge hundreds of fragments. Related to this is the more
fundamental question of whether there is any consistent
‘ground truth’ concerning the question of musical similar-
ity (see [3] for a discussion of this regarding musical artist
similarity). Leaving these issues aside, we have chosen
a more pragmatic approach, in which we compared the
ratings of the various distance measures, and investigate
possible differences in features like discriminating power.
Another criterion to judge the behavior of the measures
is to see how they assess distances between phrases from
the same song versus phrases from different songs. This
criterion is not ideal, since it is not universally true that
phrases from the same song are more similar than phrases
from different songs, but nevertheless we believe this as-
sumption is reasonably valid.

The comparison of the different distance measures was
performed using 124 different musical phrases from 40
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Figure 3. Distribution of distances for four melodic similarity
measures. The x axis represents the normalized values for the
distances between pairs of phrases. The y axis represents the
number of pairs that have the distance shown on the x axis.

different jazz songs from the Real Book. The musical
phrases have a mean duration of eight bars. Among them
are jazz ballads like ‘How High the Moon’ with around
20 notes, many of them with long duration, and Bebop
themes like ‘Donna Lee’ with around 55 notes of short
duration. Jazz standards typically contain some phrases
that are slight variations of each other (e.g. only differ-
ent beginning or ending) and some that are more distinct.
This is why the structure of the song is often denoted by
a sequence of labels such as A1, A2 and B, where labels
with the same letters denote phrases that are similar.

With the 124 jazz phrases we performed all the possi-
ble pair-wise comparisons (7626) using the four different
measures. The resulting distance values were normalized
per measure. Figure 3 shows the distribution of distance
values for each measure. The results for the direction and
interval measures were obtained by leaving IOI informa-
tion out of the weight function (i.e. setting thek parameter
to 0, see section 3.2).

The first thing to notice from figure 3 is the difference
in similarity assessments at the note-level on the one hand,
and the interval, direction and I/R-levels on the other hand.
Whereas the distance distributions of the last three mea-
sures are more spread across the spectrum with several
peaks, the note level measure has its values concentrated
around one value. This suggests that the note-level mea-
sure has a low discriminatory power. We can validate this
by computing the entropy as a measure of discriminatory
power: Letp(x), x ∈ [0, 1] be the normalized distribution
of a distance measureD on a set of phrasesS, discretized
into k bins, then the entropy ofD onS is

H(D) = −
1∑
0

p(k) ln p(k)

wherep(k), is the probability that the distance between a
pair of phrases is in bink. The discriminatory power for
note, interval, direction and I/R measures are then 4.41,
5.27, 5.12 and 4.91, respectively.

An interesting detail of the note measure distribution
is a very small peak between0 and 0.2 (hard to see in
the plot). More detailed investigation revealed that the
data points in this region were comparisons between ‘part-
ner’ phrases of the same song (e.g. the A1 and A2 vari-
ants). This peak is also observable in the I/R measure, in
the range0 − .05, In the interval and direction measure
the peak is ‘overshadowed’ by a much larger neighboring
peak. This suggests that the note and I/R measures are
better at separatingvery much resemblingphrases from
not much resemblingphrases than the interval and direc-
tion measures. However, the note measure lacks a sub-
tle assessment necessary for separation of thenot-much-
resemblingcategory into sub-categories.

The interval, direction and I/R measures seem to have
higher discriminatory power for phrases that are not near-
identical. In particular, the various peaks in their distribu-
tion are evidence that these measures cluster the phrases in
some way, since the within-cluster comparisons produce
an accumulation of low-distance values, and the between-
cluster comparisons of the various clusters produce peaks
at higher distance values, depending on how close the clus-
ters are to each other.

The distributions of the interval and direction measures
in figure 3 show the assessments that did not include any
kind of rhythmical/temporal information. Contour repre-
sentations that ignore rhythmical information are some-
times regarded as too abstract, since this information may
be regarded as an essential aspect of melody [13, 14].
Therefore, we tested the effect of weighing the inter-onset
time intervals (IOI) on the behavior of the interval and dis-
tance measures. Increasing the weights of IOI did improve
the ability to separatewithin-songcomparisons (compar-
ing phrases from the same song) from thebetween-song
comparisons (comparing phrases from different songs).
However, it decreased the discriminatory power of the mea-
sures. In figure 4, the distance distributions of the direc-
tion measure are shown for different weights of IOI. Note
that, as the IOI weight increases, the form of the distri-
bution smoothly transforms from a multi-peak form (like
those of the interval, direction and I/R measures in fig-
ure 3), to a single-peak form (like the note-level measure
in figure 3). That is, the direction level assessments with
IOI tend to resemble the more concrete note level assess-
ment, with a degradation in discriminatory power from
5.12 fork = 0 to 4.81 fork = 2. A similar effect was
observed for the interval measure.

This shows that taking into account rhythmic informa-
tion in a straight-forward manner (by weighing the IOI’s
in calculating the edit-distance), decreases the discrimi-
nating power of the direction and interval measures for the
set of musical phrases under consideration. In this respect,
the I/R measure is an interesting alternative, since it does
abstract from the literal musical surface, but at the same
time rhythmical information is not completely ignored.
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Figure 4. Distributions of distances of the direction measure
for various weights of inter-onset intervals.

5. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed a new way of assessing
melodic similarity and compared it with existing methods
for melodic similarity assessment, using a dataset of 124
jazz phrases from well known jazz songs.

The discriminatory power (using an entropy based def-
inition) on the whole dataset was highest for the (most ab-
stract) contour and I/R level measures and lowest for the
note level measure. This suggests that abstract melodic
representations serve better to differentiate between phrases
that are not near-identical (e.g. phrases belonging to dif-
ferent musical styles) than very concrete representations.
It is conceivable that the note-level distance measure is
too fine-grained for complete musical phrases and would
be more appropriate to assess similarities between smaller
musical units (e.g. musical motifs).

The experimentation also showed that the note and I/R
level measures were better at clustering phrases from the
same song than the contour (i.e. interval and direction)
level measures. This might be due to the fact that rhyth-
mical information is missing in the contour level mea-
sures. Taking into account this information (by weight-
ing the IOI values in the edit operations) in the contour
level measures improved their ability separatewithin-song
comparisons frombetween-songcomparisons, at the cost
of discriminatory power on the whole dataset.

It may be concluded that the distance measure based on
I/R representations is a good compromise between very
concrete and very abstract melodic representations. It in-
corporates rhythmic information in an implicit way, allow-
ing the measure to separatewithin-songcomparisons from
between-songcomparisons, while maintaining its discrim-
inative power on assessments that involve more diverse
musical phrases.

In the future, we wish to investigate the usefulness of
the similarity measures to cluster phrases from the same
musical style. Some initial tests indicated that in partic-
ular the contour and I/R measures separated bebop style
phrases from ballads. Possibly, further categorizations can

also be made. However, for definitive conclusions in this
direction, more research (with explicitly labeled data) is
needed.
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