
AMELI: An Agent-based Middleware for Electronic Institutions ∗

Marc Esteva, Bruno Rosell, Juan A. Rodrı́guez-Aguilar, Josep Ll. Arcos
IIIA-CSIC, Campus UAB

08193 Bellaterra, Barcelona, Spain
{marc,rosell,jar,arcos}@iiia.csic.es

Abstract

The design and development of open multi-agent systems
(MAS) is a key aspect in agent research. We advocate that
they can be realised aselectronic institutions. In this paper
we focus on the execution of electronic institutions by intro-
ducing AMELI, an infrastructure that mediates agents’ in-
teractions whileenforcinginstitutional rules. An innovative
feature of AMELI is that it is ofgeneral purpose(it can in-
terpret any institution specification), and therefore it can be
regarded asdomain-independent. The combination of IS-
LANDER [5] and AMELI provides full support for the de-
sign and development of electronic institutions.

1. Introduction

So far MAS researchers have bargained for well-
behaved agents immersed in reliable infrastructures in rel-
atively simple domains. Such assumptions are not valid
any longer when consideringopen systemswhose com-
ponents are unknown beforehand, can change over time,
and can be self-interested human and software agents de-
veloped by different parties. Thus, open MAS can be
regarded as complex systems where (possibly) large, vary-
ing populations of agents exhibiting different (possibly
deviating, or even fraudulent) behaviours interact. Open-
ness without control may lead to chaotic behaviours.
Therefore, the design and development of open MAS ap-
pears as a highly complex task. Hence, it seems apparent
the need for introducing regulatory structures establish-
ing what agents are permitted and forbidden to do. Notice
that human societies have successfully deal with regula-
tion by deploying institutions. Thus, we advocate for the
introduction of their electronic counterpart, namelyelec-
tronic institutions (EIs)[7], to shape the environment
wherein agents interact (environment engineering) by intro-
ducing sets of artificial constraints that articulate their inter-

∗ Partially supported by project Web-i(2) (TIC-2003-08763-C02-01).

actions. Hence that we advocate that open multi agent sys-
tems can be designed and developed as EIs [4]. At this aim,
we clearly differentiate two stages: thespecificationof in-
stitutional rules; and their subsequentexecution. On the
one hand, the specification focuses on macro-level (so-
cial) aspects of agents, establishing norms. On the other
hand, the institution is in charge of enforcing the spec-
ified norms to participating agents at run time. In our
previous work, we focused on the support of the (graph-
ical) specification of institutions via ISLANDER [5]. In
this paper, we draw our attention to the support of the ex-
ecution of EIs via an infrastructure that mediates agents’
interactions while enforcing institutional rules.

The paper is organised as follows. First, in sec-
tion 2 we succinctly introduce EIs to subsequently
identify (section 3) the required features and function-
alities of an infrastructure for EIs. Next, we focus on
AMELI, our software infrastructure for EIs (available at
http://e-institutions.iiia.csic.es). More concretely, in sec-
tion 4 we elaborate on the architecture of AMELI, while
section 5 details how AMELI computationally realises the
requirements identified in section 3. A distinguishing, in-
novative feature of AMELI is that it is ofgeneral purpose
(it can interpret any ISLANDER specification), and there-
fore it can be regarded asdomain-independent. The combi-
nation of ISLANDER and AMELI allows to support both
the design and development of open MAS adopting a so-
cial perspective. In order to illustrate how AMELI works
we present an example in subsection 5.3. Finally, our con-
tributions are summarised in section 6.

2. Electronic Institutions

Above we identified as our main goal the enactment of
a constrained environment that shapes open agent societies.
We argue that such artificial constraints can be effectively
introduced by means of EIs [4]. In general terms, EIs struc-
ture agent interactions, establishing what agents are permit-
ted and forbidden to do as well as the consequences of their
actions. Next, we summarise the notion of EI (thoroughly

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
 AAMAS'04, July 19-23, 2004, New York, New York, USA.
 Copyright 2004 ACM 1-58113-864-4/04/0007...$5.00

described in [4]), illustrated via a double auction (DA) mar-
ket institution. Within this market, traders (both buyers and
sellers) meet to trade their goods under the supervision of
trade manager agents. The market consists of two major ac-
tivities. Firstly, a trade manager agent receives requests for
buying and selling goods from trading agents. When there
are enough traders interested in a certain commodity, the
trade manager opens a new trading as a DA.

In general, an EI regulates multiple, distinct, concurrent,
interrelated, dialogic activities, each one involving differ-
ent groups of agents playing different roles. For each ac-
tivity, interactions between agents are articulated through
agent group meetings, the so-calledscenes, that follow well-
defined interaction protocols whose participating agents
may change over time (agents may enter or leave). A scene
protocol is specified by a directed graph whose nodes rep-
resent the different states of a dialogic interaction between
roles. Its arcs are labelled with illocution schemes (whose
sender, receiver and content may contain variables) or time-
outs. At execution time agents interact by uttering grounded
illocutions matching the specified illocution schemes, and
so binding their variables to values, building up thescene
context. Moreover, arcs labelled with illocution schemes
may have constraints attached based on the scene context
to impose restrictions on the paths that the scene execu-
tion can follow. For instance, once all bids and offers are
submitted after a DA round, we can specify by means of
constraints that buyers can only accept the minimum of-
fer (according to the bound values in the scene context).
Formally, a scene is a tuples = 〈R,CL, W, w0,Wf ,
(WAr)r∈R, (WEr)r∈R,Θ, λ,min,Max〉 whereR is the
set of scene roles;CL is a communication language;W is
the set of scene states;w0 ∈ W is the initial state;Wf ⊆ W
is the set of final states;(WAr)r∈R ⊆ W is a family of sets
such thatWAr stands for the set of access states for role
r ∈ R; (WEr)r∈R ⊆ W is a family of non-empty sets such
that WEr stands for the set of exit states for roler ∈ R;
Θ ⊆ W ×W is a set of directed edges;λ : Θ −→ L is a la-
belling function, whereL can be a timeout, or an illocutions
scheme and a list of constraints;min,Max : R −→ IN
min(r) and Max(r) return the minimum and maximum
number of agents that must and can play roler ∈ R.

More complex activities can be specified by establish-
ing networks of scenes (activities), the so-calledperforma-
tive structures. These define how agents can legally move
among different scenes (from activity to activity) depend-
ing on their role. Furthermore, a performative structure de-
fines when new scene executions start, and if a scene can
be multiply executed at run time. A performative structure
can be regarded as a graph whose nodes are both scenes and
transitions(scene connectives), linked by directed arcs. The
type of transition allows to express choice points (Or tran-
sitions) for agents to choose which target scenes to enter, or

Figure 1. Double auction market specification

synchronisation/parallelisation points (And transitions) that
force agents to synchronise before progressing to different
scenes in parallel. The labels on the directed arcs determine
which agents, depending on their roles, can progress from
scenes to transitions, or the other way round. Since the very
same scene specification can be multiply executed, the type
of the arcs connecting transitions to scenes define whether
an agent following the arc can join anew, one, someor all
execution(s) of the target scene. Formally, a performative
structure is a tuplePS = 〈S, T, s0, sΩ, E, fL, fT , fO

E , µ〉
whereS is a set of scenes;T is a set of transitions;s0 ∈ S is
the initial scene;sΩ ∈ S is thefinal scene;E = EI

⋃
EO

is a set of arc identifiers whereEI ⊆ S × T is a set of
edges from scenes to transitions andEO ⊆ T ×S is a set of
edges from transitions to scenes;fL : E −→ FND2VA×R

maps each arc to a disjunctive normal form of pairs of agent
variable and role identifier representing the arc label;fT :
T −→ T maps each transition to its type;fO

E : EO −→ E
maps each arc to its type;µ : S −→ {0, 1} sets if a scene
can be multiply instantiated at run time. Figure 1 depicts the
specification of the performative structure of the DA market
as shown by ISLANDER [5]. Its activities are represented
by themeetingRoomscene, where traders are matched by
a trade manager based on their commodities’ interests, and
the tradeRoomscene, where a DA is run to rule the trad-
ing. Observe that trading agents switch their role to either
buyer or seller when moving from themeetingRoomto the
tradeRoom. Moreover, while there is a sole execution of the
meetingRoomscene, multiple executions of thetradeRoom
scene may occur, being dynamically created depending on
trading agents’ interests. Finally, theroot scene and theout-
put scene represent the institution’s entry and exit.

Agent’s actionswithin scenes may create commitments
for future actions, interpreted as obligations, captured by a
special type of rules callednorms. Norms establish the ac-
tions that activate obligations as well as the actions required
to fulfill them. Formally:
done(s1, γ1)∧ . . .∧ done(sm, γm)∧ e1 ∧ . . .∧ ek∧ (1)

∧¬done(sm+1, γm+1)∧ . . .∧¬done(sm+n, γm+n) → obl1∧ . . .∧oblp

expresses a norm, where(s1, γ1), . . . , (sm+n, γm+n) are
pairs of scenes and illocution schemes (representing dia-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
 AAMAS'04, July 19-23, 2004, New York, New York, USA.
 Copyright 2004 ACM 1-58113-864-4/04/0007...$5.00

logic actions),e1, . . . ek are boolean expressions over il-
locution schemes’ variables,¬ is a defeasible negation,
and obl1, . . . , oblp are obligations. The meaning of these
rules is that if illocutions matchingγ1, . . . , γm have been
uttered ins1, . . . , sm, expressionse1, . . . , ek are satisfied
and illocutionsγm+1, . . . , γm+n havenot been uttered in
sm+1, . . . , sm+n, obligationsobl1, . . . , oblp hold.

3. Institution infrastructure

3.1. Required features

An EI defines a normative environment that shapes
agents’ interactions at execution time. Notice though that
such environments are open in the sense that any agent is al-
lowed to participate, and thus the number of participat-
ing agents within an EI may dynamically vary as agents join
in and leave. Therefore, the participants in EIs may be het-
erogeneous, self-interested agents, written by different peo-
ple, in different languages and with different architectures.
Hence we can not assume that these agents behave accord-
ing to the institutional rules. And so, what are the required
features of an infrastructure that supports such EI environ-
ment? First, the main task of an infrastructure must be to
facilitate agent participation within the institutional envi-
ronment while enforcing the institutional rules encoded
in the specification. Thus, we demand an institution in-
frastructure to be capable ofinterpreting any institution
specification to be ofgeneral purpose(the very same in-
frastructure to realise multiple electronic institutions), and
ensuredomain independence. Furthermore, the infrastruc-
ture has to implement the necessary communication and
coordination mechanisms that facilitate agent communica-
tion. In this way, participating agents can communicate in a
higher level language (no need for implementing low-level
communication and coordination mechanisms), allow-
ing agent designers to primarily focus on decision making.
Lastly, an institution infrastructure is required to be bothar-
chitecturally neutral, to accept agents developed in any
language and architecture, andscalable, to cope with pos-
sibly large, varying agent populations. To summarise, we
demand that an institution infrastructure satisfies as require-
ments: it must facilitate agents’ participation within the
institution; it must enforce institutional rules; it must pre-
vent participating agents from jeopardising the functioning
of institutions; it must be architecturally neutral; it must in-
terpret any specification to guarantee re-usability and do-
main independence; and it must be scalable.

3.2. Functional requirements

The execution of an institution can be regarded as the
concurrent execution of its different scenes. In this environ-

Specification Functionality
Institution enter(ag, Roles)

exit(ag)
Performative create scene(s)

structure close scene(σ)
Scene join(σ, SAgents)

update state(σ, ι)
update state(σ, τ)
leave(σ, SAgents)

Transition add agents(t, TAgents)
move to(t, ag, Target)

fire(t)
remove agents(t, TAgents)

Norm add obligations(Obligations)
remove obligations(Obligations)

Table 1. Infrastructure operations

ment, the activity of participating agents amounts to inter-
acting with other agents within different scene executions
and moving among them. Agents’ actions make the insti-
tution execution evolve. It is the responsibility of the in-
frastructure tocontrol the institution execution by guaran-
teeing that all agent interactions abide by the institutional
rules. Hence, the infrastructure must control: the flow of
agents (when entering/leaving the institution and moving
among scene executions), the execution of scenes and tran-
sitions; and the adoption and fulfilment of agents’ obli-
gations. At this aim, the infrastructure must employ the
institutional rules encoded in the specification along with
the current execution state. This contains information about
the participating agents, scenes’ and transitions’ executions,
and each agent’s pending obligations. Formally, we define
an execution state as a tupleΩ = 〈Ag,Σ, T, Obl〉 where
Ag = {ag1, . . . , agn} is a finite set of participating agents;
Σ = {σk

i |si ∈ S, k ∈ IN} is the set of all scene executions
(whereσi

k stands for thek−th scene executions of scenesi);
T = {t1, . . . , tp} stands for all transition executions ; and
Obl = {〈ag, ι, s〉|ag ∈ Ag, ι ∈ CL(s), s ∈ S} is the set of
pending obligations (where〈ag, ι, s〉 stands for the obliga-
tion of agentag to utter illocutionι at scenes). Formally, a
scene executionσk

i is described asσk
i = 〈ω,A,B〉, where

ω stands for the current execution state,A = {(ag, r)|ag ∈
Ag, r ∈ R(si)} is the set of agents participating in the scene
along with the roles they play; andB = β1, . . . , βq stands
for the list of bindings produced by each uttered illouc-
tion uttered (representing the context of the conversation).
Furthermore, a transition execution is described as a set
{(ag, δ)|ag ∈ Ag, δ = {(σk

i , r)|σk
i ∈ Σ, k ∈ IN, r ∈ R}}

where each agentag is associated toδ, the scene executions
it aims at joining, along with the role to play in each execu-
tion, beingR the set of all institutional roles.

Next, we identify the operations that an institution in-
frastructure must implement in order to make an institution
execution evolve from stateΩ to Ω′ as a consequence of
agents’ actions. At this aim, we first analysehowan institu-
tion is required to function.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
 AAMAS'04, July 19-23, 2004, New York, New York, USA.
 Copyright 2004 ACM 1-58113-864-4/04/0007...$5.00

At the outset, any institution execution starts out with the
creation of aninitial scene execution and anfinal scene ex-
ecution. Thereafter, participating agents can enter and exit
and participate within scenes’ executions as they are cre-
ated. Then, we first focus on the execution of a scene de-
scribed asσj

k = 〈ω,A,B〉. It evolves as state transitions (in
the scene protocol) occur and as agents join and leave. A
state transition occurs by either the utterance of avalid il-
locution or a time-out expiration. An illocution is assessed
as valid whenever it complies with the scene protocol con-
sidering the current scene’s execution (i.e. it matches one of
the labels of the outgoing arcs of the current scene state, and
the constraints associated to the arc are satisfied). The new
execution state is determined according to the scene transi-
tion fired, and the context of the conversationβ is extended
with the new bindings produced by the illocution. As to the
time-out case, a time-out expiration causes the scene state
to evolve to the target state of the arc labelled with the time-
out. Furthermore, the infrastructure must also control that
agents enter or leave at access and exit states respectively
without violating the restrictions on the minimum and max-
imum number of agents per role.

Since the flow of agents among scenes’ executions are
mediated by transitions, agents are required to move to tran-
sitions prior to jump into target scenes. At this point, the in-
frastructure must guarantee that an agent within a scene ex-
ecution can only move out to a reachable transition (con-
nected to the scene) for its role. Moreover, the infrastructure
must control how tofire transitions to allow agents to move
from transitions to scenes’ executions. In order to check
when transitions can be fired, the infrastructure must con-
sider the types of transitions (and,or), the types of arcs con-
necting scenes at the specification level (one,some,all,new),
and the current scenes’ executions. As toand transitions,
agents are forced to synchronise prior to move into their
target scenes’ executions. And notice that when agents fol-
low anewarc, a new execution of the target scene is created
for them to join in.

Finally, as to the bookkeeping of each agent’s pending
obligations, the infrastructure must control when to activate
a norm (to assign new obligations), and when an agent has
carried out the actions that fulfil some of its pending obli-
gations (to unassign them).

Now, we are ready to collect the operations to be under-
taken by the infrastructure (we here limit to describe their
functionality due to space restrictions):
• enter(ag, Roles). It incorporates agentag with a sub-

set of rolesRoles ⊆ R into the (to the agents inAg). Agent
ag initially joins the initial scene.
• exit(ag). It removes agentag from the institution, i.e.

from the set of participating agents inAg. An agent can
only be removed from an institution when it no longer par-
ticipates in any scene or transition execution.

• create scene(s). It creates a new scene execution for
scenes ∈ S to be added intoΣ.
• close scene(σ). It removes scene executionσ from the

scene executions inΣ after reaching a final state and the par-
ticipating agents are gone.
• join(σ, SAgents). It incorporates a set of agents

SAgents = {(ag, r)|ag ∈ Ag, r ∈ R(s)} into scene exe-
cutionσ, each agentag playing scene roler. This involves
the updating of the participating agents inA.
• update state(σ, ι). It updates the state of scene exe-

cutionσ after the utterance of a valid illocutionι ∈ CL(s).
This involves updating the current statew ∈ σ along with
the list of bindingsB ∈ σ.
• update state(σ, τ). It updates the state of scene exe-

cution σ after the expiration of timeoutτ . This solely in-
volves updating the current statew ∈ σ.
• leave(σ, SAgents). It allows the agents in

SAgents = {(ag, r)|ag ∈ Ag, r ∈ R(s)} to leave
scene executionσ, each agentag playing roler. This in-
volves the updating of the participating agents inA.
• add agents(t, TAgents). It incorporates the agents in

TAgents = {(ag, r)|ag ∈ Ag, r ∈ R} into transition exe-
cutiont ∈ T , each agentag playing roler.
• move to(t, ag, Target). It adds a valid re-

quest from agentag to join the scene executions in
Target = {(σk

i , r)|σk
i ∈ Σ, r ∈ R}, playing roler in each

scene executionσk
i .

• fire(t). It evaluates whether a transition can be fired.
If so it returns for each agent in the transition the scene ex-
ecutions that it can join along with the role to play.
• remove agents(t, TAgents). It removes the agents

in TAgents = {ag|ag ∈ Ag} from transition execution
t ∈ T , each agentag playing roler.
• add obligations(Obligations). It includes the obliga-

tions inObligations into the set of obligationsObl. Each
obligation is a triple〈ag, ι, s〉 standing for the obligation of
agentag to utter illocutionι in scenes ∈ S.
• remove obligation(Obligations). It removes the sat-

isfied obligations inObligations from Obl.
Table 1 relates the above-described operations with the

institution components outlined in section 2. In section 5
we describe an implementation of EI infrastructure that re-
alises such operations.

4. An architecture for electronic institutions

In this section we present an EI architecture encompass-
ing both the institution infrastructure outlined in section 3
and its participating agents. Our architecture, depicted in
figure 2, is composed of the following layers:
• External agent layer. External agents taking part in

the institution.
Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
 AAMAS'04, July 19-23, 2004, New York, New York, USA.
 Copyright 2004 ACM 1-58113-864-4/04/0007...$5.00

Communication Layer

S M 1
...

 ...

Social layer
AMELI

External
Agent Layer

Institution
Specification
(XML format)

-

 ...

 ...

S MmI M T M 1 T M k

G
1

G
n

 ...

G
i

A
i

A
1

A
n

-

P
u

b
lic

P

ri
va

te

Figure 2. Electronic institution architecture

• Social layer (AMELI). Implementation of the control
functionality of the institution infrastructure.
• Communication layer. In charge of providing a reli-

able and orderly transport service.
Notice that participating agents in the institution do not

interact directly; they have their interactionsmediatedby
AMELI. Moreover, AMELI also provides external agents
with the information they need to successfully participate
in the institution. And more importantly, AMELI takes
care of the institutional enforcement: guaranteeing the cor-
rect evolution of each scene execution (preventing errors
made by the participating agents by filtering erroneous il-
locutions, thus protecting the institution); guaranteeing that
agents’ movements between scene executions comply with
the specification; and controlling which obligations partic-
ipating agents acquire and fulfil. The current implementa-
tion of AMELI that realises the above-mentioned function-
alities is composed of four types of agents:
• Institution Manager (IM) . It is in charge of starting

an EI, authorising agents to enter the institution, as well as
managing the creation of new scene executions. It keeps in-
formation about all participants and all scene executions.
There is one institution manager per institution execution.
• Transition Manager (TM) . It is in charge of manag-

ing a transition controlling agents’ movements to scenes.
There is one transition manager per transition.
• Scene manager (SM). Responsible for governing a

scene execution (one scene manager per scene execution).
• Governor (G). Each one is devoted to mediating the

participation of an external agent within the institution.
There is one governor per participating agent.

Since external agents can only communicate with their
governors, we can regard AMELI as composed of two lay-
ers: apublic layer, formed solely by governors; and apri-
vate layer, formed by the rest of agents, not accessible to
external agents. In order for agents to communicate with
their governors, they are solely required to be capable of
opening a communication channel. Since no further ar-
chitectural constraints are imposed on external agents, we
can regard AMELI asarchitecturally neutral. Observe that
AMELI is of general purpose in the sense that the same
infrastructure can be deployed to realise different institu-

Agent
 Communication

Layer

Communication
channel

Governor

Conversation 1

Conversation N

Norm management JESS

Figure 3. Governor architecture

tions. At this aim, agents composing AMELI load institu-
tion specifications as XML documents generated by the IS-
LANDER editor [5]. Thus, the implementation impact of
introducing institutional changes amounts to the loading of
a new (XML-encoded) specification. Based on an institu-
tion specification (roles, scenes, performative structure, and
norms), along with the information about its current exe-
cution, AMELI is capable of validating agents’ actions and
assessing their consequences as detailed in section 5. As
depicted in figure 2, the infrastructure is divided into two
layers: AMELI and a communication layer offering a reli-
able and orderly transport service. In this manner, AMELI
agents do not need to deal with low-level communication is-
sues, and therefore focus on handling the institution execu-
tion. The current implementation of the infrastructure can
either use JADE [1] or a publish-subscribe event model as
communication layer. When employing JADE, the execu-
tion of AMELI can be readily distributed among different
machines, permitting thescalability of the infrastructure.
Finally, participating agents regard our architecture ascom-
munication neutralsince they are not affected by changes
in the communication layer.

5. AMELI: an agent-based middleware

5.1. Agent Mediation

Each participating agent in an EI is connected to a gov-
ernor that mediates all its interactions in the institution once
admitted by the institution manager [via operationenter in
table 1]. The communication between a governor and an
agent is structured in conversations corresponding to either
a scene or a transition execution in which the agent partici-
pates (see figure 3). Conversations are dynamically created
and destroyed as the agent joins or leaves scenes and transi-
tions. In the current version, an agent can communicate with
its governor either via Java events orsockets. Governors are
also in charge of managing norms controlling its associated
agent pending obligations (detailed in section 5.2.3).

Since an agent can only communicate with its governor,
a fundamental aspect of our implementation is the agent-
governor protocol, defining the valid messages that an agent
and its governor may exchange. They exchange messages in
FIPA-ACL whose content has the following elements:Con-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
 AAMAS'04, July 19-23, 2004, New York, New York, USA.
 Copyright 2004 ACM 1-58113-864-4/04/0007...$5.00

Action Description

enterInstitution Request to enter the institution
moveToTransition Request to move from a scene to a transition

moveToScenes Request to move from a transition to several scenes
saySceneMessage Request to say a message in a scene

accesScenes Ask for the scenes the agent can join from a transition
accesTransitions Ask for the transitions the agent can join from a scene
agentObligations Ask for pending obligations

sceneState Ask for a scene’s current state
scenePlayers Ask for agents in a scene

Table 2. Actions from agent to governor.

vID (a conversation identifier);Action(an action request or
information request to do, or an action result or informa-
tion the receiver is informed about); andParameters(addi-
tional information needed to specify the action).

Table 2 summarises the actions contained in the mes-
sages an agent can send to its governor. We differentiate
among three types of actions:illocutionary (illocutions that
agents try to utter within scenes),motion (movements be-
tween scenes and transitions and the other way around),
andinformation request(scenes reachable from a transition,
transitions reachable from a a scene, agent’s obligations,
scenes’ states, and scenes’ participants). Notice though that
an agent can cancel any sent message by sending a cancel
message before the request has been processed.

For each received message, the governor replies to the
agent with one of the following messages:agree(correct
message),refuse(incorrect message), orunknown(message
not understood). Correct messages are processed later on
considering the context of the conversation it belongs to.
Any illocutionary or motionaction requested by an agent
to its governor results in either asuccessmessage (report-
ing that the action has been successfully done) or afail-
ure message (reporting the reason why the governor failed
when trying to perform the action). The governor also re-
sponds toinformation requests(scenes reachable from a
transition, transitions reachable from a a scene, agent’s obli-
gations, scenes’ states, and scenes’ participants), and in-
forms about the events the agent must be aware of (mes-
sages addressed to the agent within scenes, changes on the
participants within a scene, state transitions in scenes be-
cause of time-out expirations, the end of scenes, and the ac-
quirement or fulfilment of obligations).

5.2. Institution Management

5.2.1. Scene ManagementSeveral agents in AMELI are
involved in controlling the execution of a scene, namely:
a scene manager and one governor per participating agent.
They all coordinate in order to guarantee its sound execu-
tion. The execution of a scene starts with the creation of a
scene manager aware of the scene protocol, the roles that
participating agents may play, and the maximum and min-
imum number of agents per role. Once the scene manager
is brought up, agents may start to join the scene [operation

join]. Nonetheless, the scene cannot start until the minimum
number of agents per role is reached. Thereafter, the scene
execution may evolve because of the utterance of a valid il-
locution or because of a time-out expiration.

As agents interact within a scene, their governors and
the scene manager coordinate to evaluate agents’ actions
employing the scene specification and the execution infor-
mation. They also coordinate to maintain a shared view of
the execution information (participating agents’ identifiers
with the roles they play, current scene state, and the variable
bindings —representing the context of the conversation—
caused by uttered illocutions).

As to evaluating illocutions, when a governor receives
a request from its agent for uttering an illocution, it for-
wards it to the scene manager. Thereafter, the scene man-
ager checks whether it is valid according to the scene
specification and the execution information. If the message
is correct, a scene transition comes about [operationup-
datestate]. In this case, the scene manager sends it to the
governors of the addressees of the illocution, which in turn
forward it to their assigned agents. Moreover, the scene
manager updates the scene’s execution information. Lastly,
the agent requesting the utterance of the illocution is in-
formed by its governor about the success of the action. Oth-
erwise, if the illocution is not correct, the agent is informed
about the failed action. If the scene execution reaches a state
where there is an outgoing arc labelled with a timeout, the
scene manager evaluates the timeout expression to start the
timeout countdown. If the timeout expires without a valid
illocution, the state transition corresponding to the arc la-
belled with the timeout occurs [operationupdatestate]. The
scene manager reports to all governors, and these to their as-
sociated agents.

Scene managers are also in charge of authorising agents
to join [operationjoin] or leave [operationleave] scene ex-
ecutions. On the one hand, requests for joining the scene
are received from transition managers. On the other hand,
agents intending to leave a scene must send a message to
their governor requesting which transition(s) to go to. If the
agent can move to the requested transition (if there is an arc
in the performative structure from the scene to the requested
transition labelled by the agent’s role) the governor informs
the scene manager that the agent wants to leave the scene.
In both cases, the scene manager blocks the scene execution
when it reaches an access or exit state for the agents wait-
ing for joining or leaving. Then, it authorises agents to join
or leave unless the restrictions on the maximum and mini-
mum agents per role are violated. When an agent is autho-
rised to join a scene execution, its governor updates him
with the current state and the scene’s participants thanks
to the scene execution information received from the scene
manager. When an agent is authorised to leave a scene ex-
ecution, his governor reports him when moving into a se-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
 AAMAS'04, July 19-23, 2004, New York, New York, USA.
 Copyright 2004 ACM 1-58113-864-4/04/0007...$5.00

1

2

3

4

5
6
7

8

Figure 4. Double auction market monitoring

lected transition [operationadd agents]. In both cases the
rest of governors are informed about the changes concern-
ing the participants so that they report to their agents. Fi-
nally, the scene manager closes a scene execution when it
reaches a final state and all participating agents are gone
[operationclose], acknowledging the institution manager.

5.2.2. Transition managementEach transition is man-
aged by a transition manager agent, devoted to route agents
to their target scene executions. Within a transition, an agent
can request its reachable scene executions to its governor.
Thereafter, the agent can request which scene executions
to join. The governor forwards the request to the transi-
tion manager for analysis. If incorrect, the agent will have
its request refused; otherwise the transition manager keeps
it [operationmoveto], and checks if the transition can be
fired along with the agents that can start moving to their tar-
get scene executions [operationfire]. Notice thatAnd tran-
sitions synchronise their agents prior to their firing. Move-
ments are made asynchronously: agents leave the transition
execution [operationremoveagents] to be incorporated into
each requested scene execution [operationjoin] indepen-
dently. In case of movements to active scenes, the transition
manager informs the scene manager so that this authorises
the agent(s) to join the execution as soon as it reaches an ac-
cess state for its(their) role(s). When the movement aims at
a new scene execution, the transition manager informs the
institution manager, who creates the new scene execution
[operationcreatescene] by launching a scene manager for
it. Thereafter, the agent(s) is(are) incorporated.

5.2.3. Norm managementOur approach is that gover-
nors manage norms as a rule-based system. In order to con-
struct the rule base, each institutional norm (following the
norm schema in (1)) is split into: one rule for the activa-
tion of the norm (e.g. accepting an offer in a DA, generat-

ing the obligation to pay); and another rule for the fulfil-
ment of obligations (e.g. paying the amount of money due
for the accepted offer). The facts of the system are the illo-
cutions uttered and received by the agent. Therefore, a norm
Ni splits into:

R1i : done(s1, γ1) ∧ . . . ∧ done(sm, γm) ∧ e1 ∧ . . . ∧ ek →
assert(obl1 . . . oblp) ∧ addRule(R2

′
i, RB)

R2i : done(sm+1, γm+1) ∧ . . . ∧ done(sm+n, γm+n) →
retract(obl1 . . . oblp) ∧ dropRule(R2i, RB)

(2)

Rule R1i corresponds to norm activation: if illocu-
tionsγ1 . . . γn have been uttered in sceness1, . . . , sm and
eventse1 . . . ek are satisfied, then obligationsobl1 . . . oblp
are added to the set of agent pending obligations [operation
add obligations], and a rule to check the obligations ful-
filment is added to the rule base viaaddRule(R2′i, RB).
Notice that the illocution schemes on norm definitions con-
tain variables whose scope is the complete norm. Hence,
the bindings of these variables must be taken into ac-
count in the rule of the second type added to the rule
base. Thus,R2′i is a particularization ofR2i where vari-
ables are replaced by their bound values. RuleR2i

checks whether norm obligations are fulfilled: if il-
locutions γm+1 . . . γm+n have been uttered in scenes
s1, . . . , sm, then obligations obl1 . . . oblp are elimi-
nated from the set of agent pending obligations [op-
eration removeobligations], and the rule is removed
from the rule base viadropRule(R2i, RB). Gover-
nors only need to add to their rule bases the first type
of rules because the second type will be added and re-
moved dynamically in the rule base as obligations are
acquired or fulfilled.

In order to manage rules we use the Java Expert System
Shell (JESS) (http://herzberg.ca.sandia.gov/jess), a rule en-
gine and scripting environment that permits the creation and
management of rule-based systems from JAVA programs.
Governors continuously keep the pending obligations of
their assigned agents, checking whether their subsequent in-
teractions alter them. At this aim, governors have a thread
devoted to manage its interaction with JESS (see figure 3):
to add rules and facts into JESS; to run JESS inference en-
gine; and to collect information from JESS when rules are
fired. Thereafter, each governor informs its assigned agent
about new obligations or fulfilled obligations.

5.3. Example

In order to illustrate how AMELI works, figure 4 shows
the monitoring of an execution of the DA market described
in section 2. Frame 1 contains a list of the institution’s
scenes and transitions along with their executions. The list
includes a single execution of themeetingRoomscene (id 5)
at stateW1. Furthermore, there are two different executions
of the tradeRoomscene: one ongoing execution (id 50 at

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
 AAMAS'04, July 19-23, 2004, New York, New York, USA.
 Copyright 2004 ACM 1-58113-864-4/04/0007...$5.00

the initial state), and a finished one (id 34). The figure shows
that while five agents (a trade manager –tradeMgr, two buy-
ers, and two sellers) have participated in scene execution
34, a single agent (a trade manager) is waiting for buyers
and sellers to join in scene execution 50. According to sec-
tion 5, there is a scene manager agent per ongoing scene ex-
ecution (e.g. id 5, 50). Besides, no scene manager agent is
required any longer for scene execution 34 since it is fin-
ished. Furthermore, there is one transition manager agent
per transition. Frame 2 depicts the events occurring during
scene execution 34: agents’ entrance (e.g. label 4), the utter-
ance of valid (e.g. label 6) and wrong (e.g. label 5) illocu-
tions, transitions caused by timeouts (e.g. label 7), agents’
exit (e.g. label 8). We must remind the reader that the co-
ordinated activity of the scene manager of the scene execu-
tion and the participating agents’ governors guarantee that
all these events abide by the scene specification. To illus-
trate the control of AMELI agents, frame 3 visualises an il-
locution rejected because a constraint in the specification is
violated when buyerBIGWireattempts at submitting a de-
mand of0 units at 18 EUR. Since the scene manager eval-
uates the illocution as not valid,BIGWire is informed by its
governor about the failed action.

6. Contributions and Related work

Engineering MAS appears as an intricate task. Re-
cently, a remarkable number of MAS methodologies (e.g.
GAIA [11], Tropos [6], or [9] to name a few) have been pro-
posed. Although they are based on strong agent-oriented
foundations, offering original contributions at the de-
sign level, they are unsatisfactory at the development level
because of the lack of support to bridge design an imple-
mentation. On the other hand, although MAS method-
ologies agree on the need of adopting an organisational
stance, to the best of our knowledge the formal defini-
tion of organisation-centered patterns and social structures
in general, along with their computational realisation, re-
main open issues (as noted in [11]). In addition to method-
ologies, although further agent research has focused on the
introduction of social concepts such as organisations or in-
stitutions (e.g. [8],[3],[10]), there is no infrastructure sup-
porting their computational realisation.

In this paper we have attempted to make head-
way in the above-identified shortcomings. Thus, we have
presented AMELI, an infrastructure devoted to sup-
port the computational realisation of EIs. Notice that
AMELI is a key piece that allows us to fill the gap be-
tween the design (specification) of EIs and their imple-
mentation: while ISLANDER [5] supports the graphical
specification of EIs as formalised in [4], AMELI sup-
ports their subsequent execution. Notably, an innovative
feature of AMELI is that it is ofgeneral purpose(it can in-

terpret any institution specification), and therefore it can
be regarded asdomain-independent. This feature dif-
fers from the work in [2], where specifications of inter-
actions protocols (and not higher-level social structures)
must be subsequently compiled into executable proto-
col moderators. It also differs from Tropos, whose specifi-
cations are transformed into agent skeletons that must be
extended with code, since AMELI requires neither nor ad-
ditional programming or compilation since it works as a
specification interpreter. Notice too that AMELI has been
realised as a cooperative multi-agent system that medi-
ates all interactions of agents participating in the institution
in order to cope with openness, particularly guarantee-
ing the enforcement of institutional rules. Finally, it is our
belief that AMELI represents a higher (social) level of ab-
straction than other agent infrastructures such as DARPA
COABS (http://coabs.globalinfotek.com) or JADE [1].

References

[1] F. Bellifemine, A. Poggi, and G. Rimassa. Developing multi-
agent systems with jade. InIntelligent Agents VII, number
1571 in LNAI, pages 89–103. Springer-Verlag, 2001.

[2] C. S.-B. C. Hanachi. Protocol moderators as active middle-
agents in multi-agent systems.Journal of Autonomous
Agents and Multiagent Systems, 8(2), March 2004.

[3] V. Dignum. A Model for Organizational Interaction. PhD
thesis, Dutch Research School for Information and Knowl-
edge Systems, 2004. ISBN 90-393-3568-0.

[4] M. Esteva. Electronic Institutions: from specification to de-
velopment. IIIA PhD Monography. Vol. 19, 2003.

[5] M. Esteva, D. de la Cruz, and C. Sierra. Islander: an elec-
tronic institutions editor. InProceedings of AAMAS 2002,
pages 1045–1052, 2002.

[6] F. Giunchiglia, J. Mylopoulos, and A. Perini. The tropos soft-
ware development methodology: Processes. Technical Re-
port 0111-20, ITC-IRST, November 2001.

[7] P. Noriega. Agent-Mediated Auctions: The Fishmarket
Metaphor. Number 8 in IIIA Phd Monograph. 1997.

[8] H. Parunak and J. Odell. Representing social structures
in uml. In Agent-Oriented Software Engineering II. LNCS
2222, pages 1–16. Springer-verlag edition, 2002.

[9] A. Sturm, D. Dori, and O. Shehory. Single-model mehtod
for specifying multi-agent systems. InProceedings of AA-
MAS 03, pages 121–128, Melbourne, Australia, 2003.

[10] J. Vazquez and F. Dignum. Modelling electronic organiza-
tions. InMulti-Agent Systems and Applications III, volume
2691 ofLNAI, pages 584–593. Springer-verlag edition, 2003.

[11] F. Zambonelli, N. Jennings, and M. Wooldridge. Developing
multiagent systems: The gaia methodology.ACM Transac-
tions on Software Engineering and Methodology, 12(3):317–
370, 2003.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
 AAMAS'04, July 19-23, 2004, New York, New York, USA.
 Copyright 2004 ACM 1-58113-864-4/04/0007...$5.00

