
Extracting performers’ behaviors to annotate
cases in a CBR system for musical tempo

transformations

Josep Llúıs Arcos, Maarten Grachten, and Ramon López de Mántaras

IIIA, Artificial Intelligence Research Institute
CSIC, Spanish Council for Scientific Research

Campus UAB, 08193 Bellaterra, Catalonia, Spain.
{arcos,maarten,mantaras}@iiia.csic.es, http://www.iiia.csic.es

Abstract. In this paper we describe a method, based on the edit dis-
tance, to construct cases of musical performances by annotating them
with the musical behavior of the performer. The cases constructed with
this knowledge are used in Tempo-Express, a CBR system for apply-
ing tempo transformations to musical performances, preserving musical
expressiveness.

1 Introduction

In the design of a case-based reasoning system, one of the key issues is the case
base acquisition. One possible option for acquiring cases is the development of
tools for manually incorporating cases into the case base. Another alternative is
the development of tools for automatically—or semi-automatically—importing
cases from a pre-existing source—either from publicly available archives [4] or
problem specific data bases.

For classification or identification tasks, a case can be easily represented by
the input data (the case problem) and the class or the enumerated collection of
classes the case belongs (the case solution). In other tasks such as planning or
design problems, a solution can be a composite structure. Moreover, the solution
structure can contain the solution itself and additionally knowledge about the
decisions taken when constructing the solution. For instance, derivational anal-
ogy [5] is based on augmenting the case solution by means of detailed knowledge
of the decisions taken while solving the problem, and this recorded information
(e.g. decisions, options, justifications) is used to “replay” the solution in the
context of the new problem. As originally defined in derivational analogy for
planning systems the cases contain traces from planning processes performed to
solve them; also it is stated that in Prodigy/Analogy stored plans are annotated
with plan rationale and reuse involves adaptation driven by this rationale [18].

Another task example, where case representation has to be augmented with
detailed knowledge of the decisions taken while solving the problem, is the gen-
eration of expressive music. As our previous experience in the SaxEx system has
demonstrated [1], the problem of the automatic generation of expressive musical

performances is that human performers use musical knowledge that is not explic-
itly noted in musical scores. This knowledge is difficult to verbalize and therefore
AI approaches based on declarative knowledge representations have serious limi-
tations. An alternative approach is that of directly using the knowledge implicit
in examples from recordings of human performances. Then, when we import
recordings to be incorporated as cases in our case base, besides representing the
musician performance as the case solution, we also need to extract the decisions
performed by the musician when playing a melody (in other words, the perform-
ers’ behavior). These decisions—such as playing additional notes, leaving out
some notes, changing note durations, etc—are what we call annotations in this
paper.

In this paper we focus our attention on the automatic annotation process
developed for Tempo-Express, a case-based reasoning system for tempo trans-
formation of musical performances, that preserves expressivity in the context of
standard jazz themes. Expressive tempo transformations are a common manual
operation in audio post-processing tasks. A CBR system can be a useful tool
for automating this task. As we will explain in the next section, the annotation
process is used when incorporating cases into the system and when the system
must solve a new problem (that is, a new performance must be generated).

Case annotation is based on a dynamic programming algorithm based on the
concept of edit distance. Edit distance is a technique for assessing the distance
between two sequences and calculates this distance as the minimum total cost
of transforming one sequence (the source sequence) into the other (the target
sequence), given a set of allowed edit operations and a cost function that defines
the cost of each edit operation. The output of the algorithm is a quantity that is
proportional to the distance, or dissimilarity between the sequences. Moreover,
the edit distance provides the sequence of edit operations that yielded this value.
Edit distance was first adapted to musical applications by Mongeau and Sankoff
in [14].

The paper is organized as follows: In section 2 we briefly introduce the Tempo-
Express application and their main inference modules. In section 3 we describe
the edit distance mechanism. In section 4 we describe the the use of edit distance
in the case annotation process. In section 5 we report the experiments performed
in annotating cases. The paper ends with a discussion of the results, and the
planned future work.

2 Tempo-Express

Tempo-Express is a case-based reasoning system for generating expressive tempo
transformations in the context of standard jazz themes. Changing the tempo of
a given melody is a problem that cannot be reduced to just applying a uniform
transformation to all the notes of a musical piece. When a human performer
plays a given melody at different tempos, she does not perform uniform trans-
formations. On the contrary, the relative importance of the notes will determine,
for each tempo, the performer’s decisions. For instance, if the tempo is very fast,

the performer will, among other things, tend to emphasize the most important
notes by not playing the less important ones. Alternatively, in the case of slow
tempos, the performer tends to delay some notes and anticipate others.

In the development of Tempo-Express we are using the experience acquired
in developing the SaxEx system [1]. The goal of SaxEx was also to generate ex-
pressive music performances but the task was centered on transforming a non
expressive input performance into an expressive new sound file taking into ac-
count the user preferences regarding the desired expressive output characterized
along three affective dimensions (tender-aggressive, sad-joyful, calm-restless).
The task of Tempo-Express is to perform tempo transformations with ‘musical
meaning’ to an already expressive input performance. That is, a recording has
to be replayed at a user required tempo that can be very different from the input
tempo.

Below, we briefly present the main Tempo-Express modules and the infer-
ence flow (see Figure 1). The input of Tempo-Express is a recording of a jazz
performance at a given tempo Ti (a sound file), its corresponding score (a MIDI
file) and the desired output tempo. The score contains the melodic and the har-
monic information of the musical piece and is analyzed automatically in terms of
the Implication/Realization Model [15] (this analysis is used in the retrieval step
and is not further discussed in this paper). The recording is parsed by the per-
formance analysis module that produces a XML file containing the performance
melody segmentation (onset points and duration of notes). Then, the melody
segmentation is compared to its corresponding score by the Annotation process
(see the detailed description in section 4). The annotated performance and the
desired output tempo To are the input for the case-based reasoning. The task of
the case-based reasoning modules is to determine a sequence of operations that
achieves the desired tempo transformation while maintaining a form of musical
expressivity that is appropriate for that tempo. Finally, the output of the system
is a new version of the original melody, at the desired tempo, generated by the
synthesis process.

Tempo-Express is implemented in Noos [3, 2], an object-centered representa-
tion language designed to support the development of knowledge intensive case
based reasoning systems. The melodic (performance) Analysis and synthesis pro-
cesses have been implemented by the Music Technology Group (MTG) of the
Pompeu Fabra University using signal spectral modeling techniques (see [17, 8]
for a detailed description). Below, we briefly describe the case-based reasoning
components.

The Case Base A case is represented as a complex structure embodying three
different kinds of knowledge: (1) the representation of the musical score (notes
and chords), (2) the musical model of the score (automatically inferred from the
score using Narmour’s Implication/Realization model and Lerdhal and Jackend-
off’s Generative Theory of Tonal Music as background musical knowledge [15,
12]), and (3) a collection of annotated performances. For the case acquisition,
several saxophone performances were recorded from 5 jazz standards, each one

Retrieve Reuse

Score

Performance
recording

.mid

.xml

Annotation
Process

.wav .wav

Desired
Tempo

.xml

Synthesis
Module

Retain

gen.perf. To

To

Performance
Analysis

Musical
Analysis score/m.model

annot.perf. Ti

Case Base

. . .
annot.perf. T1

annot.perf. Tn

score/m.model

Fig. 1. General view of Tempo-Express modules.

consisting of 4–5 distinct phrases. The performances were played by a profes-
sional performer, at 9–14 different tempos per phrase. From this, the initial
case base was constructed, containing 20 scores of musical phrases, each with
about 11 annotated performances (in total more than 5.000 performed notes).
See section 5 for more details of the data set.

The Retrieval Step The retrieval mechanism is organized in three phases. In a
first phase the input melody is compared with the melodies of the case base using
melodic similarity measures (see [9] for a detailed description) for retrieving only
those case melodies really similar—For instance, given a slow ballad as input,
we are not interested in comparing it with be-bop themes.

In a second phase, we focus on the similarity of the musical models. This
phase uses similarity criteria such as: Narmour’s musical grouping structures
(such as melodic progressions, repetitions, changes in registral directions, etc);
the harmonic stability of the note according to jazz harmony; the metrical
strengths of the notes; or the hierarchical relations of the notes in the phrase
melodies according to the Generative Theory of Tonal Music (GTTM) model.

Finally, in the third phase the similarity among performances are assessed.
For example, in figure 1 the annotated input performance (Ti) is compared to the
annotated performances (T1 . . . Tn) of the case base whose tempos are the closest
to the tempo of Ti. This set of annotated performances is ranked according to
the degrees of similarity between their annotations and the annotation of Ti.
The output of the retrieval step is a collection of candidate annotations for each
note in the input melody.

The Adaptation Step The adaptation mechanism has been implemented us-
ing constructive adaptation [16], a generative technique for reuse in CBR sys-
tems. The adaptation mechanism deals with two kinds of criteria: local criteria
and coherence criteria. Local criteria deal with the transformations to be per-
formed to each note—i.e. how retrieved candidate annotations can be reused

in each input note. Coherence criteria try to balance smoothness and hardness.
Smoothness and hardness are basically contradictory: the first tends to iron out
strong deviations with respect to the score, while the second tends to favor strong
deviations. The resulting expressive performance is a compromise between the
smoothness and hardness criteria, with the aim of keeping an overall balance
pleasant to the ear.

The Retain Step The user decides whether or not each new tempo perfor-
mance should be added to the memory of cases. The newly added tempo per-
formances will be available for the reasoning process in future problems. At this
moment Tempo-Express has no specific criteria to automatically decide whether
to store a newly solved problem.

3 Edit Distance Approach

In general, the edit distance (also known as Levenshtein distance [13]) between
two sequences can be defined as the minimum total cost of transforming one
sequence (the source sequence) into the other (the target sequence), given a
set of allowed edit operations and a cost function that defines the cost of each
edit operation. The sequences under comparison are not restricted to consist of
quantitative data, and they do not even have to be of the same nature, since the
edit operations and their costs can be designed to handle any kind of data.

The set of edit operations used for most purposes contains insertion, deletion,
and replacement. Insertion is the operation of adding an element at some point in
the target sequence; deletion refers to the removal of an element from the source
sequence; replacement is the substitution of an element from the target sequence
for an element of the source sequence. Although the effect of a replacement
could be established by removing the source sequence element and inserting the
target sequence element, the replacement operation expresses the idea that the
source and target elements somehow correspond to each other. Ideally, if a source
element and a target element are thought to correspond, this is reflected by the
fact that the cost of replacing the source element by the target element is lower
than the sum of the costs of deleting the source element and inserting the target
element. Many other operations can be added, depending on the nature of the
sequences, like one-to-many and many-to-one replacements, or transpositions
(reversing the order of elements).

The edit distance approach has been applied in a variety of domains, such
as text search, molecular biology and genetics. Mongeau and Sankoff [14] have
described a way of applying this measure of distance to monophonic melodies
(represented as sequences of notes). They extended basic set of edit operations
(insertion, deletion and replacement) with fragmentation and consolidation, i.e.
one-to-many and many-to-one replacements respectively. These operations cater
for the phenomenon where a sequence of two or more notes (usually with the
same pitch) are replaced by one long note of the same pitch, or vice versa.

Phrases that are considered to be melodic variations of each other often contain
such kind of variations.

The weights for the edit operations defined by Mongeau and Sankoff take into
account the pitch and duration information of the notes. The costs of deletion
and insertion are directly related to the duration of the deleted/inserted notes.
Replacements are charged by calculating the differences in pitch and duration
between the notes to be replaced. The costs of fragmentation and consolidation
are similar, where the duration of one note is compared to the summed duration
of the set of notes in the other sequence.

3.1 Computing the Distances

Computing the edit distance is done by calculating the minimum cost of trans-
forming a source sequence into a target sequence. This can be done relatively
fast, using the following recurrence equation for the distance dm,n between two
sequences 〈a1, a2, ..., am〉 and 〈b1, b2, ..., bn〉:

di,j = min

di−1,j + w(ai, ∅) (deletion)

di,j−1 + w(∅, bj) (insertion)

di−1,j−1 + w(ai, bj) (replacement)

di−1,j−k + w(ai, bj−k+1, ..., bj), 2 ≤ k ≤ j (fragmentation)

di−k,j−1 + w(ai−k+1, ..., ai, bj), 2 ≤ k ≤ i (consolidation)

for all 0 ≤ i ≤ m and 0 ≤ j ≤ n, where m is the length of the source sequence
and n is the length of the target sequence. Additionally, the initial conditions
for the recurrence equation are:

di,0 = di−1,j + w(ai, ∅) (deletion)

d0,j = di,j−1 + w(∅, bj) (insertion)

d0,0 = 0

The weight function w, defines the cost of operations, such that e.g. w(a4, ∅)
returns the cost of deleting element a4 from the source sequence, and w(a3, b5, b6, b7)
returns the cost of fragmenting element a3 from the source sequence into the sub-
sequence 〈b5, b6, b7〉 of the target sequence.

For two sequences a and b, consisting of m and n elements respectively, the
values di,j (with 0 ≤ i ≤ m and 0 ≤ j ≤ n) are stored in an n + 1 by m + 1
matrix. The value in the cell at the lower-right corner, dm,n is taken as the
distance between a and b, that is, the minimal cost of transforming the sequence
〈a0, ..., am〉 into 〈b0, ..., bn〉.

3.2 Optimal Alignments

After the distance value between two sequences has been calculated, it can be
easily found out what was the sequence of transformations that yielded this
value. To do this, it is necessary to store for each value di,j (0 ≤ i ≤ m and

R D R I F R

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

Alignment

Sequence 2

Sequence 1

Fig. 2. A possible alignment between two sequences of geometric symbols.

0 ≤ i ≤ m, where m and n are the lengths of the source and target sequence
respectively) which was the last operation that was performed to arrive at di,j .
From this operation it can be inferred how much each of the indices for the
source and the target sequence should be decreased (for example in the case of
deletion i is decreased by 1 and j is not decreased). By traversing the matrix
in this way from dm,n to d0,0, the sequence of operations that yielded the value
dm,n, can be found.

The sequence of operations that transform the source sequence into the tar-
get sequence can be regarded as an alignment between the two sequences, i.e.
a correspondence is established between elements in the source sequence and
elements in the target sequence, respectively. In the next section we will see that
this alignment is the key aspect of the automatic annotation process.

An alignment example is shown in figure 2. For simplicity, the two aligned
sequences consist of geometric figures, instead of musical elements. The align-
ment is shown in between the sequences, as a sequence of operations. The letters
in operations stand for replacement (R), deletion (D), insertion (I) and frag-
mentation (F), respectively. The example shows how matches are made between
identical or near identical elements from sequence 1 and sequence 2. When for
a particular element in one sequence there is no matchable element at hand in
the other sequence, a deletion or insertion operation is performed. A fragmen-
tation occurs between the triangle in sequence 1 and the two half triangles in
sequence 2, since the two half triangles taken together, match with the whole
triangle. Which of all possible alignments is optimal (i.e. has the lowest total
cost) obviously depends on the costs assigned to the operations that occur in
the alignments.

4 The Annotation Process

To analyze a performance of a melody, a crucial problem is to identify which
element in the performance corresponds to each note of the score of the melody.
Especially in jazz performances, which is the area on which we will focus, this
problem is not trivial, since jazz performers often favor a ‘liberal’ interpretation
of the score. This does not only involve changes in expressive features of the
score elements as they are performed, but also omitting or adding notes. Thus,
one can normally not assume that the performance contains a corresponding el-
ement for every note of the score, neither that every element in the performance

corresponds to a note of the score. Taking these performance liberties into ac-
count, a description of a musical performance could take the form of a sequence
of operations that are applied to the score elements.

From this perspective the edit distance, as described in the previous section,
will be very useful. The edit distance has been used before in the performance-
to-score mapping problem by Dannenberg [6] and Large [11], among others. The
application area has been score-tracking for automatic accompaniment as well as
performance timing research. Other approaches to performance-to-score match-
ing have also been proposed. See [7] and [10] for an overview and comparison of
several approaches.

The application of the edit distance in the context of comparing performances
to scores is somewhat different from the case where scores are comparing to other
scores. In the first case, we deal with sequences of different nature. The perfor-
mance itself is not necessarily a discrete sequence but could be for example a
continuous (audio) stream. Although matching score elements to fragments of
audio data is not inconceivable, it is probably more convenient to make a tran-
scription of the performance into a sequence of note elements before matching.
The resulting sequence of note elements is more appropriate for comparing with
scores, but it must be kept in mind that transcription of audio to note sequences
is a reductive procedure. For example, pitch and dynamics envelopes are usually
reduced to single values.

Another difference between score-performance matching and score-score match-
ing is more conceptual. In score-performance matching, the performance is thought
to be derived from the score, that is, the elements of the score sequence are trans-
formed into performance elements, rather than replaced by them. For this reason,
in the context of score-performance matching it is more appropriate to talk of
transformation operations instead of replace operations.

4.1 The Edit Operations

The various edit operations can be classified (see figure 3) to make explicit the
characteristics of their behavior. Firstly, all the operations refer to one or more
elements in the sequences that are aligned. We can distinguish, within this gen-
eral class of Reference operations, those that refer to notes in the score sequence
and those that refer to elements in the performance sequence. Deletion opera-
tions refer to notes of the score sequence that are not present in the performance
sequence (i.e. the notes that are not played), therefore they can be be classified
as Score-Reference operations. Conversely, insertion operations refer only to ele-
ments in the performance sequence (i.e. the notes that were added), so they form
a subclass of Performance-Reference operations. Transformation, consolidation
and fragmentation operations refer to elements from both the score and the per-
formance and thus form a shared subclass of Score-Reference and Performance-
Reference operations. We call this class Correspondence operations. Figure 3
summarizes the relations between the classes of edit operations.

In our particular case, we are not primarily interested in comparing per-
formance elements to score elements itself, but rather in the changes that are

Score−Reference Performance−Reference

Deletion

Correspondence

Transformation Consolidation Fragmentation Insertion

Reference

Fig. 3. A hierarchical representation of edit operations for performance annotation.

made to values of score notes when they are transformed into performance ele-
ments. Therefore, we view transformation operations as compositions of several
transformations, e.g. pitch transformations, duration transformations and on-
set transformations. Following the same idea, fragmentation and consolidation
operations (as described in section 3), can be elaborated by such transforma-
tion operations. For example, a consolidation operation could be composed of
a duration transformation that specifies how the total duration of the consoli-
dated score notes deviates from the duration of the corresponding performance
element.

Based on the fact that the phrases in our data set were played by a profes-
sional musician and they were performed quite closely to the score, it may be
thought that the performances could be described by only correspondence oper-
ations, that map a score element to a performance element, perhaps with minor
adjustments of duration and onset. However, as mentioned before, most actual
performances, and indeed the performances at our disposal, contain extra notes,
or lack some notes from the score. Listening to the performances revealed that
these were not unintentional performance errors, since they were often found
on the same places in various performances of the same phrase and the effect
sounded natural. This implies that in addition to correspondence operations, in-
sertion and deletion operations are also required. Furthermore, we also observed
that consolidation (as described in the previous section) occurred in some perfor-
mances. Occasionally, we found cases of fragmentation. Other transformations,
such as transposition (reversal of the temporal order of notes) were not encoun-
tered. Thus, the set of operations shown in figure 3 are basically sufficient for
mapping the performances to their scores in our application.

4.2 The Cost Values

Once the set of edit-operations is determined, we need to decide good cost values
for each of them. Ideally, the cost values will be such that the resulting optimal
alignment corresponds to an intuitive judgment of how the performance aligns
to the score (in practice, the subjectivity that is involved in establishing this
mapping by ear, tuns out to be largely unproblematic). The main factors that

determine which of all the possible alignments between score and performance
is optimal, will be on the one hand the features of the note elements that are
involved in calculating the cost of applying an operation, and on the other hand
the relative costs of the operations with respect to each other.

In establishing which features of the compared note elements are consid-
ered in the comparison, we adopted much of the choices made by Mongeau and
Sankoff [14]. Primarily, pitch and duration information were taken into to ac-
count in order to assign the cost of a transformation operation. For insertions
and deletions, only the duration of the inserted/deleted notes is considered. Frag-
mentation and consolidation both use pitch and duration information. The cost
functions w for each operations are given below. P and D are functions such that
P (x) returns the pitch (as a MIDI number) of a score or performance element x,
and D(x) returns its duration. Equations 1, 2, 3, 4, 5 define the costs of deletion,
insertion, transformation, consolidation and fragmentation, respectively.

w(si, ∅) = D(si) (1)
w(∅, pj) = D(pj) (2)
w(si, pj) = |P (si) − P (pj) | + |D(si) − D(pj) | (3)

w(si, ..., si+K , pj) =
K∑

k=0

|P (si+k) − P (pj) | + |D(pj) −
K∑

k=0

D(si+k) | (4)

w(si, pj , ..., pj+L) =
L∑

l=0

|P (si) − P (pj+l) | + |D(si) −
L∑

l=0

D(pj+l) | (5)

From the equations it can be seen that the cost of transformation will be zero
if the score and performance elements have the same pitch and duration, and
the fragmentation cost will be zero if a score note is fragmented into a sequence
of performance notes whose durations add up to the duration of the score note
and whose pitches are all equal to the pitch of the score element.

From a musical perspective, it can be argued that a the cost mapping two
elements with different pitches should not depend on the difference of the ab-
solute pitches, but rather on the different roles the pitches play with respect
to the underlying harmonies, or their scale degree, as these features have more
perceptual relevance than absolute pitch difference. This would certainly be es-
sential in order to make good alignments between scores and performances that
very liberally paraphrase the score (e.g. improvisations on a melody) and also
in the case where alignment is constructed for assessing the similarity betwee
different scores. In our case however, we currently deal with performances that
are relatively ‘clean’ interpretations of the score. As such, changes of pitch are
very uncommon in our data. Still, it is desirable to have a more sophisticated
pitch comparison approach, to accommodate more liberal performances in the
future.

We have also considered incorporating the difference in position in the costs
of the correspondence operations (transformation, consolidation and fragmenta-

tion). This turned out to improve the alignment in some cases. One such case
occurs when one note in a row of notes with the same pitch and duration is
omitted in the performance. Without taking into account positions, the optimal
alignment will delete an arbitrary note of the sequence, since the deletions of
each of these notes are equivalent based on pitch and duration information only.
When position is taken into account, the remaining notes of the performance
will all be mapped to the closest notes in the score, so the deletion operation
will be performed on the score note that remains unmapped, which is often the
desired result.

The other factor of importance for determining the optimal alignment be-
tween score and performance is the relative costs of the operations are with
respect to each other. The relative costs of each kind of operation can be con-
trolled simply by adding a constant scaling factor to each of the cost equations
above. Experimentation with several settings showed that the score-performance
alignments were stable within certain ranges of relative costs. Only when cer-
tain values were exceeded the alignments would change. For example, gradually
decreasing the cost of deletions and insertions did initially not affect the align-
ments. Only after reaching a certain threshold, more and more correspondence
operations were left out of the alignment and replaced by the deletion and in-
sertion of the involved sequence elements. The stability of the alignments under
changing cost functions is probably due to the fact that the performances are
generally quite close to the score, i.e. it is mostly unambiguous which notes the
performer played at each moment. If the performances had been less faithful
representations of the score, it would be less clear whether notes would have just
been changed in time and pitch, or rather that some notes have been deleted
and others are played instead. This would probably result on a lack of stable
alignments. In general, the desired alignments of the different phrases performed
at different tempos could be obtained using the same values cost function pa-
rameters.

In the calculation of the alignment it is not necessary to take into account low-
level operations like onset transformation or duration transformation, because
they can be inferred, from the note attributes, once a correspondence between
notes in the score and notes in the performance has been established. Also the
order in which e.g. a transformation operation is split into pitch transformation,
duration transformation and onset transformation, is irrelevant, since all these
operations act on the same performance element.

5 Experimentation and Results

Our set of audio data currently consists of alto saxophone recordings of five jazz
standards (‘Once I Loved’ (A.C. Jobim), ‘Up Jumped Spring’ (F. Hubbard),
‘Donna Lee’ (C. Parker), ’Like Someone in Love’ (Van Heusen/Burke) and ‘Body
and Soul’ (J. Green)), played at various tempos. Each song is played at about 12
different tempos, spread around the original tempo at intervals of approximately
10 beats per minute. These tempos are assumed to cover most of the musically

4
4

3 3

T T T T T T T T T T T T T T T T I T T T T T T T T T C T T T
Duration−
Deviation

Deviation
Onset−

Alignment:

Fig. 4. Graphical representation of the annotations extracted for the first phrase of
‘Body and Soul’ at 100 beats per minute.

acceptible range of tempos at which the melodies can be performed. The songs
were performed by a professional jazz musician, playing along with a metronome.
The performer was instructed to stick to the score as much as possible, and
play in a consistent expressive way, that is, without intentionally changing the
mood. After recording, the performances were segmented into phrases manually,
which resulted in a data set consisting of 219 recorded musical phrases. These
phrases were transcribed using a melody extraction tool that is being developed
by the Music Technology Group (MTG) of the Pompeu Fabra University of
Barcelona [8]. The transcriptions are in XML format and comply to the MPEG7
standard for melody description. The note entries in the melody description
contain attributes such as the MIDI number of the pitch, onset (in seconds),
duration (in seconds) and dynamics. Since the tempo of the performance and
the position of the metronome ticks is known, duration and onset values can be
easily converted from seconds to metrical beats.

A general analysis of the annotation results, perhaps unsurprisingly, show the
extracted annotations showed that more insertions were found in phrases that
were performed at slower tempos, and deletions and consolidations more often
occurred in faster performances. Closer inspection showed that the inserted notes
were mainly ornamental ‘leading’ notes: notes with a very short duration played
‘as an introduction’ to the following note. The pitch was often just one semitone
above or below the pitch of the note that it embellished. Deletions of notes often
occurred in sequences of notes with the same pitch. In some of these cases, the
duration of the previous or next note was increased slightly, so it was hard to tell
if the note was really deleted, or rather that it had been consolidated together
with its predecessor or successor into one large note. Both possibilities could be
obtained, respectively by increasing and decreasing the cost of consolidation.

More concretely, table 1 shows the annotations extracted comparing the score
and one performance of the first phrase of ‘Body and Soul’ at tempo 100. The
numbers in the table are the deviations with respect to the score. Negative
(resp. positive) values for onset transformations mean that the note has been
anticipated (resp. delayed). Negative (resp. positive) values for duration trans-
formations mean that the note has been shortened (resp. prolonged). C5 in the
table is a note added by the performer between notes 16-17. A[4 consolidates

notes 26-27. Empty entries mean that the corresponding transformation was not
applied.

Figure 4 shows a summary of the same annotations in a graphical form. The
alignment between the score and the performance is represented by the letters T
(Transformation), I (Insertion), and C (Consolidation). For the Transformation
operations, the duration and onset deviations of performance are shown in bars.
The size of the bars show the amount of deviation. Bars above the line indicate a
longer duration or later onset, respectively. Bars below the line indicate a shorter
duration or earlier onset.

6 Conclusions and Future Work

We have presented a system to annotate cases of musical performances. The
annotations are automatically extracted from human performances. This is done
by finding the optimal alignment between the score and a transcription of the
performance, using the edit distance algorithm.

It should be noticed that even in performances that were intended to be
relatively literal interpretations of the score, deletions and insertions of note
elements occur. This implies that an annotation scheme that labels performance
elements as the one presented in this paper is very useful in music performance
processing systems.

This paper has focused on extracting performers’ behaviors to annotate cases
within the Tempo-Express CBR system. The whole system has been only briefly
described. Such a system is useful to automatically achieve musically sensible
tempo transformations that presently are manually done in audio-processing
studios.

At some stages of the annotation process, improvements and elaborations are
possible: the hierarchy of edit operations could be specified in further detail, for
example by distinguishing between the insertions/deletions of ornamental notes
(that often have an intricate relationship to their neighboring notes) versus non-
grace notes. Other improvements could be made in the cost calculation of the edit
operations. For example, the costs of transformation operations could involve a
comparison of the harmonic role of the pitches, rather than the absolute pitch
difference. This would be especially valuable in cases where the performance is
a liberal paraphrase, or an improvisation on the score.

Acknowledgments

The authors acknowledge the Music Technology Group of the Pompeu Fabra
University for providing the XML transcriptions of the performances. This re-
search has been partially supported by the Spanish Ministry of Science and
Technology under the project TIC 2000-1094-C02 “Tabasco: Content-based Au-
dio Transformation using CBR”.

References

1. Josep Llúıs Arcos and Ramon López de Mántaras. An interactive case-based rea-
soning approach for generating expressive music. Applied Intelligence, 14(1):115–
129, 2001.

2. Josep Llúıs Arcos and Enric Plaza. Inference and reflection in the object-centered
representation language Noos. Journal of Future Generation Computer Systems,
12:173–188, 1996.

3. Josep Llúıs Arcos and Enric Plaza. Noos: An integrated framework for problem
solving and learning. In Knowledge Engineering: Methods and Languages, 1997.

4. C. Blake, E. Keogh, and C. Merz. UCI Repository of Machine Learning Algorithms
Databases. University of California. Department of Information and Computer
Science, Irvine, CA, 1998.

5. Jaime Carbonell. Derivational analogy: A theory of reconstructive problem solving
and expertise acquisition. In R. S. Michalski, J. G. Carbonell, and T. M. Mitchell,
editors, Machine Learning, volume 2, pages 371–392. Morgan Kaufmann, 1986.

6. R. Dannenberg. An on-line algorithm for real-time accompaniment. In Proceedings
of the 1984 International Computer Music Conference. International Computer
Music Association, 1984.

7. P. Desain, H. Honing, and H. Heijink. Robust score-performance matching: Tak-
ing advantage of structural information. In Proceedings of the 1997 International
Computer Music Conference, pages 337–340, San Francisco, 1997. International
Computer Music Association.

8. E. Gómez, , A. Klapuri, and B. Meudic. Melody description and extraction in the
context of music content processing. Journal of New Music Research, 32(1), 2003.
(In Press).

9. Maarten Grachten, Josep Llúıs Arcos, and Ramon López de Mántaras. A compar-
ison of different approaches to melodic similarity. In II International Conference
on Music and Artificial Intelligence, 2002.

10. H. Heijink, P. Desain, H. Honing, and L. Windsor. Make me a match: An evaluation
of different approaches to score-performance matching. Computer Music Journal,
24(1):43–56, 2000.

11. E. W. Large. Dynamic programming for the analysis of serial behaviors. Behavior
Research Methods, Instruments & Computers, 25(2):238–241, 1993.

12. Fred Lerdahl and Ray Jackendoff. An overview of hierarchical structure in music.
In Stephan M. Schwanaver and David A. Levitt, editors, Machine Models of Music,
pages 289–312. The MIT Press, 1993. Reproduced from Music Perception.

13. V. I. Levenshtein. Binary codes capable of correcting deletions, insertions and
reversals. Soviet Physics Doklady, 10:707–710, 1966.

14. Marcel Mongeau and David Sankoff. Comparison of musical sequences. Computers
and the Humanities, 24:161–175, 1990.

15. Eugene Narmour. The Analysis and cognition of basic melodic structures : the
implication-realization model. University of Chicago Press, 1990.

16. Enric Plaza and Josep Ll. Arcos. Constructive adaptation. In Susan Craw and
Alun Preece, editors, Advances in Case-Based Reasoning, number 2416 in Lecture
Notes in Artificial Intelligence, pages 306–320. Springer-Verlag, 2002.

17. Xavier Serra, Jordi Bonada, Perfecto Herrera, and Ramon Loureiro. Integrating
complementary spectral methods in the design of a musical synthesizer. In Pro-
ceedings of the ICMC’97, pages 152–159. San Francisco: International Computer
Music Asociation., 1997.

18. Manuela M. Veloso, Alice M. Mulvehill, and Michael T. Cox. Rationale-supported
mixed-initiative case-based planning. In AAAI/IAAI, pages 1072–1077, 1997.

Note Dur. Tr. Onset Tr. Pitch Tr. Ins. Del. Cons. Frag.

1 0.024 0.105
2 -0.058 0.129
3 -0.126 0.071
4 -0.021 -0.054
5 0.068 -0.075
6 0.054 -0.007
7 0.490 0.048
8 0.051 0.037
9 -0.031 0.088
10 0.024 0.058
11 -0.024 0.082
12 0.017 0.058
13 0.061 0.075
14 -0.030 0.136
15 0.016 0.106
16 0.837 0.122

C5
17 -0.110 0.183
18 0.034 0.088
19 0.068 0.122
20 -0.136 0.191
21 -0.034 0.055
22 0.535 0.020
23 -0.078 0.126
24 -0.085 0.048
25 0.031 -0.037

26/27 A[4
28 0.000 0.068
29 -0.030 0.068
30 -0.150 0.038

Table 1. Quantified annotations extracted for the first phrase of ‘Body and Soul’ at
tempo 100.

